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Molecular modeling of LDLR aids interpretation of genomic variants
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Abstract
Genetic variants in low-density lipoprotein receptor (LDLR) are known to cause familial hypercholesterolemia (FH), occurring in
up to 1 in 200 people (Youngblom E. et al. 1993 and Nordestgaard BG et al. 34:3478–3490a, 2013) and leading to significant risk
for heart disease. Clinical genomics testing using high-throughput sequencing is identifying novel genomic variants of uncertain
significance (VUS) in individuals suspected of having FH, but for whom the causal link to the disease remains to be established
(Nordestgaard BG et al. 34:3478–3490a, 2013). Unfortunately, experimental data about the atomic structure of the LDL binding
domains of LDLR at extracellular pH does not exist. This leads to an inability to apply protein structure-based methods for
assessing novel variants identified through genetic testing. Thus, the ambiguities in interpretation of LDLR variants are a barrier
to achieving the expected clinical value for personalized genomics assays for management of FH. In this study, we integrated data
from the literature and related cellular receptors to develop high-resolutionmodels of full-length LDLR at extracellular conditions
and use them to predict which VUS alter LDL binding. We believe that the functional effects of LDLR variants can be resolved
using a combination of structural bioinformatics and functional assays, leading to a better correlation with clinical presentation.
We have completed modeling of LDLR in two major physiologic conditions, generating detailed hypotheses for how each of the
1007 reported protein variants may affect function.

Key messages
• Hundreds of variants are observed in the LDLR, but most lack interpretation.
• Molecular modeling is aided by biochemical knowledge.
• We generated context-specific 3D protein models of LDLR.
• Our models allowed mechanistic interpretation of many variants.
• We interpreted both rare and common genomic variants in their physiologic context.
• Effects of genomic variants are often context-specific.
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Variant prioritization

Introduction

Familial hypercholesterolemia (FH) is a genetic disorder caus-
ing high levels of low-density lipoprotein (LDL) cholesterol in
patients beginning at birth and, due to lifelong exposure to
high LDL levels, ultimately leading to heart disease and myo-
cardial infarction at an unusually early age [1, 2]. It has a
higher incidence in countries where genetic testing has be-
come common, [3] indicating that it may be underdiagnosed.
FH is caused by functional mutations in the LDL receptor
(LDLR), its protein ligand (APOE or APOB), its recycling
regulator (PCSK9), or its adaptor protein (LDLRAP1) that
binds to the intracellular domain of LDLR. Deficiency of
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LDLR binding to LDL particles is a critical mechanism be-
lieved to underlie the majority of FH cases. Genomics se-
quencing to diagnose FH has led to the observation of many
genomic variants altering amino acids within the LDL-
binding domains of LDLR that lack any prior functional as-
sessment. Without prior evidence of disease relevance, taking
medical action based on these variants of uncertain signifi-
cance (VUS) comes with risks for both the patient andmedical
practitioners. Patients may be treated for a genetic disease they
do not have or fail to receive treatment for the one they do
have. Lack of prior functional evidence is a barrier to the
utilization of clinical genomics testing results. Therefore, in
order to more fully leverage the data gathered from ongoing
clinical genomics sequencing efforts, the clinical impact of
these variants must be assessed.

A novel approach to understand how genetic variants may
alter function includes accounting for the molecular structure
of each protein domain. LDLR is composed of multiple do-
mains and different domains mediate specific physiologic in-
teractions. Class-A domains make direct contact with the pro-
tein components of LDL particles and their atomic structure is
unknown for the extracellular conditions where receptor-
particle encounters occur. Each class-A domain is about 40
amino acids long and has a calcium and pH-dependent struc-
ture [4, 5]. Experimental assays on the fifth class-A domain
(LR5) have shown that the loss of calcium and acidic pH,
characteristic of the endosomal environment, both contribute
to LDL release by weakening the interaction with LR5 [4].
This is reflected in the 3D structure of LR5 around the calcium
binding site, which interacts with protein ligands [4]. In this
work, we integrated these and other data from the literature to
generate a more comprehensive structural model for
interpreting how genomic variants may alter any of the seven
class-A domains at extracellular conditions.

The full molecular details of LDLR’s physiologic cycle
have yet to be elucidated, but many states have been investi-
gated using a wide variety of biochemical, spectroscopic, and
bioinformatic approaches. LDLR undergoes a functional cy-
cle from presentation on the cell surface to binding lipoprotein
particles, internalization, endosomal release of lipoprotein par-
ticles, and recycling. Davis et al. showed, over 30 years ago,
that deletion of LDLR class-B and EGF domains resulted in a
receptor that was deficient in LDL binding and recycling but
could still bind VLDL [6]. The following year, Esser et al.
showed the necessary and additive role of certain class-A do-
mains for binding each ligand and were the first to propose a
higher order structure among the class-A domains [7], which
was replicated soon after [8]. As the biochemical literature
about LDLR grows, so too does the opportunity to enhance
the interpretation of VUS using the resulting knowledge.

Establishing if a VUS leads to dysfunction of LDL binding
will significantly inform clinical interpretation, thereby in-
creasing diagnostic utility from clinical genomics sequencing.

Contextualizing variant impact to LDLR cycle stage is clini-
cally important as there are therapies that affect the system
differently. While the overall domain architecture of the
LDLR is established, the atomic structure at each stage in
the cycle is not. Therefore, there is an opportunity and need
to define the high-resolution structure of LDLR at multiple
conditions, in order to better understand the physiologic im-
pact of FH variants. Molecular modeling may provide addi-
tional information useful in determining the likely effect of
each variant.

Current clinical paradigms use inheritance patterns, disease
segregation, and repeated gene-phenotype observations to de-
fine causality or contribution of genomic variants to specific
phenotypes [9, 10]. However, for rare disease patients, this can
be significantly more challenging. To address this need, we
can look towards mechanistic models to develop insight into
variant effects on protein structure and function, thereby con-
tributing to greater understanding and clinical interpretation.
Experimental assessment of LDLR structure has revealed de-
tails of the endosomal stage of the LDLR cycle but has not
elucidated details of LDL binding at extracellular conditions
where LDL particles are recognized. In this study, we combine
existing experimental data with computational structure
modeling to generate high-resolution structural information
accounting for conditions relevant to LDLR binding. The
class-A domains directly interact with LDL particles and have
the largest structural differences between the two conditions.
The 464 amino acid variants observed within the class-A do-
mains were evaluated using a combination of structure-based
annotations and energetic calculations. This approach will
provide mechanistic predictions for how each variant may
alter LDLR structure, and thereby likelihood of altering bind-
ing to LDL particles.

Results

We generate a model of the full-length LDLR at extracellular
conditions (Fig. 1). As no full-length experimental LDLR
protein structures at extracellular conditions exist, structural
information for related domains from human paralogs was
used. Each protein domain has a different level of existing
data available from previous studies. Within the LDLR
class-A domains, and the LRP-1 homolog, six cysteine resi-
dues, two acidic residues, and a single phenylalanine are the
only conserved amino acids (Fig. 2A). Additionally, there is a
pattern of negatively charged and polar amino acids. The cys-
teine residues are very likely to form three disulfide bonds and
the pattern of acidic residues likely forms the binding site for
Ca+2. Two examples of available experimental paralog struc-
tures include the LDLR-related protein 1 (LRP-1; Fig. 2B)
and the single LDLR class-A domains, which have been ex-
perimentally investigated using NMR [11, 12]. These studies
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demonstrate the flexibility of each domain and the critical role
of both Ca+2 binding and disulfide bonds to stabilize these
domains. Additionally, these studies show that substrate bind-
ing has only minor effects on the structure, while changes to
the environment, such as pH, result in significant structural
alterations.

We assessed model quality for the class-A domains using
multiple metrics. DPOE potential z-scores were less than z =
− 2.5 for all class-A domains except for LR2 (z = − 1.9) and
LR7 (z = − 1.7), indicating favorable energies compared to
decoy models. The endosomal model has a high atomic
clash score (z = 5.8), indicating many more clashes than ex-
perimental structures, while the extracellular model has a fa-
vorable clash score (z = − 0.3), indicative of an average exper-
imental structure. The extracellular model only has 26% of
residues involved in intramolecular hydrogen bonds, while
our extracellular model has 48%. Finally, we considered dihe-
dral angle scores. The endosomal model has 35% of residues
in the Ramachandran core region, 82% in the allowed region,
and outlier z-score of 11.8. The extracellular model has 70%

of residues in the Ramachandran core region, 91% in the
allowed region, and an outlier z-score of 2.8. Given that each
class-A domain also contains disulfide bonds and Ca+2 coor-
dination, we believe the model we generated for the extracel-
lular state is of high quality and useful for annotating the
potential effects of genomic variants.

Genomic variants were identified from the literature and
public databases, mapped to our LDLR model, and observa-
tions regarding location within the protein model, and impacts
on the computed structure made. Within the class-A domains,
58% of residues have identified variants in FH cases. For
many of these variants, the clinical and/or functional effect is
unknown, so detailed annotation using this structural model-
ing approach can provide valuable information for generating
mechanistic hypotheses as to the variants’ effects.

There is a strong relationship between sequence conserva-
tion and the output of commonly used genomic sequence-
based predictors. For example, there is a clear relationship
between sequence conservation and classification by
sequence-based methods such as PolyPhen-2 and MetaLR

Fig. 1 Structural model of LDLR at extracellular conditions generated by
date integration and molecular modeling. A Each LDLR domain is
available (o) or modeled by us (●). We have used molecular modeling

to generate full-length LDLR structures at B endosomal and C
extracellular conditions by leveraging available experimental data

Fig. 2 Conservation and modeling of LDLR Class-A domains. A The
sequence alignment of class-A domains with the sequence of LRP-1
class-A domain, colored by amino acid type, shows the conservation of
six cysteine residues and a pattern of acidic residues. These six cysteine
residues form three disulfide bonds and the acidic residues form a binding
pocket for Ca+2. B The backbone of LRP-1 class-A domain, solved by
NMR, is shown in gray. All models from the NMR ensemble are shown.
Superimposed and shown in cartoon representation, colored by secondary

structure type, is LRP-1 class-A domain bound to the minimal peptide
from ApoB. The overall fold is strikingly similar between bound and
unbound conformations. C The backbone ribbons of LRP-1 are shown
again, but now superimposed onto the fourth class-A domain of our
extracellular LDLR model. The three disulfide bonds are shown in
orange, Ca+2 green, and the residues interacting with the Ca+2 ion are
shown in detail
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(p = 4.998 × 10−4). Structure-based ΔΔGfold calculations
across the entire protein are not correlated with sequence con-
servation (p = 0.971), but they are among class-A domains
(p = 0.081). Overall, there is a strong correlation between
ΔΔGfold between models at extracellular and endosomal con-
ditions (rho = 0.61), but the correlation is markedly different
for the class-A domains (rho = 0.12). Thus, it is feasible that
sequence-based predictors are less specific for highly con-
served regions of LDLR, as has been previously identified in
other systems [13]. However, structure-based annotations and
calculations may address this limitation by providing results
that are more specific for these regions.

Using our models of LDLR in two physiologic states, we
have annotated each variant with multiple mechanistic
criteria: conserved at the protein sequence level, if it is likely
(de)stabilizing, difference inΔΔGfold between the endosomal
and extracellular models, if they affect necessary disulfide
bonds, or if they are involved in the 3D coordination of Ca+2

ions (Table S1). Many variants not predicted to destabilize the
endosomal structure were predicted to be highly destabilizing
to the extracellular model (Fig. 3A). Patterns of evolutionary
conservation are better described by the extracellular model
than the endosomal model (Fig. 3B, C). Conserved residues
make up the hydrophobic core of class-A domains that are
denatured at high pH, or coordinate Ca+2 ions. Of the 403
variants observed within class-A domains, 374 affect one of
the structurally-informed classes: 256 affect structurally con-
served amino acids, 127 alter a disulfide bond, and 93 are
likely to alter a Ca+2 binding site. Finally, we assessed differ-
ences in the distributions of ΔΔGfold among benign, VUS,
and pathogenic variants across domains (Fig. 3D). The class-
A domains show the largest difference in distribution between
variants of different disease association (Fig. 3E). Many VUS
are also destabilizing or affect a specific structural role such as
disulfide bond formation or Ca+2 coordination. Of the 24
literature-reported O-GalNAc modification sites in LDLR,
nine are directly affected by genomic variants. These nine sites
are affected by 12 different amino acid changes. From our
structural model, five are stabilizing, six neutral, and one
destabilizing to the protein structure. Thus, these multiple
measures are additional lines of evidence for interpreting the
likely functional implications of LDLR missense VUS.

Methods

Human genetic variants in LDLR were downloaded from
HGMD [14], ClinVar [15], and Leiden Open Variation
Database (LOVD) [16, 17]. We gathered phenotypes from
OMIM [18] and matched them with pathogenicity classifica-
tions from ClinVar, HGMD, and LOVD. For this work, we
considered a missense variant to be pathogenic if it was la-
beled (likely) pathogenic in Clinvar, a disease mutation in

HGMD, or of Association for Clinical Genetic Science
(ACGS) class 4 or 5 in LOVD. We abbreviated pathogenic
variants per the HGMD convention of DM for disease muta-
tion. We considered a missense variant to be benign if it was
labeled as (likely) benign in Clinvar or of ACGS class 1 or 2 in
LOVD, and also lacked any of the criteria listed above for
defining a variant as pathogenic.

Sequence and domain annotations of human LDLR were
downloaded from UniProt accession number P01130-1 [19].
We used LRP-1models (2nkx and 2nky) as templates to guide
modeling of each of the 7 class-A LDLR domains. To do so,
we generated a multiple sequence alignment [20], adjusted to
ensure alignment of conserved cysteine residues that make
conserved disulfide bonds. The pairwise residue equivalences
to LRP-1 were used to make homology models in Modeler
(version 9.17) [21, 22]. Each class-A domain model was com-
puted independently. For each, multiple candidate models
were generated and the model with minimum DOPE score
chosen. These class-A domain models were bound to one
another using a coarse-grained energy minimization [23] and
assembled onto the remaining domains modeled using the
endosomal experimental structure (1n7d) [24]. Our resulting
model provided a basis for us to understand the effect of VUS
under the extracellular conditions wherein LDLR binds its
substrate. We used the model to identify residues involved in
cysteine crosslinks and those likely to have a role in Ca+2

coordination. We considered changes in stability significant
if they exceeded 0.6 kcal/mol and strongly altered if exceeding
1.8 kcal/mol. We used Foldx (version 4) [25] for computation-
al mutagenesis and calculation of ΔΔGfold. Sites of post-
translational modification were taken from the literature [26,
27] and PhosphositePlus database [28]. To evaluate model
quality, we used DOPE z-scores and the VADAR webserver
[29]. Conservation was assessed and mapped to our protein
models using the ConSurf server [30] and 150 species’ se-
quences from UniRef90 aligned by ClustalW. Selected anno-
tations were downloaded from dbNSFP [31]. Protein struc-
tures were visualized using PyMOL [32].

Discussion

Current cardiovascular genetic testing is uncovering many
genomic variants with uncertain clinical significance.
Greater function and mechanistic resolution are required in
order to properly treat patients with these variants. Previous
studies by our lab [33, 34] and others [35, 36] have demon-
strated that computational studies can generate novel data to
strongly support the interpretation of variants identified from
high-throughput sequencing and also to generate detailed
mechanistic hypotheses for their underlying atomic mecha-
nisms. When paired with detailed computational analysis,
candidate mechanisms can be proposed at the atomic level
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Fig. 3 LDLR variants have context-specific effects. Each variant may
confer significantly different effects on protein stability between
endosomal and extracellular conditions. A Each data point represents a
different LDLR variant. We evaluated 403 unique missense genomic
variants observed in population (ExAC) or disease (ClinVar or HGMD)
databases within the class-A domains. Symbols are filled in for the 128
variants from the fourth and fifth class-A domains. The line of
equivalence is shown and variants colored gray if they exhibit a
difference of less than 1.8 kcal/mol. The 57 (14%) of variants with a
difference between 1.8 and 3.0 kcal/mol are colored orange, and the
119 (30%) variants with a difference greater than 3.0 kcal/mol colored
red. B Across all class-A domains, there is a significant relationship
between residue conservation and the difference in stability between

conditions. C This relationship is present within the fourth and fifth
class-A domains. D Across LDLR domains, missense variants in the
class-A domains have the strongest separation in ΔΔGfold between
pathogenic variants and VUS. Horizontal lines mark 0.6 kcal/mol.
Pathogenic missense variants in all extracellular domains are more
likely to be destabilizing to the native structure compared to VUS.
Many VUS in the fourth and fifth class-A and EGF domains are
destabilizing. E For our extracellular model of class-A domains, there
are strong differences between the distribution of ΔΔGfold among
benign, VUS, and pathogenic variants. Not all pathogenic variants
destabilize the conformation, but a significant fraction does. A smaller,
but still significant proportion of VUS is destabilizing, but no benign
variants are destabilizing

J Mol Med (2019) 97:533–540 537



to unify experimental observations with prior knowledge from
the literature into a coherent mechanism of molecular dys-
function, driven by genetic variants. In this work, we develop
computational and structure-based assessment to interpret the
consequences of variants observed in LDLR, focusing on
knowledge gained for the class-A domains.

We seek to extend the current clinical genomic sequencing
paradigm, to include effects of LDLR protein structure and
function changes in the interpretation of patient variants.
Experimental structures of LDLR have been resolved, but at
low resolution and for a limited number of physiologic con-
ditions. A notable example is the lack of an experimentally
determined LDLR structure at extracellular conditions where
LDL particles are recognized. We generated new structure-
based data for the class-A binding domains of LDLR and used
them to predict each variant’s effect on domain stability. This
data is relevant for interpreting the potential impact of variants
observed in FH cases and likely more specific than sequence-
based predictors. Further, we have aggregated multiple types
of data from the literature to identify structure-based patters of
conservation, cofactor binding, and post-translational modifi-
cation across the receptor. Previous work has considered how
genomic variants could alter the structure of LR5 or interac-
tionwith other proteins [37].We have extended this concept to
all class-A domains and integrated it with other data from the
literature to provide a more comprehensive annotation for ge-
nomics data interpretation. Thus, our model of the extracellu-
lar conformation adds evidence for how missense variants
may alter LDLR structure and function at a physiologic con-
dition currently lacking experimental data.

It has been previously shown that multiple regions of
LDLR are glycosylated. We identified that half of the glyco-
sylation sites in LDLR are affected by genomic variants and
stabilize the structure. Post-translational modifications often
result in changing a protein’s conformation. Thus, it may be
that genomic variants at these sites not only alter chemistry but
lock the protein into one conformation. Further, of the 128
amino acids that are five or fewer residues away from a gly-
cosylation site, 71 (55%) are affected by at least one missense
genomic variant. Additionally, there are many genomic vari-
ants affecting residues near glycosylation sites, potentially
modifying enzyme-binding motifs. Other motifs, such as the
classic YWTD motif, have intra-molecular roles. The YWTD
motif appears once for each class-B domain and makes up one
of the beta-strands for each blade in the six-blade propeller
fold; the beta-propeller fold is shared by multiple extracellular
receptors that share the motif [38]. Previous low-resolution
electron microscopy data of LDL particle structure identified
a region of density that could be attributed to a bound receptor
[39]. They placed one side of the class-B domain within this
region of density. The class-B domain sequences interacting
with LDL in their model have potential glycosylation sites that
are not observed as glycosylated in multiple studies [26, 28].

While the class-A domains are regarded as the primary parti-
cle binding domains, it may be that certain regions of the
class-B domains are protected from glycosylation through
their interaction with other molecules. The interplay between
glycosylation and genomic variants to modify intra- and inter-
molecular features is an important dimension for future LDLR
research.

Beyond the novel data from our model and aggregated
from the literature, future studies may include additional en-
vironmental factors to be more informative for additional
stages in the functional cycle. For example, experimental data
indicates changes in the structure of LDL particles at
endosomal pH [40], potentially altering receptor contacts.
The cytoplasmic tail of LDLR forms oligomers regardless of
the presence of LDL [41], and these data could enhance inter-
pretation for residues within the cytoplasmic domain. In the
future, additional experimental data, such as electron micros-
copy, for extracellular conditions may be generated. New ex-
perimentally derived structural data will be informative to the
work presented here, and increase overall confidence in the
hypotheses generated. However, we believe that modeling
efforts such as these will remain informative as they enable
in silico evaluation of patient-specific variants and the effect
on LDLR structure and function. Further studies indicate that
explicitly accounting for ligand, receptor, and environment
may provide further mechanistic details across the LDLR
functional cycle and the effects of missense variants.

Analysis of our full-length models of LDLR demonstrates
that each variant may have a significantly different impact on
the protein in different physiologically relevant conditions
(Fig. 3). We have identified that many FH variants only have
a strong effect at extracellular conditions, thus motivating the
development of additional structural models and computation-
al analyses to determine the most likely stage in the LDLR
physiologic cycle that each variant may affect. Our model of
LDLR under extracellular conditions provides clear interpre-
tation of patterns of amino acid conservation; conserved resi-
dues typically fulfill specific structural roles in binding Ca+2

or contributing to the hydrophobic core of each class-A do-
main. Computational analyses afford the opportunity to pre-
dict effects in both pathogenic and protective directions, as has
been clinically suggested for specific genetic variants [42] in
LDLR. The current study has demonstrated additional knowl-
edge that molecular modeling approaches can provide for
interpreting the likely effects of coding variants affecting
LDLR.

Conclusion

To maximize the utility of genomics data and increase the
impact of precision medicine, molecular models that can inte-
grate the available experimental data to support functional
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interpretation of genomic variants are highly desirable.
Establishing a molecular model typically yields immediate
value because specific mechanistic hypotheses for the role of
each amino acid becomes visually apparent. Then, it is much
easier to hypothesize how those roles change due to genetic
variation. The models we have generated in this study inform
our understanding of the sequence-structure-function relation-
ship for the LDLR—a critical protein in cholesterol metabo-
lism. Additionally, they facilitate detailed hypothesis genera-
tion for the mechanisms by which genetic variants may alter
LDLR—specifically, the extracellular state. Genomic variants
may alter this state, or other states. Thus, additional studies
could be made to further annotate which other states may be
affected, and how, by genomic variants within this complex
and dynamic protein. We believe that additional studies of the
type we described here, complemented by functional assays,
will yield mechanistic interpretation of each genomic variant
and at high confidence.
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