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Introduction: Mortality of sepsis is caused by an inappropriately amplified systemic 
inflammatory response and bacteremia. Methyl diet has been shown to associate with greater 
inflammation response in different diseases. This study aimed to determine whether dietary 
supplementation with methyl donors affects the inflammation response and mortality in 
sepsis and to investigate the underlying mechanisms.
Methods: Four-week-old male C57BL/6 mice were fed with a high-methyl diet (HMD) or 
a regulator diet (RD) till the experiment time. Mice septic model was induced by Cecal 
ligation and puncture (CLP), lipopolysaccharide (LPS), or E.coli. Inflammatory cytokine was 
analyzed by ELISA and qRT-PCR. Immune cell infiltration was evaluated by H&E and IHC. 
The composition of gut microbiota was determined by 16S rRNA sequencing. The effect of 
gut microbiota on sepsis was further verified by fecal microbiome transplantation.
Results: Our results showed that the diet riches in methyl donors exacerbated mortality, 
organ injury, and circulating levels of inflammatory mediators in CLP-induced septic mice 
model, compared to the control diet group. However, no significant differences have been 
observed in the inflammatory responses in the LPS-induced septic model and macrophages 
activation between the two groups of mice. There was a higher bacterial burden in CLP- 
induced HMD mice suggested that methyl diet might modulate gut microbiota. Bacterial 16S 
rRNA sequencing results showed that the composition of gut microbiota was altered. The 
high methyl donor diet reduced the abundance of Akkermansia and Lachnospiraceae, which 
were associated with protective effects in sepsis, in the gut. Moreover, fecal microbiome 
transplantation experiment showed that the transfer of feces, which obtained from high 
methyl diet mice, aggravated the mortality and inflammation responses in recipient mice.
Discussion: Methyl diet enhanced CLP-induced septic mortality and inflammatory 
responses through altering the composition of gut microbiota. This result indicated that 
diet-based gut microbiota may be a new therapeutic strategy for sepsis patients.
Keywords: sepsis, DNA methylation, gut microbiota, Akkermansia, Lachnospiraceae

Introduction
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated 
host response to infection.1 Due to its high mortality rate, sepsis is still regarded 
as a global health problem.2,3 Sepsis is an intrinsic heterogeneity, multifactorial 
disease influenced by pathogenic factors, host factors, and environmental 
factors.4–7 For decades, studies have shown that gut functionality and microbial 
diversity play important roles in sepsis pathogenesis.8–10 In the homeostatic 
condition, the gut microbiota protects the host against systemic infection by 
inducing the generation of IgG, IgA, and antimicrobial peptides.10–12 At the 
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same time, the microbiota that is derived from the gut is 
a major cause of multiple organ dysfunction in 
sepsis.13,14 Clinical studies also proved that the gut 
microbiota had been disturbed in sepsis patients.15

Lifestyle is a crucial factor that shapes the gut micro-
biota, including diet, antibiotics, aging, and etc.15–17 

Studies across mice and humans suggest that common 
aspects of the lifestyle, including the high-fat diet, can 
persistently alter commensal microbial communities.18 

Chassaing and colleagues showed that dietary emulsifiers 
can promote colitis and metabolic syndrome by affecting 
the mouse gut microbiota.16 Mice were fed with non- 
fermentable fiber impact the composition of gut micro-
biota improving sepsis.6

Methyl-related nutrients are found in three groups of 
compounds: B Vitamins, Betaine, and S-Adenosyl- 
Methionine (SAMe). Methyl-related nutrients can be 
found in foods that are rich in folate, which is the natural 
form of Vitamin B9, or choline, which can be metabolized 
into betaine. Folic acid and betaine are the important 
methyl donors in the DNA methylation process.19–21 

Cyanocobalamin is also known as vitamin B12, which 
works as a cofactor with methionine synthase (MS) to 
catalyze the renewal of methionine.19 The effects of 
methyl-related nutrients on health are controversial. 
There are few studies about the effects of the methyl diet 
on intestinal flora and sepsis.

In our study, we fed mice (4-weeks old just after 
weaning time) with high-methyl diet (HMD), which is 
supplemented with methyl donors and cofactors (such as 
folic acid, betaine, cyanocobalamin, choline, and etc). 
By using the cecal ligation and puncture (CLP) induced 
sepsis model, we found that, compared to the normal 
diet group of mice, HMD group mice showed a higher 
mortality rate and greater systemic inflammation 
responses. However, there was no significant difference 
in the LPS and E.coli-induced septic models. 
Mechanistically, we found that the diet riches in methyl 
donors reduced the abundance of Akkermansia and 
Lachnospiraceae, which were associated with metabolic 
health protective effects in sepsis, in the gut. Moreover, 
fecal microbiome transplantation experiment showed 
that the transfer of feces, which obtained from HMD 
group mice, aggravated the disease mortality and inflam-
mation response in recipient mice. This further supports 
that the high-methyl diet enhances sepsis mortality by 
altering the gut microbiota.

Materials and Methods
Methyl Diet and Feeding Protocol
Four-week-old male C57BL/6 mice (Shanghai Model 
Organisms, Shanghai, China) were fed with a high-methyl 
diet (HMD) or a regulator diet (RD) till the experiment time. 
Four-week-old male SD rats (Shanghai Model Organisms, 
Shanghai, China) were fed with a HMD or a RD for eight 
weeks. Two kinds of diets were purchased from the 
Research Diets company (New Brunswick, NJ, United 
States). HMD includes folic acid, betaine, cyanocobalamin, 
choline, etc. Folic acid and betaine are the major methyl 
donors, and cyanocobalamin works as a cofactor to catalyze 
methionine renew.19 The detailed formulation of diets 
(HMD and RD) is listed in Table 1. All procedures involving 
animals were approved and performed in accordance with 
the Animal Care and Use Committee of Shanghai University 
of Chinese Traditional Medicine.

Septic Mice Models
The cecal ligation and puncture (CLP) induced septic 
model was described previously.7,22,23 Briefly, mice 
were anesthetized with isoflurane/oxygen inhalational 
gas (Shanghai Yuyan, Shanghai, China). The skin mid-
line of the abdomen was incised and then the cecum 
was ligated at different positions for the desired sever-
ity grade (survival: 1/2 distance from ileocecal valve; 
septic model: 2/3 distance from ileocecal valve). Then, 
the cecum was punctured, a few cecal contents were 
pushed and the cecum was relocated back into the 
peritoneal cavity. Finally, the peritoneum was closed. 
In the LPS-induced septic model, 5mg/kg (sublethal 
dose) or 10mg/kg (lethal dose) LPS (Sigma, 
St. Louis, MO, United States) was intraperitoneally 
injected into mice.

Serum and Peritoneal Lavage Fluid 
Cytokines Analysis
The levels of IL-6 and TNF-α were detected by enzyme- 
linked immunosorbent assay (ELISA) kits 
(NeoBioscience, Shenzhen, Guangdong, China) according 
to the manufacturer’s instructions.

Isolation of Peritoneal Macrophages
Peritoneal macrophages were isolated as described.24 

Macrophages were cultured in RPMI 1640 medium 
with 10% fetal bovine serum with 1% antibiotics 
(Gibco, Co Dublin, Ireland) overnight. The medium 
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was instated with RPMI 1640 medium for 1h. And then 
cells were treated with 100ng/mL LPS. Cells were har-
vested 4 hours later for IL-6 and TNF-α Real-time PCR 
measurement, and the supernatant was collected 6 hours 
later for IL-6 and TNF-α Elisa measurement. Primer for 
IL-6, forward: 5′-TGTTCTCTGGGAAATCGTGGA-3′; 
reverse: 5′-TTTCTGCAAGTGCATCATCGT-3′. Primer 
for TNF-α, forward: 5′-TTCTATGGCCCAGACCC 
TCA-3′; reverse: 5′-TTTGCTACGACGTGGGCTAC-3′. 
GAPDH was used as internal control, forward: 5′-AGG 
CCGGTGCTGAGTATGTC-3′; reverse: 5′-TGCCTGCT 
TCACCACCTTCT-3′. Akkermansia, forward: 5′-CAG 
CACGTGAAGGTGGGGAC-3′; reverse 5′-CCTTGC 
GGTTGGCTTCAGAT-3′.25

Stool DNA Extraction
Feces were firstly collected in tubes and the corresponding 
weights were recorded. DNA was extracted from two groups 
of rats’ stool samples using QIAamp Fast DNA Stool Mini Kit 
(QIAGEN, Hilden, Germany) according to the manufacturer’s 
instructions. Real-time PCR was used to analyze the concen-
tration of Akkermansia. Standard curves were created using 
serial 10-fold dilutions of E.coli. The bacterial concentration 
of each sample was calculated according to the standard curve.

Tissue Histopathology, 
Immunohistochemical Staining
Liver and lung tissues were fixed in 4% paraformaldehyde 
(Beijing Dingguo Changsheng Biotechnology, Beijing, 

Table 1 The Formulation of Diets

Regular Methylation Diet High Methylation Diet

Color Green

gm% kcal% gm% kcal%

Protein 20.3 20.3 19.9 20.9

Carbohydrate 63.9 63.9 60.5 63.5

Fat 7.0 15.8 6.6 15.6
Total 100 100

kcal/gm 4.00 3.81

Ingredient gm kcal gm kcal

Casein 200 800 200 800
L-Cystine 3 12 3 12

L-Methionine 0 0 7.5 30

Corn Starch 397.486 1589.94 397.486 1589.94
Maltodextrin 10 132 528 132 528

Sucrose 100 400 100 400

Cellulose, BW200 50 0 50 0
Soybean Oil 70 630 70 630

Corn Oil 0 0 0 0

t-Butylhydroquinone 0.014 0 0.014 0
Mineral Mix S10022G 35 0 35 0

Zinc Carbonate, 52.1% Zn 0 0.288
Vitamin Mix V10037 10 40 10 40

Folic Acid 0 0 0.015 0

Betaine, anhydrous 0 0 15 0
Cyanocobalamin, 0.1% 0 0 0.15 0

Choline Bitartrate (41% Choline) 2.5 0 36.6 0

Genistein (>98%) 0 0 0.3 0
FD&C Yellow Dye #5 0 0 0.025 0

FD&C Red Dye #40 0 0 0 0

FD&C Blue Dye #1 0 0 0.025 0

Total 1000 4000 1057.403 4030
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China), then embedded in paraffin. Then, 5-μm sections 
were cut and used to stain Hematoxylin and eosin 
(Beyotime, Shanghai, China) or Myeloperoxidase (MPO, 
Biocare Medical, Pacheco, CA, United States) antibody for 
immunohistochemical staining as previously described.26

Fecal Microbiota 16S rRNA Sequencing
Stool DNA was extracted by QIAamp fast DNA stool mini 
kit (QIAGEN, Hilden, Germany) according to the manu-
facturer’s protocol and DNA quality was checked by agar-
ose gel electrophoresis. 16S rRNA sequencing was 
conducted by Majorbio (Shanghai, China), 16S rRNA 
gene, V3-V4 hypervariable regions, were amplified with 
primers 338F (5′- ACTCCTACGGGAGGCAGCAG-3′) 
and 806R (5′-GGACTACHVGGGTWTCTAAT-3′) by 
thermocycler PCR system (GeneAmp 9700, ABI, 
Waltham, MA, United States). Purified amplicons were 
pooled in equimolar and paired-end sequenced on an 
Illumina MiSeq platform (Illumina, San Diego, CA, 
United States) according to the standard protocols of 
Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, 
China). Raw fast files were quality-filtered by 
Trimmomatic and merged by FLASH. Operational taxo-
nomic units (OTUs) were clustered with 97% similarity 
cutoff using UPARSE (version 7.1 http://drive5.com/ 
uparse/) with a novel “greedy” algorithm that performs 
chimera filtering and OTU clustering simultaneously. The 
taxonomy of each 16S rRNA gene sequence was analyzed 
by the RDP Classifier algorithm (http://rdp.cme.msu.edu/) 
against the Silva (SSU123) 16S rRNA database using 
a confidence threshold of 70%. These data were analyzed 
on the free online platform of Majorbio Cloud Platform 
(www.majorbio.com).

Fecal Microbiome Transplantation 
Experiment
Mice were gavaged with the mixture of antibiotics (ampi-
cillin, neomycin (Cayman, Ann Arbor, MI, United States), 
metronidazole (Sigma, St. Louis, MO, United States) 1mg/ 
L; vancomycin (Cayman, Ann Arbor, MI, United States) 
(0.5mg/mL) three consecutive days to deplete the gut 
microbiota. On the fourth day after antibiotics treatment, 
mice were orally administered 200μL fecal suspension, 
which was retrieved from RD and HMD mice and was 
suspended in 30% glycerol (Sangon Biotech, Shanghai, 
China) diluted in PBS (Gibco, Co Dublin, Ireland) 

(100mg/1.2mL), for totally four times. Fecal microbiome 
transplanted mice were used for experiments.

Statistical Analysis
Statistical analysis was performed using GraphPad Prism 
software 7.0. Data are expressed as mean ± SEM. 
Unpaired Student’s t-test was used to compare two groups. 
Survival curves were compared using the log-rank 
(Mantel-Cox) test. 16S rRNA sequencing data were ana-
lyzed on the free online platform of Majorbio Cloud 
Platform (www.majorbio.com).

Results
Methyl Diets Enhanced Systemic 
Inflammation and Mortality in the 
CLP-Induced Septic Model
Mice were feed with the regular diet (RD) or a diet rich in 
methyl donor (HMD) (Table 1) at the time of after weaning. 
The weight of mice was recorded every week. The result 
showed that the weight of mice in the HMD group was lower 
than that of mice in the RD group (Figure S1). Four weeks 
later, all mice from both groups were subjected to CLP- 
induced septic model and survival rates were observed. The 
mortality rates in the HMD group of mice were up to 70% at 
24h and reached 100% at 48h after CLP (Figure 1A). 
However, mortality rates of the RD group of mice were 
significantly reduced (60% at 48h) and 40% of mice in the 
RD group were still survived after 5 days (Figure 1A). We 
then investigated the effects of HMD on inflammation 
responses in a sublethal CLP model, and there were signifi-
cantly higher serum and peritoneal levels of proinflammatory 
cytokines (IL-6, TNF-α) in the HMD group compared to the 
RD group (Figure 1B and C). Consistent with the higher 
systemic inflammation, there were also higher number of 
total immune cells and neutrophils in lung (Figure 1D–F) in 
the HMD group compared with the RD ones, which suggests 
that there were higher systemic and local inflammatory 
responses that caused higher mortality. These results indicate 
that dietary supplementation with methyl donors enhanced 
CLP-induced sepsis mortality and inflammation response.

Methyl Diet Does Not Significantly 
Increase the Mortality and Inflammation 
in the LPS-Induced Septic Model
LPS is the major component of the outer membrane of 
Gram-negative bacteria and it can induce sepsis by 
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Figure 1 Methyl diets enhanced systemic inflammation and mortality in CLP-induced septic model. Mice were fed with HMD and RD for four weeks just after weaning time. 
(A) Survival rates of HMD and RND mice in CLP-induced septic model (n=10/group). (B, C) Serum levels of IL-6 and TNF-α (B) and peritoneal lavage fluid levels of IL-6 and 
TNF-α (C) were detected 24h after CLP in two groups of mice (n=4/group). (D, E) Representative lung and liver images of H&E and MPO staining of CLP-treated two 
groups of mice (200×). (F) The statistical quantification of MPO staining. G. Blood and peritoneal bacteria numbers of HMD and RND mice in the CLP-induced septic model. 
The data are shown as means ± SEM. *P < 0.05, **P < 0.01. Scale bars, 100 μm.
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Figure 2 Methyl diet does not significantly increase mortality and inflammation in the LPS-induced septic model. (A) Survival curve of two groups of mice after receiving 
LPS-induced sepsis modeling (n=10/group). (B, C) The levels of IL-6 and TNF-α (B) in serum and peritoneal lavage fluid (C) were detected 24h after LPS treatment (5mg/kg) 
in two groups of mice (n=4/group). (D, E) Representative lung and liver images of H&E and MPO staining of LPS-treated (5mg/kg) two groups of mice (200×). (F) The 
statistical quantification of MPO staining. The data are shown as means ± SEM. 
Abbreviation: NS, no significant difference.
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Figure 3 Methyl diet does not significantly increase mortality and inflammation in the E.coli-induced septic model. (A) Survival curve of two groups of mice after receiving 
1×108 E.coli-induced sepsis modeling (n=10/group). (B, C) The levels of IL-6 and TNF-α (B) in serum and peritoneal lavage fluid (C) were detected 24h after E.coli treatment 
(1×107) in two groups of mice (n=4/group). (D, E) Representative lung and liver images of H&E and MPO staining of E.coli-treated (1×107) two groups of mice (200×). (F) 
The statistical quantification of MPO staining. The data are shown as means ± SEM. 
Abbreviation: NS, no significant difference.
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inducing an inappropriate amplification of the immune 
response,27 so it is commonly used to induce sepsis 
model. Therefore, we investigated the mortality and 
inflammation response by using the LPS model. 
Surprisingly, we found that, contrary to the CLP- 
induced sepsis model, there was no significant differ-
ence in the mortality rate between the HMD and the RD 
groups of mice (Figure 2A). At the same time, there was 
also no difference in the release of pro-inflammatory 
cytokines and the recruited immune cells in both groups 
of mice (Figure 2B–F). Moreover, we also adopted E. 
coli induced peritonitis model. Mice were treated with 
the 1×107 E.coli. After 24h, we found the level of 
inflammatory cytokines and the infiltration of immune 
cells had no significant difference between RD and 
HMD mice (Figure 3A–F), which is consistent with 
the result was the same as that of mice treated with 
LPS. Thus, the differences in the CLP and the LPS 
models suggested that the response of innate immune 
cells might not be the main contribution to the high 
mortality in the CLP model.

LPS-Stimulated Macrophages Activation 
Showed No Significant Differences from 
HMD and RD Fed Mice
To further analyze whether the innate immune cell 
responses are different in the HMD and the RD group, we 
then examined the responses of LPS-treated macrophages 
from HMD- or RD-fed mice. Compared to the macrophages 
from the RD group, both in mRNA and protein levels of IL- 
6 and TNF-α from the HMD group macrophages showed no 
significant differences (Figure 4A–D). Although the pre-
vious study has shown that DNA methylation might modify 
immune responses during infection,28 in our model, the 
activation of macrophages between HMD and RD was not 
significantly different and, more importantly, there were no 
differences in LPS or E.coli induced mice model 
(Figures 2–3). This suggested that the difference in the 
activation of macrophages was not the main reason contri-
buting to the high mortality in the CLP model of HMD-fed 
mice. We then determined whether the bacterial burdens 
were contributed to the higher mortality of the CLP model 
in the HMD group. As shown in Figure 1G, there was 

Figure 4 LPS stimulated macrophages activation showed no significant differences from HMD and RD fed mice. (A, B) mRNA expression of IL-6 and TNF-α in LPS- 
stimulated peritoneal macrophages isolated from RD and HMD group of mice. (C, D) Supernatant levels of IL-6 and TNF-α in LPS-stimulated peritoneal macrophages 
isolated from RD and HMD group of mice. (E) The data are shown as means ± SEM. 
Abbreviation: NS, no significant difference.
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Figure 5 The composition of gut microbiota is altered by methyl donor supplement. Fecal samples from RD and HMD groups of mice were analyzed by 16S rRNA 
sequencing. Dilution curves (A), α-diversity (B), β-diversity (C), and species composition (D, E) were in A-E. The data were analyzed on the free online platform of Majorbio 
Cloud Platform (www.majorbio.com). The data are shown as means ± SD. *P < 0.05, **P < 0.01. 
Abbreviation: NS, no significant difference.
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a significantly higher bacterial burden in both blood and 
peritoneal cavity of HMD groups of mice compared with 
the RD mice. These results show that the higher mortality of 
HMD mice from CLP-induced sepsis is caused by increased 
bacterial burden.

Methyl Supplementation Changes the Gut 
Microbiota Composition
Gut microbiota has been shown to play an important role 
in sepsis pathogenesis8 and gut microbiota is the infec-
tion source in the CLP model, which suggests that HMD 
may change the microbiota composition. In order to 
verify whether microbiota composition was altered in 
HMD mice, we investigated the microbiota composition 
by 16S rRNA sequencing. As shown in Figure 5A, the 
amount of sequencing data is reasonable. We found that 
there was no significant difference in α-diversities (Ace, 
Chao, Shannon indicated that the species richness and 
diversity of microbiota) between mice from two groups 
(Figure 5B). Further hierarchical clustering analysis, 
including Principal component analysis (PCA) and 
Principal co-ordinates analysis (PCoA), found distinctly 
different gut microbiota profiles in the RD and the HMD 
groups of mice (Figure 5C). HMD mice had a higher 
number of Firmicutes and a lower number of 
Verrucomicrobia than RD mice in phylum-level, which 
suggests that administration of methylation diet destabi-
lized and altered microbiota composition (Figure 5D). 
Meanwhile, at the genus level, the number of 
Lachnoclostridium, Blautia was increased and the num-
ber of Akkermansia, Lachnospiraceae_NK4A136_group 
was reduced in HMD mice (Figure 5E). Both bacteria 
are associated with metabolic health protective effects in 
sepsis.29 Thus, the methyl diet altered the gut microbiota 
composition and decreased helpful bacteria for sepsis.

Fecal from HMD Mice Increased the 
Inflammation and Mortality in 
CLP-Induced Sepsis in RD Mice
The gut microbiome has been shown to be related to many 
diseases, including inflammatory bowel disease (IBD),30– 

32 experimental autoimmune encephalomyelitis (EAE),33 

gastric cancer,34 obesity,35 and diabetes.36 We have found 
that the diet riches in methyl donors could alter the gut 
microbiota composition. To explore whether the higher 
septic mortality and inflammation in HMD mice are 
caused by the alteration in microbiota, we adopted the 

Fecal microbiome transplantation (FMT) experiment. 
After antibiotics treatment to deplete the gut microbiota, 
the microbiota of RD mice was transferred into RD (RD- 
RD) and HMD mice (RD-HMD) mice or the microbiota of 
HMD mice was transferred into HMD mice (HMD-HMD) 
and RD mice (HMD-RD). We found that the mice trans-
planted with feces from the RD groups showed a higher 
survival rate than the mice received feces from the HMD 
groups (Figure 6A). Meanwhile, RD-HMD and RD-RD 
group had a lower level of pro-inflammatory cytokines 
(IL-6, TNF-α) than HMD-RD group and HMD-HMD 
group (Figure 6B and C). Also, there was more neutro-
phils infiltration in mice that received microbiota from 
HMD mice than RD mice (Figure 6D and E). In addition, 
we also measured the change of intestinal flora after 
methylated diet in rats CLP model. Four-week-old male 
SD rats were fed with HMD or RD. After eight weeks 
different diets feeding, the stool was collected and the 
concentration of Akkermansia was analyzed. The result 
showed that the concentration of Akkermansia in HMD 
rats was lower than that of RD rats (Figure S2A). 
Furthermore, the serum levels of IL-6 and TNF-α in 
HMD rats were higher than that of RD rats after CLP 
models (Figure S2B). There were also higher number of 
total immune cells in lung in HMD rats after CLP model 
(Figure S2C). Therefore, methyl diets can change the 
intestinal flora and aggravate the degree of inflammatory 
reaction in CLP model rats. Thus, our results clearly 
showed that the higher inflammation and mortality in 
HMD mice or rats were through the alteration in gut 
microbiota composition.

Discussion
Sepsis has high morbidity and mortality and is the com-
mon cause of death in ICU,37 but there is no FDA- 
approved treatment option available for treating 
sepsis.38 For decades, antibiotics and supportive care 
have been commonly used to treat sepsis, but these 
treatments still cannot change the immune status of 
sepsis.39,40 The immune system, especially innate 
immune cells, plays a central role in the earlier phase 
of sepsis. Many studies, including ours, have shown that 
augmented proinflammatory response causes higher 
mortality.41,42 However, impaired cytokine and chemo-
kine production was also shown to be related to higher 
mortality,7 which suggested that both excessive and 
impaired innate immune responses were associated with 
septic death. Although many regulators have been found 
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Figure 6 Fecal from HMD mice increased the inflammation and mortality in CLP-induced sepsis in RD mice. Fecal microbiome transplantation transfer (FMT) was done in 
two groups of mice. (A) Survival rates of RD-RD, HMD-HMD, RD-HMD, and HMD-RD groups of mice subjected to CLP (n=10/group). (B, C) The serum levels of IL-6 and 
TNF-α (B) and peritoneal levels of IL-6 and TNF-α (C) were detected 24h after CLP in FMT mice (n=4/group). (D) Representative lung and liver images of MPO staining of 
FMT mice 24h after CLP (200×). (E) The statistical quantification of MPO staining. The data are shown as means ± SEM, *P < 0.05, **P < 0.01. Scale bars, 100 μm.
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to play important functions in the regulation of innate 
immune response and there is a growing understanding 
of the immune system response to sepsis, until now, 
there is still no effective therapy for treating sepsis.

It has been well known that DNA methylation is an 
epigenetic modification of the DNA process that can reg-
ulate DNA expression without changing the DNA 
sequence. In this study, we used a diet that is rich in 
methyl donors and cofactors (such as folic acid, betaine, 
cyanocobalamin, choline, and etc) to observe the effects of 
a high methyl diet on sepsis. We found that the high 
methyl diet exacerbated mortality and inflammation 
response in the CLP-induced septic model (Figure 1). 
However, the diet that is rich in methyl donors did not 
significantly affect the inflammatory response in LPS- or 
E.coli-induced septic model (Figures 2–3). We further 
confirmed this by LPS-stimulated in vitro macrophages 
activation and found that there was no significant differ-
ence in the activation of LPS-stimulated macrophages 
from HMD- and RD-fed mice. Therefore, dietary supple-
mentation with methyl donors did not alter the inflamma-
tory response of immune cells to the infection. To further 
analyze whether the innate immune cell responses are 
different between HMD and RD groups, we then exam-
ined the responses of LPS-treated macrophages from 
HMD- and RD-fed mice. There was no significant differ-
ences in IL-6 and TNF-α levels both in mRNA and protein 
levels (Figure 4), which suggests that the comparable 
innate immune cell response might not be the main cause 
of the higher CLP-induced mortality in HMD mice.

Gut functionality and microbial diversity have been 
shown to play an important role in sepsis 
pathogenesis,9,12,13 in regulating immune function and 
gut barrier integrity in the entire sepsis process. Studies 
have shown the change of gut microbiota could increase 
sepsis susceptibility.9,39,43 During the sepsis process, gut 
microbiota enhances the susceptibility of sepsis-induced 
organ dysfunction.8,39 Therefore, the disrupted gut micro-
biota has been shown to be related to the poor prognosis of 
sepsis.2 Studies have also shown that gut microbiota might 
be the new effective therapy for sepsis.2,33,39,44–46 Diet 
plays an important role in regulating gut microbiota and 
sepsis.6 Several pieces of research have demonstrated that 
different diet experiences affected the inflammatory 
response and mortality in sepsis.6,47–49 Previously pub-
lished studies have tested methyl donor dietary supple-
mentation in several inflammatory models,50 but none of 
them has reported that rich methyl donors altered the 

composition of gut microbiota. Consequently, we further 
detected the microbiome composition with 16S rRNA 
sequencing, followed by α-diversity and β-diversity ana-
lysis, and revealed that both HMD and RD dramatically 
altered microbiota composition in fecal (Figure 5). The 
lower abundance of probiotic Akkermansia and 
Lachnospiraceae_NK4A136_group was found in HMD 
mice.

Studies have shown that Akkermansia is involved in 
beneficial metabolite51 and is associated with several dis-
eases, such as obesity, diabetes, and alcoholic liver 
disease.51–54 Our result showed that the percent of 
Akkermansia in total gut microbiota is significantly 
decreased to 0.0008829% in the HMD group whereas 
32.47% in the RD group. Akkermansia was also shown to 
be associated with intestinal immune responses.55 Morowitz 
and colleagues found that non-fermentable fiber supplemen-
tation increased the abundance of Akkermansia and pro-
tected CLP-induced septic survival.6 The Lachnospiraceae 
family has health-promoting functions.29 

Lachnospiraceae_NK4A136_group has been shown to play 
important functions in ulcerative colitis, diabetes, immune 
response, and the nutrients metabolism.36,56–59 To investigate 
whether HMD induces higher CLP-induced septic mortality 
through the alteration of gut microbiota, we transplanted 
feces from HMD mice into HMD and RD mice. Results 
showed that the transfer of feces, which were obtained from 
HMD mice, aggravated disease in recipient mice (Figure 6). 
These results confirmed that altered gut microbiota caused 
excessive inflammation in HMD mice.

Although methyl-related nutrients are shown to be 
good for health, our study showed that a high methyl 
diet exacerbated septic mortality and microbiome compo-
sition in mice. By adopting a fecal microbiome transplan-
tation experiment, we demonstrated that the high methyl 
diet enhanced sepsis mortality through altering the gut 
microbiota. We found the abundance of bacteria with 
health-promoting functions like Akkermansia and 
Lachnospiraceae in the gut were decreased, and how did 
the HMD reduce these bacteria needs to be further 
explored. Our study showed that diet-based gut microbiota 
may be a new therapeutic strategy for sepsis patients.

Conclusions
In conclusion, a high methyl diet is able to alter the 
composition of gut microbiota and, therefore, exacerbate 
the mortality, organ injuries, and circulating levels of 
inflammatory mediators of CLP-induced septic mice.
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