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The reproduction number, R, is the average number of sec-
ondary infectious cases produced by one infectious case during a
disease outbreak [1]. When a population is totally susceptible, R
becomes the basic reproduction number, R0. It is a key parameter
regulating the transmission dynamics of a pandemic [2]. R0 pro-
vides an indication of whether the introduction of disease will
result in a localized burnout or signal the beginning of a pandemic
that could move through all geographic scales [3]. The disease-free
equilibrium is globally asymptotically stable and the epidemic
eventually disappears if R0 < 1. Whenever R0 > 1, then an epidemic
will occur and the infection spreads in the population, no matter
how small the initial number of infected individuals. When
R0 > 2, a major outbreak is possible. When R0 > 3, the emergence
of a pandemic is generally considered to be inevitable [4].

The World Health Organization (WHO) named the corona virus
disease as COVID-19 on February 11, 2020 and declared a pan-
demic on March 11, 2020. The basic reproduction number (R0)
has been employed to measure the transmission dynamics of
COVID-19 both before and after the interventions. Various
approaches for calculating R0 for COVID-19 have been introduced,
which are based on deterministic or stochastic models. Unfortu-
nately, these results were not comparable because different algo-
rithms for estimating R0 are employed.
For instance, an algorithm based on the Susceptible-Infected-
Recovered (SIR) model showed that R0 monotonically rose from
0.60 on January 10 to its maximum value of 4.87 on January 25,
and dropped below 1 on February 16 in Hubei Province, China
[5]. A second study assumed that the epidemic curve displayed
exponential growth, and the basic reproduction number for
COVID-19 at the early stage, estimated in terms of the intrinsic
growth rate of the epidemic curve, ranged from 2.24 to 3.58 [6].
A third study calculated an infectiousness function in terms of
the average time since infection for those individuals who infect
few others and those who infect many, and used the area under
the curve to estimate R0 ¼ 2:0 in the early stages of the epidemic
in China [7]. A fourth study relied on the dominant eigenvalue of a
next-generation operator [8] to show how R0 reached ~6 in Wuhan
and ~7.8 in Shanghai before interventions were implemented [9]. A
fifth study found that R0 gradually increased from January 10 to
January 24 with a peak of 3.82, and then fell below 1 on February
6 in Wuhan using a method to estimate the household reproduc-
tion number and calculate time-varying reproduction numbers in
Wuhan city [10].

Another study used a stochastic transmission model [11] to
estimate how transmission in Wuhan between December 2019,
and February 2020 declined from 2.35, one week before travel
restrictions were introduced on January 23 to 1.05 one week later
[12]. The seventh and final study used a chain-binomial model [13]
to estimate an R0 of 6.94 for COVID-19 on the ‘‘Diamond Princess”
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cruise ship during the early intensive social contacts and that
everyone on board would have been infected in one month if con-
trol and prevention measures had not been implemented [14].

In this study, we propose an improved algorithm for calculating
R0 based on the SIR-based model developed for the COVID-19 out-
break in Hubei Province of China [5]:

R0 tð Þ ¼ b tð Þ
c tð Þ þ l tð Þ ¼

dI tð Þ=dt þ c tð Þ þ l tð Þð Þ � I tð Þ
c tð Þ þ l tð Þð Þ � I tð Þ � S tð Þ ; ð1Þ

where R0 tð Þ is the basic reproduction number at time t; b tð Þ denotes
the time-dependent transmission rate (TDTR); S tð Þ represents sus-
ceptible fractions of the population at time t; I tð Þ represents the
infected fraction of the population at time t; c tð Þ is the recovery
rate; and l tð Þ refers to the fatality rate caused by COVID-19.

This improved algorithm utilizes the actual data without
assuming a specific pattern and has less parameters than the orig-
inal model. Our tests indicated that the improved R0 tð Þ performs
well on provincial and prefectural levels in China and on a national
level across the world under any circumstances. The original
model, in contrast, was not very stable when estimating the
demise of the pandemic in several of the prefectures in Hubei
Province.

The number of infected individuals of COVID-19 surpassed
28.21 million worldwide on September 11, 2020, according to
the Center for Systems Science and Engineering (CSSE) at Johns
Hopkins University. The first 6 countries with the largest cumula-
tive numbers of infected individuals were the United States of
America, India, Brazil, Russia, Peru and Colombia in rank order.
These countries were distributed across the Americas (4), Asia (1)
and Europe (1).

We here apply the improved algorithm for R0 on the reported
data about infected individuals, recovered individuals, and deaths
caused by COVID-19 (Tables S1–S8 online) to monitor the trans-
mission dynamics in the 6 countries. The natural logarithm of
the basic reproduction number (lnR0) is utilized to more clearly
express the curves for the COVID-19 transmission dynamics across
the six countries (Fig. 1).

The first case was reported on January, 22 in the United States of
America. R0 surpassed 2.0 on February 29, and then increased to
the maximum value of 11.6 on March 19. In response to the rapid
spread of COVID-19, the state of New York set up a ‘‘containment
area” in a COVID-19 hotspot on March 12, with National Guard
troops dispatched on site to clean surfaces and deliver food to peo-
ple in quarantine. On March 16, at least four states and several
large cities, including New York City and Los Angeles, ordered
restaurants, bars and other businesses to close their doors. Many
of the 50 states implemented stay-at-home orders to slow the
spread of COVID-19 from March 18 onwards. R0 has declined
monotonically since March 20, falling below 2 on April 6 and to
<1.1 on May 18. It oscillated between 1.0 and 1.1 from May 18 to
July 29 and has since stayed at the critical value of 1 (Fig. 1a and
Table S9 online).

The first case was reported on January 30 in India. R0 increased
with oscillations and reached its maximum value of 2.9 on March
21. Citizens were asked to isolate in their homes to protect them-
selves on March 19. In addition, they were urged to observe a self-
imposed curfew on March 22 and a nationwide lockdown was
imposed on March 25. R0 declined at varying rates from March
21 onwards, falling below 2 on April 8 and reached 1.1 on May 9.
It oscillated from 1.0 to 1.1 from May 9 to July 22 and achieved a
value of 1.0. R0 has persisted in its value of 1.0 since July 23 to
the time of writing (i.e., September 11) (Fig. 1b and Table S9
online).

Brazil reported its first case on February 26 and recorded its
peak R0 of 22.6 on March 15. Several states had already taken
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measures to slow the transmission of COVID-19, such as suspend-
ing classes in schools and shutting theaters and concert halls prior
to March 16. Public and private schools across these states were
temporarily closed on March 23. Most Brazilian states imposed
quarantines to limit people’s contact and asked stores not selling
essential goods to close so as to contain the epidemic by the end
of March. R0 declined rapidly from March 16 onwards, falling
below 2 on April 10 and below 1 for the first time on April 15. How-
ever, R0 has oscillated between 1.0 and 1.2 from April 19 to June 23.
R0 has kept its value of 1.0 since June 24 (Fig. 1c and Table S9
online).

Russia reported its first two cases on January 31. On March 16,
Russia restricted the entry of foreign citizens and stateless persons
from March 18 to May 1 to help prevent the spread of COVID-19.
According to available data, R0 rose and fell in March. It reached
its maximum value of 5.2 on March 23. Paid leave was granted
to all Russians from March 30 to April 3 on March 25, and 32 of
Russia’s 85 regions introduced mandatory self-isolation for all res-
idents on March 30. Additional regions implemented the same
measures soon thereafter. R0 declined continuously from March
25 onwards, falling below 2 on April 24 and 1 on May 20. The latter
value was sustained up to the time of writing (i.e., September 11)
(Fig. 1d and Table S9 online).

In Peru, the first case was reported on March 6. R0 reached its
peak of 18.3 on March 17. Peru declared a state of emergency on
March 16. The measures included a quarantine and a curfew as
part of the efforts to stop the spread of COVID-19. R0 started to
decline on March 18 and fell below 2 on March 27. R0 has varied
between 1.0 and 1.1 since May 6, but its value was still 1.0 at
the time of writing on September 11 (Fig. 1e and Table S9 online).

In Colombia, the first case was reported on March 6. R0 reached
its peak of 21.2 on March 17. Colombia declared a nationwide
health emergency, banning activities with >500 people on March
12 and later announcing a 30-d ban on all travelers coming from
abroad, including nationals, from March 23 onwards. R0 declined
monotonically from March 21 to April 15, falling below 2 on April
6 and reaching 1.1 on April 16. An R0 of 1.2 was sustained from
April 18 to May 22, and it has oscillated between 1.0 and 1.1 since
May 28 (Fig. 1f and Table S9 online).

In summary, the results produced with our new data-driven
method for calculating R0 indicate that interventions, such as lock-
downs, quarantines, school closures, travel restrictions, and social
distancing, have played a critical role in containing the spread of
COVID-19. R0 might have surpassed 41.5 if interventions had not
been imposed in Turkey and this value of R0 might have been
attained in other locations as well if they had not intervened as
promptly as they did (Table S9 online). The interventions have
effectively changed R0 from increasing to decreasing in all of the
6 countries that are distributed across the Americas, Asia and Eur-
ope that were highlighted in this paper.

Similar interventions were eventually implemented in all 6
countries. R0 fell below 2 in all 6 countries on April 24, which
means that major outbreaks are no longer likely. However,
COVID-19 is continuing to spread in these countries because there
is no country with R0 < 1.0. Peru (2.23%), Brazil (2.06%), the United
States of America (2.00%), and Colombia (1.43%) led in terms of the
percentages of infected individuals as of September 11 (Tables S10
and S11 online).

The results clearly show that the interventions have produced
large variations in effectiveness in different countries due to the
various ways in which executive powers are exercised from one
country to the next.

For instance, the interventions were very effective in Germany.
Tough measures to limit social contacts were conducted uniformly
in all 16 federal states of Germany in March and April 2020. It took
just 26 d for R0 to fall from its peak to <1 during the first outbreak



Fig. 1. Curves of the natural logarithm of the basic reproduction number (lnR0) in the 6 countries with the largest cumulative numbers of infected individuals around the
world: (a) United States of America, (b) India, (c) Brazil, (d) Russia, (e) Peru, and (f) Colombia. The dotted vertical line presents the date when the first intervention was
launched.
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in Germany (Table S9 online). However, COVID-19 started to
rebound in Germany on May 11 because the pandemic interven-
tions were relaxed. An R0 of 1 has been continuously sustained in
Germany for 130 d. The efficacy of the interventions is quite low
in the United States of America. R0 started to decline approxi-
mately one week after the interventions were implemented in
the United States of America when most of the other countries
highlighted in this paper saw rapid declines in R0 in a few days fol-
lowing the initial interventions.
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