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Abstract: The innate immune system relies on families of pattern recognition receptors (PRRs)
that detect distinct conserved molecular motifs from microbes to initiate antimicrobial responses.
Activation of PRRs triggers a series of signaling cascades, leading to the release of pro-inflammatory
cytokines, chemokines and antimicrobials, thereby contributing to the early host defense against
microbes and regulating adaptive immunity. Additionally, PRRs can detect perturbation of cellular
homeostasis caused by pathogens and fine-tune the immune responses. Among PRRs, nucleotide
binding oligomerization domain (NOD)-like receptors (NLRs) have attracted particular interest in the
context of cellular stress-induced inflammation during infection. Recently, mechanistic insights into
the monitoring of cellular homeostasis perturbation by NLRs have been provided. We summarize
the current knowledge about the disruption of cellular homeostasis by pathogens and focus on NLRs
as innate immune sensors for its detection. We highlight the mechanisms employed by various
pathogens to elicit cytoskeleton disruption, organelle stress as well as protein translation block, point
out exemplary NLRs that guard cellular homeostasis during infection and introduce the concept of
stress-associated molecular patterns (SAMPs). We postulate that integration of information about
microbial patterns, danger signals, and SAMPs enables the innate immune system with adequate
plasticity and precision in elaborating responses to microbes of variable virulence.

Keywords: innate immunity; NOD-like receptors; pathogens; cellular homeostasis; NOD1/2;
NLRP3; NLRP1

1. Introduction

Nucleotide binding oligomerization domain (NOD)-like receptors (NLRs) are a group
of evolutionarily conserved pattern recognition receptors (PRRs) critical for microbial recog-
nition and host defense. To date, 22 NLRs have been identified in humans and 34 distinct
ones in mice. They have a common molecular organization comprising a subclass-specific
N-terminal effector domain, a central NOD domain, and C-terminal leucine-rich repeats
(LRRs) that bind to pathogen-associated molecular patterns (PAMPs). Based on the distinct
N-terminal effector domains including transactivator domain (AD), baculovirus inhibitor
repeats (BIRs), caspase recruitment domain (CARD), or pyrin domain (PYD), NLRs are
divided into four subgroups: NLRA, NLRB, NLRC, and NLRP [1,2]. The Major Histocom-
patibility Complex Class II Transactivator (CIITA), the only member of NLRA, induces
expression of the major histocompatibility complex (MHC) class I and II by functioning as a
transcriptional activator and a transcription factor, respectively [3,4]. The NLRB subgroup
contains only one single member in humans, the NLR family apoptosis inhibitory protein
(NAIP), and seven members (NAIP1-7) in mice. NAIP and NAIP1 sense needle proteins of
the type III secretion system (T3SS) and activate the NLRC4 inflammasome, while NAIP5/6
and NAIP2 recognize bacterial flagellin and rod components, respectively [5–8]. The NLRC
subgroup includes NOD1 and NOD2, which are well-characterized PRRs recognizing bac-
terial peptidoglycan. They sense γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP) and
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muramyl dipeptide (MDP), respectively [9–12]. Ligand engagement leads to the release of
auto-inhibitory conformation, subsequent oligomerization of NOD1/2 and recruitment of
the receptor-interacting protein kinases 2 (RIP2) via CARD–CARD interactions, and finally
activation of the nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and
mitogen-activated protein kinases (MAPKs), which drive expression of pro-inflammatory
genes and antimicrobial responses [13,14]. The NLRP subgroup comprises 14 members
in humans, NLRP3 being one of the best-investigated molecules in this subgroup and
involved in inflammasome activation. NLRP3 is activated by diverse stimuli including
PAMPs, damage or danger-associated molecular patterns (DAMPs) and cellular pertur-
bations such as endoplasmic reticulum (ER) and mitochondrial stress. Upon activation,
NLRP3 recruits the adaptor apoptosis-associated speck-like protein containing a CARD
(ASC) and the pro-Caspase-1, triggering Caspase-1 activation and subsequent cleavage
of interleukin 1 beta (IL1β) and eventually cell death [15,16]. The central NOD domain
has an ATPase activity and is essential for the oligomerization of NLRs. Despite conser-
vation of their global functions and signaling pathways, specific NLRs show differences
between mice and humans. For instance, NOD1/2 trigger autophagy in both human
and mouse cells, yet their downstream adaptor RIP2 is required for autophagy induction
only in human cells [17,18]. The CARD only protein (COP) and the inhibitory CARD
(INCA) are negative regulators of IL1β production and these are present solely in the hu-
man genome [19,20]. Moreover, lipopolysaccharide triggers an alternative inflammasome
involving the Toll-like receptor 4 (TLR4)-RIP1-Caspase-8 signaling upstream of NLRP3,
which is unique to human monocytes [21]. These examples illustrate the necessity for a
careful consideration of potential similarities and differences in NLR biology across species.
Specific examples are highlighted in the context of cell stress in this review.

Sensing of PAMPs by PRRs initiates immune responses irrespective of microbial
pathogenicity. Detection of patterns of pathogenicity or homeostasis-altering molecular
processes (HAMP) enables fine-tuning of immune responses and allows for differenti-
ation of pathogens from nonpathogenic microbes [22,23]. During millions of years of
co-evolution, pathogens have developed mechanisms targeting host homeostatic functions,
and the resulting perturbations permit pathogens to infect, replicate and spread to per-
missive hosts. Accumulating evidence indicates that disruption of cellular homeostasis
elicits NLR activation. Thus, we propose that in addition to PAMP sensing, NLRs also
detect stress-associated molecular patterns (SAMPs), allowing for the discrimination of
pathogens from harmless microbes. We extend the SAMP concept from intercellular stress
signals (e.g., alerting neighboring cells of oxidative stress [24]) to intracellular cues that
signify pathogenicity and activate innate immunity. Accordingly, cellular stress as a trigger
and regulator of host antimicrobial defense will be discussed in the context of infection
with various pathogenic microbes ranging from viruses to protozoans.

2. Pathogen-Induced Perturbation of Cellular Homeostasis

Although different pathogens employ a broad pool of virulence factors to perturb cel-
lular homeostasis, the outcome of host–pathogen interactions converges toward conserved
overarching cellular processes, notably cytoskeleton disruption, ER stress, mitochondrial
dysfunction and protein translation inhibition.

2.1. Disruption of Cytoskeleton Dynamics

In eukaryotic cells, the cytoskeleton network comprises three components: actin
filaments, tubulin microtubules and intermediate filaments [25]. It plays critical roles in
diverse cellular processes such as endocytosis and phagocytosis, intracellular transport,
cell migration and division [25]. The cytoskeleton network organization, especially its
assembly and disassembly, is tightly and precisely regulated. However, pathogens have
developed diverse strategies to manipulate the cytoskeleton dynamics at different stages
of infection (Figure 1).
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Figure 1. Pathogens cause cytoskeleton disruption. Bacteria and viruses subvert host cytoskeleton
dynamics for their entry, intracellular survival and dissemination. They employ various effector
molecules, toxins, or viral proteins to induce actin remodeling by manipulating Rho GTPases (RHOA,
CDC42, and RAC1), which are the central regulators of the actin polymerization. Parasites such
as Toxoplasma gondii and Plasmodium berghei also induce actin rearrangement by binding or cleav-
ing actin-associated factors. Abbreviations: RHOA, Ras homolog family member A; CDC42, cell
division control protein 42 homolog; RAC1, Ras-related C3 botulinum toxin substrate 1; mDia,
mammalian homolog of Diaphanous; N-WASP, neuronal Wiskott-Aldrich Syndrome protein; WAVE,
Wiskott-Aldrich syndrome protein family verprolin-homologous; ARP2/3, actin related protein
2/3; TirA, translocated intimin receptor A; EspF, enteropathogenic E. coli effector protein F; EspG,
enteropathogenic E. coli effector protein G; TcdA, Clostridium difficile toxin A; TcdB, C. difficile toxin B;
IpaC, invasion plasmid antigen C; VirA, virulence factor A; SopE, salmonella outer protein E; SipA,
salmonella invasion protein A; TARP, type III secretion system actin-recruiting effector. Image created
with BioRender.com.

Under physiological conditions, in response to extracellular stimuli, the Rho family
of GTPases including RHOA, RAC1, and CDC42 is turned on and subsequently induces
activation of the nucleating factor actin related protein 2/3 (ARP2/3), which drives actin
polymerization [26,27]. These pathways are exploited by pathogens for actin-mediated
adhesion and invasion. For instance, extracellular bacteria such as enterohemorrhagic
Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) translocate various effectors
into cells via a type III secretion system (T3SS) to trigger actin polymerization and pedestal
formation for bacterial adhesion. The translocated intimin receptor (Tir) is critical for
the adhesion of EHEC and EPEC by activating the ARP2/3 complex [28–30]. The en-
teropathogenic E. coli effector protein F (EspF) binds to actin, profilin, ARP2 and to neural
Wiskott-Aldrich syndrome protein (N-WASP), which subsequently induces actin poly-
merization [31]. EspG binds to tubulin, causing microtubule depolymerization and actin
stress fiber formation [32]. In contrast, Clostridium difficile utilizes TcdA and TcdB toxins to
inactivate the Ras homolog family member A (RHO), the Ras-related C3 botulinum toxin
substrate 1 (RAC1) and the cell division control protein 42 homolog (CDC42) via glycosyla-
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tion, thereby causing actin depolymerization and gut permeability [33,34]. Intracellular
pathogens require access to subcellular compartments in phagocytic or non-phagocytic
cells to meet their metabolic requirements for replication. Accordingly, various bacterial
pathogens have developed strategies for rapid entry by inducing cytoskeleton reorganiza-
tion. For example, Shigella flexneri secretes the invasion plasmid antigen C (IpaC) via T3SS
to induce formation of filopodial extensions, activation of CDC42 and RAC1 for lamellipo-
dial extensions, and of the avian sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog
(Src) kinase for actin polymerization, thus facilitating bacterial internalization [35–37]. Fur-
thermore, Shigella utilizes the virulence factor A (VirA) to inhibit tubulin polymerization
and destabilize microtubules for its efficient entry into epithelial cells [38,39]. Similar
to Shigella, Salmonella typhimurium secretes several effectors via T3SS to activate CDC42
and RAC1 [40–43]. Salmonella outer protein E (SopE) and SopE2 trigger membrane ruf-
fling and actin rearrangement by stimulating GDP/GTP exchange activity of CDC42 and
RAC1 [40,41]. Salmonella invasion protein A (SipA) directly binds to actin and enhances
actin polymerization [43]. Chlamydia trachomatis also secretes the effector called translocated
actin recruiting phosphoprotein (TARP) to induce actin polymerization during entry into
non-phagocytic cells [44]. Other intracellular bacteria including Listeria monocytogenes [45],
Coxiella burnetii [46] and Yersinia pestis [47] do not utilize protein-mediated membrane
ruffling. Instead, they invade host cells via an active zippering mechanism in which actin
rearrangement is also involved [48].

Many viruses exploit the host cytoskeleton for their entry, replication, cellular trans-
port and egress. Here, we only focus on mechanisms by which viruses actively induce
cytoskeleton remodeling. For example, Herpes Simplex Virus-1 (HSV-1) induces RHOA ac-
tivation and subsequently promotes its entry via an unusual phagocytosis-like uptake [49].
The Env protein of Human Immunodeficiency Virus (HIV) induces RAC1 activation and
further promotes ARP2/3-dependent actin polymerization for HIV fusion with the cell
membrane [50]. The Sendai virus increases the level of the actin-modifying protein Villin,
leading to actin polymerization and viral entry [51]. Human Papillomavirus type 31
(HPV 31) activates tyrosine and phosphoinositide 3-kinases (PI3K) to promote cytoskeletal
rearrangement, which allows viral entry via filopodia transport [52].

For obligate intracellular parasites, plasma membrane and cytoskeleton form barriers
against invasion, hence some parasites actively induce actin reorganization to facilitate
their entry and release. Toxoplasma gondii and Plasmodium berghei trigger the formation
of ring-shaped actin structures at the parasite–cell junction for host cell invasion [53]. T.
gondii secretes the actin-binding protein toxofilin to regulate actin filament disassembly
and turnover [54], whereas P. falciparum employs several proteases such as serine protease
gp76 [55], chymotrypsin-like protease [56], plasmepsin II [57] and possibly the cysteine
protease [58] to induce actin rearrangement by cleavage of various actin-associated fac-
tors [56–58].

After cell invasion, several pathogens hijack the cytoskeleton network to subvert
intracellular killing mechanisms. Shigella induces the formation of a unique actin coat-like
structure that inhibits bacterial killing by blocking fusion of the phagosomes with late
endosomes/lysosomes [59,60]. This actin cocoon is triggered by the T3SS effector IcsB
(Intra-inter-cellular spread B) by recruiting the actin nucleation machinery [60]. Massive
cytoskeleton perturbation also occurs during intracellular replication of C. trachomatis.
Chlamydia inclusions, which contain replicating bacteria, are enclosed in compact F-actin
and intermediate filaments that cooperatively maintain integrity and stability of the in-
clusions [61]. C. burnetii replicates in large parasitophorous vacuoles that require F-actin
association in a process depending on RHOA and CDC42 [62].

Several pathogens take advantage of actin-based motility for cell-to-cell spread.
L. monocytogenes achieves such motility via the bacterial factor actin assembly-inducing
protein (ActA) [63]. ActA mimics the ARP2/3 nucleation-promoting factor N-WASP. It
binds to actin monomers and activates ARP2/3, thus promoting actin nucleation [64,65].
IcsA from Shigella recruits N-WASP and ARP2/3 on its surface to induce actin polymeriza-
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tion [66–68]. Rickettsia parkeri utilizes two actin-polymerizing proteins, RickA and surface
cell antigen 2 (Sca2), for early and late motility, respectively [69]. Various Burkholderia
species also show distinct actin-based motility mediated by Burkholderia intracellular
motility A (BimA) orthologs by mimicking different host actin-polymerizing proteins [70].
The actin tails formed at the bacterial surface generate mechanical forces that propel the
bacteria into adjacent cells via membrane protrusion [71]. Several viruses also manipu-
late the actin cytoskeleton to induce rapid cell-to-cell spread without free virion release.
The Vaccinia virus employs the viral protein A36 [72,73] and the Baculovirus uses the
P78/83 capsid protein [74] to promote ARP2/3-dependent actin polymerization. Actin
tails are also found to be associated with Ebola virus nucleocapsids, contributing to its
budding [75]. Pseudorabies virus (PRV) and HSV-1 induce cytoskeletal rearrangements
and cell extensions to facilitate viral spread by US3 kinase [76,77]. The P protein of Human
Metapneumovirus (HMPV) promotes CDC42, RAC1 and RHOA dependent formation of
intercellular actin extensions, thus contributing to direct cell-to-cell spread [78].

In sum, bacterial, viral and protozoal pathogens employ unrelated virulence factors
that target actin, tubulin and intermediate filaments to induce host cytoskeleton remod-
eling for their invasion, intracellular survival and exit from host cells. The dysregulated
cytoskeleton dynamics results in the perturbation of homeostatic functions and signifies
pathogenicity during infection.

2.2. ER Stress

The ER maintains cellular homeostasis by regulating protein folding and processing,
lipid synthesis and calcium storage and release. Accumulation of misfolded proteins in
the ER lumen leads to its functional impairment and ER stress [79,80]. To counteract the
detrimental effects of the ER stress, eukaryotic cells initiate the unfolded protein response
(UPR) pathways. The ER stress is sensed by three ER transmembrane receptors: protein
kinase R-like ER kinase (PERK), inositol-requiring enzyme 1α (IRE1α) and activating
transcription factor 6 (ATF6). Under homeostatic conditions, these sensors are inactive due
to interactions with the ER luminal heat shock protein 70 (HSP70)-type chaperone binding
immunoglobulin protein (BiP). Upon ER stress, BiP dissociates from these sensors and
binds to misfolded proteins in the ER, thereby releasing the sensors to initiate the three
branches of UPR [79,80].

Diverse pathogens disrupt ER homeostasis and cause ER stress, thus facilitating
their survival and replication and controlling host cell death (Figure 2). Viruses exploit
the ER for their protein synthesis and processing. Hence, a large number of viruses can
induce ER stress to promote their replication, twist host cell death and facilitate their
dissemination [81]. For instance, the African Swine Fever Virus (ASFV) utilizes ER as
replication sites. It activates ATF6-dependent UPR to promote viral replication [82,83].
The Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) induces activation of
PERK via its spike [84] and 3a protein [85] as well as the activation of ATF6 via the 8ab
protein [86]. Dengue Virus (DENV) triggers IRE1α, PERK and ATF6-mediated UPR to
promote virion assembly and alleviate virus-induced apoptosis [87–90].
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and dissemination. Unfolded protein responses (UPR) are mediated by the ER stress sensors protein
kinase R-like ER kinase (PERK), inositol-requiring enzyme 1α (IRE1α) and activating transcription
factor 6 (ATF6). The 6 kDa early secretory antigenic target (ESAT-6) from M. tuberculosis (Mtb), shiga
toxin 1 (Stx) from S. dysenteriae, listeriolysin O (LLO) from L. monocytogenes, dengue virus (DENV),
etc. induce all three branches of UPR. VceC, a T4SS effector from B. abortus, binds to the ER chaperon
binding immunoglobulin protein (BiP) and triggers IRE1α signaling. CaeB (C. burnetii anti-apoptotic
effector B) from C. burnetii stimulates IRE1α signaling, facilitating its pathogenesis. The severe acute
respiratory syndrome coronavirus (SARS-CoV) induces PERK and ATF6 signaling and the African
Swine Fever Virus (ASFV) activates only ATF6. Image created with BioRender.com.

Various bacteria and parasites also trigger ER stress, contributing to the pathogenesis
of infection. The 6 kDa early secretory antigenic target (ESAT-6), a secreted virulence
factor from Mycobacterium tuberculosis (Mtb), activates IRE1α and PERK mediated UPR,
resulting in Ca2+ release, reactive oxygen species (ROS) production, and subsequent apop-
tosis [91]. Heparin-binding hemagglutinin antigen (HBHA) from Mtb also induces ER
stress through cytosolic Ca2+ and ROS generation, leading to apoptosis [92]. Shiga toxin 1
from S. dysenteriae, the cholesterol-dependent cytolysin Listeriolysin O (LLO) from L. mono-
cytogenes as well as EHEC and C. trachomatis activate all ER stress sensors IRE1α, PERK,
and ATF6 [93–96]. B. abortus resides in ER-derived vacuoles and VceC, an effector of T4SS,
directly interacts with the ER chaperon BiP and activates the IRE1α- X-box binding protein
1 (XBP1) pathway [97]. The cyclic dinucleotide c-di-GMP from B. abortus also triggers stim-
ulator of interferon genes (STING)-dependent ER stress responses, which facilitate bacterial
replication in vivo [98]. Streptolysins O and S from group A Streptococcus (GAS) elicit ER
stress, and promote biofilm formation and dissemination within soft tissues in vivo [99]. C.
burnetii stimulates IRE1α signaling and inhibits ER stress-induced apoptosis via the T4SS
effector CaeB (C. burnetii anti-apoptotic effector B), likely contributing to pathogenicity
in vivo [100]. P. berghei induces IRE1α-mediated UPR, promoting liver stage infection [101],
while T. gondii activates the same ER stress sensor to enhance its dissemination in vivo [102].
Altogether, viral, bacterial or parasitic pathogens often induce ER stress to promote their
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replication and dissemination. Their abilities to induce ER stress distinguish them from
non-pathogenic microbes.

2.3. Mitochondrial Dysfunction

Mitochondria are central organelles for many homeostatic processes including ox-
idative phosphorylation and ATP production, fatty acid oxidation and cell death. They
are also crucial for innate immunity and inflammatory responses [103,104]. RNA sen-
sors (e.g., retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated
protein 5 (MDA5)) converge their signals toward mitochondrial antiviral-signaling pro-
tein (MAVS), which triggers TANK-binding kinase 1 (TBK1)/Interferon regulatory factor
3 (IRF3)-dependent type I interferon (IFN-I) signaling [105–108]. Mitochondria-derived
ROS also facilitate bacterial killing [109,110]. Moreover, metabolic reprogramming of
immune cells in mitochondria governs immune responses and inflammation [111–114].
Therefore, it is not surprising that many pathogens have developed strategies to provoke
mitochondrial dysfunction (Figure 3) and thus escape the host defense.
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Mitochondria are dynamic organelles that constantly undergo fission and fusion and
their dynamics are important for processes such as energy production, mitochondrial
quality control and cell death. Manipulation of mitochondrial dynamics, either fragmenta-
tion or elongation, has been reported as pathogenicity mechanism for bacterial and viral
pathogens (Figure 3A). L. monocytogenes elicits mitochondrial fragmentation via multiple
mechanisms. The pore-forming toxin LLO causes loss of mitochondrial membrane poten-
tial and reduces ATP generation [115], increases expression of MIC10, a critical component
of the mitochondrial contact site and cristae organizing system (MICOS) complex [116], and
induces mitochondrial fission independent of the dynamin related protein 1 (DRP1) [117].
Altering dynamics of mitochondrial fusion during infection affects survival of Listeria, sug-
gesting that it manipulates mitochondria dynamics to establish an infection [115]. B. abortus
induces a drastic mitochondrial fragmentation independent of DRP1 [118], whereas H.
pylori utilizes the vacuolating cytotoxin A (VacA) to elicit mitochondrial fragmentation via
a mechanism dependent on DRP1 [119]. Similarly, S. flexneri and L. pneumophila induce
DRP1-dependent mitochondrial fragmentation for their intracellular replication [120,121],
whereas Influenza A Virus (IAV) employs the viral protein PB1-F2 to cause such fragmen-
tation. Moreover, PB1-F2 is imported to mitochondria via the translocase of the outer
membrane 4 (TOM4) and inhibits RIG-I/MVAS-mediated IFN-I response [122]. Other viral
pathogens rather stimulate mitochondrial fusion. For instance, the open reading frame-9b
(ORF-9b) from SARS-CoV triggers ubiquitination and proteasomal degradation of DRP1,
resulting in mitochondrial elongation, degradation of MAVS, TNF receptor-associated
factor (TRAF3) and TRAF6 and inhibition of IFN-I [123]. The glycoprotein 120 (gp120) of
HIV induces mitochondrial fusion by reducing total and active DRP1 levels [124].

Various pathogens are also reported to modulate the host metabolism to ensure a
replication niche (Figure 3B). Mtb induces upregulation of key glycolytic enzymes while
lowering expression of enzymes involved in the tricarboxylic acid (TCA) cycle and ox-
idative phosphorylation in murine lungs, suggesting a metabolic shift from oxidative
phosphorylation to aerobic glycolysis in tuberculosis [125]. Mtb also increases glycolysis
in human and mouse macrophages in vitro, in turn contributing to bacterial control via
IL1β release [126]. This metabolic shift toward glycolysis is initiated by the toll-like re-
ceptor 2 (TLR2) activation and mediated by the protein kinase B/mechanistic target of
the rapamycin (AKT/mTOR) pathway [127]. Mtb augments expression of microRNA-21
(miR-21) in macrophages, which in turn dampens glycolysis by targeting phospho-fructo-
kinase, muscle isoform (PFK-m). IFNγ enhances PFK-m expression, thereby contributing
to improved control of Mtb [128]. Opposingly, Mtb promotes a quiescent energy pheno-
type with reduced glycolysis and TCA cycle in human monocyte-derived macrophages,
while attenuated M. bovis BCG or dead Mtb induce glycolysis [129]. These apparently
contradictory findings may be attributed to host-, cell type-, or infection stage-specific
metabolic remodeling during Mtb infection. Other intracellular bacteria (e.g., L. pneu-
mophila and B. abortus) trigger a metabolic switch toward glycolysis to support bacterial
survival [121,130]. During S. flexneri infection, host cells convert glucose into acetate in-
stead of lactate, and the bacteria capture the downstream metabolite pyruvate for their
growth [131]. Similarly, the Apicomplexa parasite Theileria induces aerobic glycolysis in
bovine leukocytes [132,133] by stabilizing host pyruvate kinase isoform M2 (PKM2) [134].
To utilize host glucose as a carbon source, T. gondii also promotes glycolysis in murine
dendritic cells [135] and in fibroblasts [136,137] by increasing the expression of enzymes in-
volved in glycolysis [135–137]. T. cruzi enhances host glucose uptake to fuel its metabolism,
yet without affecting glycolysis [138]. Instead, the protozoa P. falciparum hampers glycolysis
in red blood cells due to oxidative stress [139]. Viruses completely rely on host metabolism
to fuel their replication, however, some of them are able to actively subvert host metabolism
for their benefit. The infection with the Human Cytomegalovirus (HCMV) increases the
glycolytic flux, while HSV-1 induces the TCA cycle for its replication [140]. The Hepatitis
C Virus (HCV) infection increases glycolysis and activates the pentose phosphate pathway
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as well as lipid synthesis for virus replication at the early stage, and fatty acid oxidation at
later stages [141].

Overall, these findings strengthen the concept that mitochondrial dysfunction repre-
sents an evasion mechanism that facilitates efficient escape from host defense during viral,
bacterial and protozoal infection.

2.4. Blockade of Protein Translation

Viral replication completely depends on the host’s translation machinery. To facilitate
translation of viral proteins and restrict production of host antiviral proteins, viruses have
developed multiple strategies to globally block host translation (Figure 3C). Translation
of host mRNA occurs in a cap-dependent manner and the eukaryotic initiation factor 4F
(eIF4F) complex consisting of the cap-binding protein eIF4E, the scaffold eIF4G, and the
RNA helicase eIF4A is critical for efficient targeting of ribosomes to the m7G cap [142,143].
Many viruses directly target the eIF4F complex given the importance of the complex
in host mRNA translation [144]. Poliovirus [145], coxsackievirus and rhinovirus [146],
HIV-1 [147], HIV-2, moloney murine leukemia virus, mouse mammary tumor virus and
simian immunodeficiency virus [148], feline calicivirus [149] and foot-and-mouth disease
virus [150] encode various proteases to directly degrade eIF4G. The rotavirus non-structural
protein 3 (NSP3), a homolog of the poly(A) binding protein (PABP), interacts with eIF4G
and disrupts interaction between eIF4G and PABP, thus shutting off host protein synthesis
while keeping viral protein translation unaltered [151]. Enteroviruses induce expression of
miR-141 that targets eIF4E mRNA for its degradation [152]. NSP1 from SARS-CoV-2 binds
to the 40S ribosomal subunit, leading to the blockade of mRNA entry and disruption of
host translation [153].

Although bacteria do not depend on the host translation machinery, some species also
develop strategies to impair host translation and inhibit the immune defense (Figure 3C).
Exotoxins (e.g., diphtheria toxin from C. diphtheriae, shiga toxin from S. dysenteriae and
exotoxin A from P. aeruginosa) block protein translation by inactivating the host elongation
factor 2 (EF2) via ADP-ribosylation [154]. C. trachomatis substantially inhibits host protein
synthesis, possibly by inducing ER or mitochondrial stress [155]. L. pneumophila uses
several effectors to interfere with host protein translation. Legionella glucosyltransferase 1
(Lgt1) inactivates the elongation factor 1-alpha (EF1A) [156], the substrate I of Icm/Dot
transporter (SidI) binds to and disables EF1A and EF1Bγ [157], and Legionella kinase
4 (LegK4) phosphorylates all members of the HSP70 family (HSP70, HSP72, and BiP)
and compromises folding of nascent polypeptides [158,159]. Collectively, although host
translation is primarily targeted by viruses, selected bacterial pathogens employ multiple
toxins or effectors to inhibit protein translation.

3. NLRs Activation by Perturbation of the Cellular Homeostasis

Several NLR members can be activated by PAMPs, DAMPs and also by pathogen-
induced perturbation of cellular homeostasis, possibly via SAMP generation. Members
of two NLR subclasses, NLRC and NLRP, are major receptors involved in inflammation
induced by disrupted cellular homeostasis during pathogen invasion. Involvement of
NOD1 and NOD2 as well as of NLRP1 and NLRP3 in sensing cellular homeostasis dysfunc-
tion has been recently demonstrated [160–163]. These NLR members are endowed with
remarkable multitasking abilities of directly sensing microbial moieties, detecting danger
cues and monitoring cellular stress during infection.

3.1. NOD1 and NOD2 Detect the Disruption of Cytoskeleton Dynamics

Several studies have unveiled that NOD1 and NOD2 are activated upon cytoskeleton
disruption [164–167]. Experiments with chemical inhibitors have first indicated that actin-
depolymerizing agents (e.g., cytochalasin D and latrunculin B) and actin-polymerizing
compounds (e.g., jasplakinolide) induce NF-κB activation and IL8 production in a process
depending on NOD2 [164,165,168]. RAC1 interacts with NOD2 and expression of a RAC1
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dominant negative mutant leads to loss of membrane ruffles and dissociation of NOD2
from RAC1, further enhancing NOD2-mediated NF-κB activation [164]. Consistently, ex-
pression of the dominant negative RAC1 mutant triggers NOD2/RIP2-dependent NF-κB
activation [169]. Many pathogens manipulate RHO GTPases to induce cytoskeleton rear-
rangement and host invasion [36,38,40–42] and these processes promote NOD1 and/or
NOD2 mediated immune activation (Figure 4). The T3SS effector SipA from Salmonella
requires NOD1 and NOD2 as well as their downstream adaptor RIP2 to trigger NF-κB acti-
vation. The actin-binding domain of SipA is dispensable for NF-κB activation, suggesting
that its ability to cause actin rearrangement is obsolete for the NF-κB effects [166]. SipA
also induces redistribution of LAMP1-positive compartments toward the microtubule-
organizing center (MTOC) [170]. Thus, SipA-induced NOD1 and NOD2 activation is
likely connected with its ability to manipulate the microtubule network. Another T3SS
effector, SopE from Salmonella, a nucleotide-exchange factor, causes membrane ruffling
by activating RHO GTPases [40]. It further promotes the interaction of NOD1 with RAC1
and CDC42, which in turn triggers NOD1/RIP2-mediated NF-κB activation. In this case,
NOD1 likely senses bacteria-induced aberrant activation of RHO GTPases [167]. Another
cytoskeleton-related molecule activating NOD1 is the guanine nucleotide exchange fac-
tor H1 (GEF-H1). GEF-H1 stimulates the formation of actin stress fibers by activating
RHOA upon its dissociation from microtubules [171] and is required for NOD1 canonical
ligand-induced NF-κB activation, however, independent of RHOA [172]. GEF-H1 also
contributes to NOD2-induced NF-κB activation and cytokine production by mediating
the phosphorylation of RIP2 [173]. In the context of S. flexneri infection, IpgB2, a T3SS
effector, binds to the mammalian homolog of Diaphanous (mDia) and directly induces
actin polymerization by functioning as an analog of active RHOA [35]. In line with its
role in actin polymerization, IpgB2 localizes to actin-associated cellular junctions when
expressed in cells. Ectopic expression of the invasion plasmid gene B2 (IpgB2) or outer
Shigella protein B (OspB), another T3SS effector without a known role in cytoskeleton
remodeling, induces GEF-H1 and NOD1-mediated NF-κB activation, yet is independent
of the classical NOD1/2 downstream signaling component RIP2 [172]. Other molecules
interfering with NOD1 activation are Cofilin and Cofilin phosphatase slingshot homolog 1
(SSH1), which control the disassembly of actin filaments. Both are essential for maintaining
actin cytoskeleton dynamics and inducing NF-κB activation upon stimulation with Shigella
and NOD1 agonists [174]. As RHOA negatively regulates Cofilin, it seems unlikely that
NOD1 activation is connected with excessive RHO activation under these conditions.

Altogether, pathogens exploit various mechanisms to hijack the cytoskeleton dynamics.
During infection, NOD1 and/or NOD2 represent an intracellular surveillance system
inducing NF-κB activation by detecting cytoskeleton disruption, instead of monitoring
RHO GTPases. The detailed mechanisms by which NOD1 and NOD2 monitor cytoskeleton
dynamics and induce NF-κB activation need further elucidation.
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onine-protein kinase 2; IKB, inhibitor of κB; IRE1α, inositol-requiring enzyme-1a; IpgB2, invasion 
plasmid gene B2; SopE, Salmonella outer protein E; VceC, virB-coregulated effector C. Image created 
with BioRender.com. 
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Figure 4. NOD1 and NOD2 trigger NF-κB activation by detecting pathogen-induced cytoskeleton
disruption or pathogen-induced ER stress. Virulence factors from S. typhimurium and S. flexneri
induce aberrant actin polymerization, subsequently triggering NOD1-mediated NF-κB activation.
B. abortus and C. muridarum elicit ER stress, which is further sensed by NOD1 and NOD2 to enable
NF-κB activation. Abbreviations: RHOA, Ras homolog family member A; CDC42, cell division
control protein 42 homolog; RAC1, Ras-related C3 botulinum toxin substrate 1; GEF-H1, guanine
nucleotide exchange factor H1; TRAF2, TNF receptor associated factor 2; RIP2, receptor-interacting-
serine/threonine-protein kinase 2; IKB, inhibitor of κB; IRE1α, inositol-requiring enzyme-1a; IpgB2,
invasion plasmid gene B2; SopE, Salmonella outer protein E; VceC, virB-coregulated effector C. Image
created with BioRender.com.

3.2. NOD1 and NOD2 Sense the ER Stress during Infection

Chemical agents that cause ER stress such as tunicamycin, brefeldin A, 2-deoxyglucose
and thapsigargin (TG) trigger an NF-κB-dependent inflammation. However, the ER stress
induced UPR is uncoupled from NF-κB activation, suggesting that ER stress activates two
distinct signaling pathways: the classical UPR and the NF-κB activation [175]. Further
investigations have linked ER stress-induced NF-κB activation with the intracellular PRRs
NOD1/2 [160]. IL6 production upon TG stimulation is impaired by NOD1/2 knockout
(KO), demonstrating NOD1/2 activation by ER stress. The ER stress inhibitor taurour-
sodeoxycholic acid (TUDCA) and the IRE1α inhibitor KIRA6 (IRE1α kinase inhibiting
RNase attenuator 6) block TG-induced IL6 production in vitro and in vivo, while both
inhibitors have no impact on IL6 production stimulated by MDP, the canonical bacterial
agonist of NOD2. Thus, the ER stress and bacterial PAMPs employ different signaling
pathways to activate NOD1/2 [160]. In the context of infection, the B. abortus T4SS effector
virB-coregulated effector C (VceC) induces ER stress through interaction with the chap-
eron BiP [97] and triggers NOD1/2- and RIP2-dependent IL6 production. Infection of
NOD1/2 KO mice with wildtype of B. abortus or infection of wildtype mice with the VceC
null mutant yields decreased IL6 production, milder pathology and increased survival of
mice. Therefore, the ER stress elicited by B. abortus infection activates NOD1/2-dependent
inflammation, hence contributing to the pathogenesis of brucellosis [160]. C. muridarum
infection also induces ER stress and NOD1/2-RIP2-mediated IL6 production [160], how-
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ever, inhibition of ER stress or depletion of NOD1/2 or RIP2 leads to increased bacterial
burdens in vivo. Thus, the ER stress and subsequent NOD1/2-dependent inflammation
caused by Chlamydia opposingly contributes to infection clearance [96]. Furthermore, the
ER stress induced by TG significantly increases NF-κB activation and the expression of IL6
and IL23 in response to NOD1 stimulation upon S. enterica infection in vitro. However, the
impact of the ER stress during S. enterica infection in vivo remains to be elucidated [176].
Together, NOD1 and NOD2 activate inflammatory responses by detecting the ER stress
caused by various pathogens (Figure 4), yet the outcome of ER stress-induced NOD1/2
activation is disease-dependent. Given that many pathogens induce ER stress [81] and
that peptidoglycan-free viruses and parasites activate NOD1 and/or NOD2-dependent
inflammation [177], it is reasonable to speculate that NOD1 and/or NOD2 are activated by
sensing the ER stress and possibly SAMPs during these infections. Additionally, aberrant
ER stress is associated with many noncommunicable diseases such as neurodegenerative
disorders, atherosclerosis, type 2 diabetes, and cancers [178]. Hence, it is worthwhile to
further investigate whether the ER stress-induced inflammation in patients suffering from
these diseases confers susceptibility to specific infections.

The molecular events that integrate ER stress with NOD1/2 signaling and NF-κB
activation are a focus of current research. Upon ER stress, IRE1α binds to TRAF2, induces its
oligomerization and the activation of NF-κB and c-Jun N-terminal kinases (JNK) [160,179].
Although NOD1 and NOD2 contain motifs predicted to bind TRAF2, evidence for a direct
interaction of TRAF2 with NOD1/2 is missing. Moreover, whether kinase activity of IRE1α
or other factors alter the putative interaction of TRAF2 and NOD1/2 awaits to be elucidated.
A study demonstrates that ER stress triggered by TG results in Ca2+ efflux and subsequent
Ca2+-dependent NOD1/2-mediated inflammation. Peptidoglycan contaminants in the
serum could be internalized via endocytosis upon ER stress and subsequently activate
NOD1 and NOD2 [180]. However, whether such trace amounts of peptidoglycan, or
possibly other ligands, in the serum activate NOD1/2 requires further investigations.
Recently, we have uncovered that generation of the endogenous metabolite sphingosine-
1-phosphate (S1P) is remarkably increased upon various types of stress including ER
stress and cytoskeleton disruption elicited by chemicals. However, other metabolites in
the sphingolipid pathway (i.e., Ceramide and Sphinganine) are not affected by the same
stimulations. S1P, but not Ceramide, directly binds to NOD1 and NOD2, and S1P delivery
into cells leads to NOD1 or NOD2 mediated NF-κB activation. Hence, we propose that
NOD1/2 detect perturbation of cellular homeostasis through sensing of the cytosolic
metabolite S1P, which represents a SAMP [181]. Whether the S1P-NOD1/2 axis is activated
during infection with peptidoglycan-free pathogens needs to be elucidated.

3.3. Activation of the NLRP3 Inflammasome by the ER Stress

Multiple studies have revealed that the ER stress triggered by chemical agents induces
NLRP3 inflammasome activation, however, NLRP3 activation elicited by pathogen-induced
ER stress has rarely been reported. Chemically induced ER stress (i.e., by tunicamycin or
brefeldin A) causes activation of the NLRP3 inflammasome. This effect is uncoupled from
the stress sensors IRE1α, PERK and ATF6α, but is dependent on ROS and potassium efflux
that are mediated by the voltage-dependent anion-selective channel 1 (VDAC1), which
transports metabolites and ions into mitochondria. Thus, ER stress-induced inflammasome
activation and UPR are divergent processes under these circumstances [182]. Mechanisti-
cally, the ER stress induces the expression of thioredoxin-interacting protein (TXNIP) via
PERK and IRE1α-mediated signaling pathways. TXNIP induces IL1β mRNA transcription
and further activates the NLRP3 inflammasome for IL1β release [183]. Moreover, the
ER stress also increases TXNIP mRNA by reducing the levels of the TXNIP destabiliz-
ing micro-RNA miR-17 via IRE1α [184] and by ROS formation [185], further leading to
NLRP3 inflammasome activation. Thus, the IRE1α-TXNIP axis mediates activation of the
NLRP3 inflammasome-subsequent ER stress, and might serve as a therapeutic target for
metabolic disorders [186,187]. In the context of infection, B. abortus induces ER stress and
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subsequently NLRP3 inflammasome activation. In this circumstance, TXNIP expression is
elevated and it translocates to mitochondria, resulting in increased mitochondrial ROS and
mitochondrial damage, which result in NLRP3 inflammasome activation [188] (Figure 5A).
Collectively, the chemical- or pathogen-induced ER stress activates the NLRP3 inflamma-
some via TXNIP, a process involving mitochondrial alterations. Whether other pathogens
cause ER stress and this type of cell stress engages similar molecular pathways for IL1β
production remains to be investigated.
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3.4. NLRP3 Inflammasome Induced by Mitochondrial Dysfunction

Mitochondrial dysfunction leads to activation of the NLRP3 inflammasome [189,190]
(Figure 5B). Inhibition of complex I, one of the key enzymes of the respiratory chain,
results in robust production of mitochondrial ROS causing NLRP3 inflammasome acti-
vation [163]. VDAC1/2, which is critical for mitochondrial ROS generation, is required
for the inflammasome induction by inhibiting complex I [163]. Consistently, stimulation
with the TLR7 ligands imiquimod and CL097 results in ROS production and activation of
the NLRP3 inflammasome [191]. Mitophagy is essential for maintaining mitochondrial
homeostasis [192]. Defects in autophagy induce accumulation of damaged mitochondria
and elevated NLRP3 inflammasome activation that is dependent on both mitochondrial
ROS and release of mitochondrial DNA (mtDNA) in the cytosol [190,193,194]. Mitochon-
drial dysfunction also induces release of oxidized mtDNA, which directly binds to and
activates the NLRP3 inflammasome [195]. The replication of mtDNA is dependent on
the cytidine/uridine monophosphate kinase 2 (CMPK2), which further contributes to the
production of oxidized mtDNA and subsequent NLRP3 activation [196]. In the context
of infection, the T3SS effector Salmonella invasion protein B (SipB) from S. typhimurium,
localizes to mitochondria causing their swelling and depolarization, which subsequently
induces oxidized mtDNA-mediated NLRP3 inflammasome [195,197]. Some antibiotics also
disturb mitochondrial functions due to the resemblance between mitochondria and bacteria.
Linezolid, an oxazolidinone antibiotic, induces NLRP3 inflammasome activation by pro-
moting mitochondrial dysfunction. The mitochondrial lipid cardiolipin recruits NLRP3 to
the mitochondria by direct binding and stimulates NLRP3 activation [198]. Collectively, mi-
tochondrial dysfunction triggers NLRP3 inflammasome activation via mitochondrial ROS,
mtDNA, oxidized mtDNA or cardiolipin. Whether such pathways generally participate in
pathogen-induced NLRP3 inflammasome activation requires further elucidation.

3.5. NLRP1 Inflammasome and Cellular Homeostasis

The mouse NLRP1B (mNLRP1B) was first identified as a critical component confer-
ring susceptibility to the anthrax lethal factor (LF). LF-induced cell death is mediated by
Caspase-1, suggesting that mNLRP1B mediates pyroptosis by LF [199]. The N-terminal pro-
teolysis is crucial for LF-induced mNLRP1B inflammasome activation [200]. Similarly, the
3C protease of human rhinovirus directly cleaves and activates human NLRP1 (hNLRP1)
inflammasome [162]. After cleavage by LF, mNLRP1B generates a new N-terminus recog-
nized by UBR2, leading to the ubiquitination of mNLRP1B and degradation by the N-end
rule pathway, which are critical for mNLRP1B inflammasome activation [161,201]. The
Shigella effector invasion plasmid antigen H7.8 (IpaH7.8), an E3 ubiquitin ligase, also acti-
vates mNLRP1B inflammasome by directly ubiquitinating mNLRP1B for degradation [161].
In the case of hNLRP1, the glycine-specific N-degron machinery cullinZER1/ZYG11B me-
diates recognition and degradation of hNLRP1 subsequent cleavage by the 3C protease
of human rhinovirus [162]. Therefore, functional degradation of NLRP1 allows the host
immune system to distinguish pathogens by monitoring the downstream cellular dam-
age [202]. In addition to pathogen-induced activation, Val-boroPro (VbP), an inhibitor
of dipeptidyl peptidases 8 and 9 (DPP8/9), also triggers both mNLRP1B and hNLRP1
inflammasome activation [203]. Both the peptidase activity of DPP9 and its binding to
hNLRP1 are required for hNLRP1 activation by VbP [204]. Therefore, it has been proposed
that hNLRP1 may indirectly sense the perturbation of cellular homeostasis induced by
DPP8/9 cleavage [205]. In line with this, 2-deoxyglucose (2DG), a glycolysis inhibitor,
and sodium azide, an inhibitor of the mitochondrial electron transport chain, activate
the mNLRP1B inflammasome, suggesting a link between ATP production and mNLRP1B
activation. Indeed, ATP depletion by glucose starvation or hypoxia induces the activation
of the mNLRP1B inflammasome [206]. Altogether, NLRP1 may sense the disruption of
cellular homeostasis induced by DPP8/9 cleavage, cellular ATP depletion, or infections
(Figure 5C). Elucidation of the substrate of DPP8/9 will shed light on the mechanism of
NLRP1 activation by disruptions of cellular homeostasis.
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4. Conclusions and Perspectives

Solely detecting PAMPs or DAMPs appears insufficient for accurate identification of
pathogens by the immune system. First, PAMPs are present in commensal, pathobionts,
and pathogenic microorganisms. Second, DAMPs can be produced upon pathogen-induced
damage or during sterile tissue damage. DAMPs such as ATP, F-actin and DNA binding
proteins (e.g., High-mobility group box 1 (HMGB1)) are host molecules released from
damaged cells [207]. Hence, the immune system requires additional mechanisms to specif-
ically detect the different types of damage and accordingly fine-tune the antimicrobial
responses. Pathogens subvert host defense mechanisms by manipulating various cellular
pathways, which in turn often leads to perturbation of cellular homeostasis. In plants,
NLRs recognize directly or indirectly pathogen effector proteins or abiotic stress, resulting
in effector-triggered immunity [208]. In line with this, detection of perturbations of cellular
homeostasis by NLRs may also represent an ancient mechanism of sensing infection in
animals. Detection of perturbations of cellular homeostasis enables the immune system to
distinguish pathogens from nonpathogenic microbes and adjust the magnitude of immune
response. Depending on the extent and types of stress, the innate immune system could
activate different pathways, for instance, NOD1/2-mediated NF-κB activation and NLRPs-
mediated pyroptosis. Thus, according to the severity of the damage, the innate immune
system could adapt and apply appropriate host defense stratagems.

It remains elusive how NLRs detect diverse and broad types of cellular perturbation.
Similarly, it is unclear how NLRs adapt to different types of cellular dysfunction. It has
been postulated that NLRs could maintain inactive states by means of host decoy or guard
proteins and that modifications of these proteins induced by pathogens trigger the acti-
vation of NLRs [209]. In the same direction, it is reasonable to hypothesize that cellular
homeostasis dysfunction could modify host proteins or their activities and thereby activate
NLRs. Indeed, generation of S1P is increased upon perturbation of cellular homeostasis
and subsequently S1P triggers NOD1/2-medidated activation of innate immunity [181].
Considering that cellular homeostasis disruption induced by pathogens converges toward
conserved pathways and molecules, these altered proteins/metabolites are designated as
SAMPs. Accordingly, NLRs could detect the perturbation of cellular homeostasis by moni-
toring SAMPs such as S1P. The identities of SAMPs activating other NLRs upon distinct
types of cellular stress, how SAMPs are generated and the distinct mechanisms employed
by NLRs to differentially detect SAMPs, PAMPs or DAMPs remain to be elucidated. Given
that many SNPs in NLRs are associated with autoimmune diseases, the SAMPs–NLRs
axis likely represents an evolutionary conserved mechanism involved in infection, sterile
inflammation and autoimmune disorders. Comprehensive understanding of the mecha-
nisms of NLRs activation will help to harness the power of NLRs to fight infections by
boosting inflammatory responses or reducing excessive inflammation in NLRs-associated
autoinflammatory disorders.
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