
 International Journal of 

Molecular Sciences

Review

Role of Circulating Biomarkers in Platinum-Resistant
Ovarian Cancer

Carolina Maria Sassu †, Innocenza Palaia *,†, Serena Maria Boccia, Giuseppe Caruso , Giorgia Perniola,
Federica Tomao, Violante Di Donato , Angela Musella and Ludovico Muzii

����������
�������

Citation: Sassu, C.M.; Palaia, I.;

Boccia, S.M.; Caruso, G.; Perniola, G.;

Tomao, F.; Di Donato, V.; Musella, A.;

Muzii, L. Role of Circulating

Biomarkers in Platinum-Resistant

Ovarian Cancer. Int. J. Mol. Sci. 2021,

22, 13650. https://doi.org/10.3390/

ijms222413650

Academic Editor: Fazlul Huq

Received: 30 November 2021

Accepted: 19 December 2021

Published: 20 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Maternal and Child Health and Urological Sciences, “Sapienza” University of Rome,
Polyclinic Umberto I, 00161 Rome, Italy; carolinamsassu@hotmail.it (C.M.S.); bocciaserena@gmail.com (S.M.B.);
g.caruso@uniroma1.it (G.C.); giorgia.perniola@uniroma1.it (G.P.); federica.tomao@uniroma1.it (F.T.);
violante.didonato@uniroma1.it (V.D.D.); angela.musella@uniroma1.it (A.M.); ludovico.muzii@uniroma1.it (L.M.)
* Correspondence: innocenza.palaia@uniroma1.it
† Both authors contributed equally to this manuscript.

Abstract: Ovarian cancer (OC) is the second most common cause of death in women with gynecologi-
cal cancer. Considering the poor prognosis, particularly in the case of platinum-resistant (PtR) disease,
a huge effort was made to define new biomarkers able to help physicians in approaching and treating
these challenging patients. Currently, most data can be obtained from tumor biopsy samples, but this
is not always available and implies a surgical procedure. On the other hand, circulating biomarkers
are detected with non-invasive methods, although this might require expensive techniques. Given
the fervent hope in their value, here we focused on the most studied circulating biomarkers that
could play a role in PtR OC.

Keywords: platinum-resistant ovarian cancer; circulating biomarker; liquid biopsy; prognosis; drug
response biomarker

1. Introduction

Ovarian cancer (OC) is the second most common cause of death in women with gyne-
cological cancer, with 313,959 new cases and 207,252 deaths in 2020 around the world [1].
High-grade serous ovarian cancer (HGSOC) is the most common form of OC (about 70% of
epithelial ovarian cancer EOC) [2] and is characterized by high mortality due to diagnosis
at an advanced-stage disease in about 75% of cases [3]. After a positive response to upfront
treatment, OC recurs in the majority of patients and develops progressive resistance to
therapy, limiting effective treatment options. According to the Gynecologic Oncology
Group (GOG), recurrent ovarian cancer has been classified on the basis of platinum-free
interval (PFI) between last platinum administration and recurrence [4]. However, this
classification is just arbitrarily defined. Firstly, the time to recurrence depends on the timing
and methods of the follow-up assessment. Secondly, maintenance therapy retards relapse,
and this inevitably revolutionizes the concept of platinum sensitivity [5].

Consequently, the last Gynecologic Cancer Intergroup consensus conference proposed
to refer to the therapy-free interval (TFI) [6], but this change is still hard to be applicable in
clinical practice. Thus, referring to the historic classification based on PFI, a relapsed disease
that occurs within 6 months of the last administration of platinum is classified as platinum-
resistant (PtR) and represents the greatest challenge for specialists and researchers [4].
PtR disease is, in fact, correlated to poor prognoses with a low response rate (<20%) to
subsequent lines of therapy and reduced progression-free survival (PFS) (about 4 months),
as well as median overall survival (OS) (<12 months) [7,8].

Considering the poor prognosis of OC, especially HGSOC, huge effort was made
to pinpoint new predictive biomarkers able to help physicians in approaching and treat-
ing OC patients. The World Health Organization defines a biomarker as “any substance,
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structure or process that can be measured in the body or its products and influence or
predict the incidence of outcome or disease” [9]. In general, cancer biomarkers include
every compound present in or produced by cancer cells or by other cells of the organism in
response to and in correlation with the tumor [10]. Biomarkers can be measured accurately
and reproducibly [11] in the blood, urine, stool, or other fluid (circulating markers) or
in tumor samples (tissue biomarkers). The former group is represented by surface anti-
gens, proteins/lipids, nucleic acids (DeoxyriboNucleic Acid [DNA] and RiboNucleic Acid
[RNA]), hormones, circulating cancer cells, and inflammatory ones. Specifically, cancer
biomarkers may have several potential usages (diagnostic, prognostic, and predictive
value) [12,13]. However, very often, the same biomarker presents various overlapping
roles, thus defining a unique clear role could be challenging and not always possible, as
shown by the intersection of sets in Figure 1.
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Currently, most biomarkers derive from tumor biopsy samples. Nevertheless, it is
not always possible to perform surgery in order to obtain a biopsy due to the risk of
complications in frail patients, such as bleeding and infections, and the difficulty of surgical
procedures in some organs. Moreover, given the mutagenicity of the disease, referring to a
previous histological specimen may not reveal details of the actual tumor status. Finally, a
single tissue sample does not always provide exhaustive data of the tumor genome (due
to sampling bias). Recently, therefore, circulating biomarkers have raised more interest
thanks to the advantage of being detected with a non-invasive method, along with a better
benefit-cost ratio. Characteristics of circulating biomarkers and tissue biopsy are shown in
Table 1. Unfortunately, most of these serum biomarkers are not sufficiently sensitive and
specific to make screening and early diagnosis in the general population.
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Table 1. Characteristics of circulating biomarkers and tumor biopsy.

Circulating Biomarkers
and Liquid Biopsy Tumor Biopsy

Material derived from cancer detectable in bloodstream, urine,
or peritoneal fluid Material obtained from a sampling of tissue lesion

Non-invasive procedure High invasive procedure

Real-time follow up Impracticable for real-time follow up

Quick and easily repeatable procedure for obtaining the samples Difficult to repeat and depend on the correctness of the
procedure

No surgical complication or pain Risk of surgical complication and pain

Lack of well-defined practice rules and standardizing protocols Clinically validated and standard for histologic diagnosis

Less cost (with some exceptions) High cost

Assessment of tumor heterogeneity in different phases of the
disease Failure to reflect tumor heterogeneity

Low concentrations and easily degradable material Higher concentration and fixed material

Less specificity Higher specificity

Specialized laboratory Histology laboratory

This review analyses and reports data from studies on circulating biomarkers with a
potential prognostic and predictive function in patients with PtR OC.

2. Methods

A search in PubMed up to June 2020 was performed, combining the following terms:
“circulating biomarkers”, “platinum resistant ovarian cancer”, “liquid biopsy”, “genetic
and epigenetic”, “inflammation”, and “angiogenesis” reveal published evidence in the last
25 years. Unpublished or non-peer-reviewed studies, papers without available full-text
and non-English manuscripts were excluded.

3. Circulating Biomarkers

Table 2 and Figure 2 resume circulating biomarkers discussed in this review. Details
will be extrapolated in the following sections.
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Table 2. Discussed circulating biomarkers in OC.

Type of Circulating Biomarker

Glycoprotein Biomarkers
CA 125
HE4
Mesothelin

Liquid Biopsy
ctDNA
CTCs
EVs

Epigenetic and Genetic Markers

miRNA
DNA methylation
Histone modification
TP53 mutation
HRD-BRCA1/2 mutation

Immune-Related Biomarkers

NLR
PLR
Circulating T-cell
Circulating B-cell
sPD-1/sPD-L1
MDSC4
NMLR

Angiogenic Markers sVEGF
Abbreviations: BRCA Breast Cancer susceptibility gene, CTCs Circulating Tumor Cells, ctDNA Circulating
Tumor DNA, EVs Extracellular Vesicles, HE Human Epididymis Protein 4, HRD Homologous Recombination
Deficiency, MDSC4 Circulating Myeloid-Derived Suppressor Cells type 4, miRNAs Micro RNAs, NLR Neutrophil-
Lymphocyte ratio, NMLR Neutrophil-and-Monocyte to Lymphocyte Ratio, PLR Platelet-Lymphocyte Ratio, sPD-1
soluble form of Programmed Cell Death Protein 1, sPD-L1 soluble form of Programmed cell Death Protein
Ligand 1, sVEGF soluble form of Vascular Endothelial Growth Factor.

3.1. Glycoprotein Biomarkers

CA125 and HE4 are the only validated circulating biomarkers approved for the OC
diagnosis [14].

3.1.1. CA125

CA125/mucin 16 (MUC16) is a member of the mucin family glycoproteins encoded by
the MUC16 gene. It promotes cancer cell proliferation and inhibits anti-cancer immune re-
sponses. Serum CA125 is also a prognostic marker used to predict OC patient survival [15].
Moreover, it was shown to be a predictor of response to chemotherapy [16]. Results from a
trial that investigated the role of CA125 in regulating the sensitivity of epithelial OC cells
to different types of genotoxic drugs revealed that CA125 promotes cisplatin resistance.
In particular, this effect seems to be mediated by the C-terminal domain (CTD) of CA125.
Experimental overexpression of this domain in CA125 negative OC cells confers platinum
resistance, while the downregulation of CA125, mediated by CA125-specific single-chain
antibodies that prevent its localization in the cell surface, increases by approximately
5 times cisplatin cytotoxicity, promoting cisplatin-induced apoptosis [17].

Additionally, serum CA125 dosage combined with the ascites concentration of an
inflammatory biomarker such as leptin seems to be able to predict prognosis and response
to treatment in OC patients. Serum CA125/ascites leptin ratio was found to be a predictor
of resistance to first-line platinum-based therapy (p = 0.02) and poor outcomes in terms
of PFS (p = 0.04) and OS (p = 0.04) in patients with OC [18]. Finally, CA125 levels were
incorporated in a nomogram to predict the probability of 1-year OS and median survival
in patients with PtR OC. The CA125 has proved to have a relevant prognostic significance
(contributing 13 points out of 100) after performance status (38 points), ascites (19 points),
and size of largest tumor documented on imaging (14 points) [19]. However, the real
application of CA125 dosage is still limited in clinical practice. In fact, the increase of
CA125 concentration without symptoms of a disease does not legitimate an immediate
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initiation of chemotherapy after complete response to first-line platinum since the evidence
showed that early treatment has no survival benefit [20].

3.1.2. HE4

Human Epididymis Protein 4 (HE4) is a secretory glycoprotein, a member of the
family of acidic four-disulfide core proteins. It is expressed in both the male and female
reproductive tract and other normal human tissues such as the breast, kidney, respiratory
tract and is highly overexpressed in epithelial ovarian cancer. Recently, HE4 has also been
detected in OC patients’ urine [21].

Several studies demonstrated that serum HE4 levels were higher in platinum-resistant
OC patients and that HE4 promotes platinum resistance both in vitro and in vivo [22,23].
However, the way in which it promotes platinum resistance is not clear. The most likely
hypothesis is that multiple mechanisms may play a role in HE4-mediated chemo-resistance.
Early Growth Response gene 1 (EGR1), a mitogen-activated protein kinase (MAPK)-
regulated transcription factor involved in promoting apoptosis, was induced by several
factors such as platinum compounds. HE4 overexpression seems to suppress cisplatin-
mediated upregulation of EGR1 [22]. Angioli et al. showed that serum HE4 levels during
first-line chemotherapy predict platinum-resistant disease at the third chemotherapy cycle
with 100% sensitivity and 85% specificity. Furthermore, they also reported that CA125
levels during chemotherapy were not statistically significant in predicting platinum re-
sponse [24].

3.1.3. Mesothelin

Mesothelin (MSLN), a glycosylphosphatidylinositol (GPI) anchored cell surface pro-
tein, is physiologically expressed on mesothelial cells and is overexpressed in several types
of tumors, including ovarian cancer. The MSLN gene maps on chromosome 16p13.3 and en-
codes a protein precursor of 71 KDa, proteolytically cut in a C-terminal fragment of 40 KDa
(so-called mesothelin), bound to the cell membrane by a glycosyl-phosphatidylinositol
and in an N- terminal fragment of 31 KDa (so-called MPF), secreted in the serum, with a
megakaryocyte-enhancing action [25].

The soluble form of MSLN appears to arise through alternative splicing of the MSLN
gene that disrupts the GPI-anchor motif. Another hypothesis suggests that soluble MSLN
may be a cleavage product of the membrane-bound MSLN. Studies have shown that several
mechanisms exist in which MSLN plays a role in cell adherence, cancer progression, and
chemoresistance. It has been suggested that MSLN can bind to CA125 to mediate cell
adhesion aiding in the peritoneal implantation and metastasis process [26]. Moreover, it
may promote cancer cell survival and proliferation via the Nuclear Factor kappa-light-chain-
enhancer of activated B cells (NF-Kb) signaling pathway and seems to confer resistance to
cytotoxic drug-induced apoptosis, down-regulating the pro-apoptotic protein Bim [27].

Cheng et al. reported that PtR OC patients showed significantly higher MSLN expres-
sion on cancerous tissue specimens than chemo-sensitive patients (p < 0.001) and that its
expression is associated with worse PFS (p = 0.03) and OS (p < 0.008) of OC patients [28].

However, elevated MSLN levels were also found in the serum and urine of OC patients
with early (p = 0.02) and late (p < 0.001) disease. Urinary MSLN dosage also showed good
sensitivity for early-stage OC (42%) compared to other markers tested in the study [29],
although not proved insufficient for an effective screening strategy. Further studies suggest
the potential use of this soluble glycoprotein as a circulating diagnostic marker for OC [30].
Anyway, its diagnostic value in OC, and especially in PtR disease, is not yet satisfactory.

3.2. Liquid Biopsy

Recently, the role of “liquid biopsy” in cancer has been attracting more attention.
Strictly speaking, this term refers to the analysis of circulating cell-free DNA (cfDNA) and
circulating tumor cells (CTCs), expanding the spectrum of other circulating biomarkers
already used in clinical practice. The detection and analysis of these compounds in patients’
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blood may represent a non-invasive tool to obtain information for the diagnosis, prognosis,
and monitoring of tumor genotype in OC [31,32]. Moreover, through liquid biopsy, extracel-
lular vesicles (EVs) (including exosomes, microvesicles, and other membranous structures)
and circulating cell-free microRNAs (cfmiRNAs) can also be detected (Figure 3). miRNAs,
which are responsible for epigenetic alterations, are discussed in a separate section.
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3.2.1. Circulating Tumor DNA

The detection of circulating cfDNA in biological fluids is a physiological phenomenon
caused by DNA released from apoptotic or necrotic cells. In cancer patients, this circulating
cfDNA also originates from cancer cells, the circulating tumor DNA (ctDNA), which
represents from 0.01% to 90% of total cfDNA [33–36]. Indeed, it is assumed that ctDNA
is released in the plasma when superficial tumor cells undergo lysis spontaneously or in
response to chemotherapy [37]. The concentration of ctDNA is determined by the presence
and size of the cancer [38] and its metabolism and diffusion (clearance, degradation,
lymphatic circulation, and other blood processing) [38,39]. DNA fragments released from
cancer cells are composed of kilobases from 0.18 to 21 [40,41]. ctDNA can be isolated,
amplified with polymerase chain reaction, and then analyzed since it carries the same
alterations as cancer: mutations [42], LOH [43], translocations, copy number alterations [44],
chromosomal instability [45], and methylations [46]. The identification of ctDNA is possible
through the detection of tumor-specific mutations, thus, a previous thorough knowledge
of the tumor is mandatory. The potential applications of ctDNA in OC range from the
screening to the prediction and monitoring of response to treatment [47]. In approaching
PtR recurrent ovarian cancer (ROC) patients, the advantages of analyzing ctDNA are related
to the possibility of detecting cancer genetic alterations, which correlate to chemo-resistance
and prognosis, and its quantification could be a useful tool.

Some authors evaluated baseline plasma levels of cfDNA in patients with multi-
resistant EOC. They found that patients with high cfDNA had a poor outcome relative
to lower cfDNA ones after treatment with bevacizumab (PFS 2.9 months vs. 4.2 months,
HR 1.98, p = 0.002 and OS, 5.0 months vs. 8.1 months, HR 1.66, p = 0.02) [48]. Similarly, the
measurement of cfDNA is also a promising tool in the future for monitoring the treatment
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efficacy of PtR OC [49]. Genetic or epigenetic alterations encountered in ctDNA are each
discussed in their own sections.

Nevertheless, in the current clinical practice, the utility of ctDNA is largely hampered
by its high fragmentation, short half-life (from 15 min to a few hours) [50], and low quantity
in the bloodstream [51,52], and the major obstacle is isolating ctDNA from other circulating
DNA in the blood sample. Moreover, it could be difficult to determine whether the levels
of ctDNA are due to highly proliferating tumors and tumor shedding or to the response
to therapies and tumor killing. In addition, the timing at which the samples are collected
could be crucial. Finally, the analysis of ctDNA does not allow for the study of other
compounds such as RNA, proteins, and metabolites.

3.2.2. Circulating Tumor Cells

CTCs are clones of primary tumor cells released in the bloodstream [53] and are
extremely rare in the healthy general population [54]. In particular, they are found
in various carcinomas, especially in metastatic ones, and some of these CTCs may be
able to colonize distant sites. Only tumor cells with specific features can survive un-
der the stresses of the bloodstream (i.e., flow, immune cells) [55], resist anoikis [56], and
have the ability to facilitate metastases development (plasticity, migration, and invasion)
through epithelial-to-mesenchymal transition EMT [57,58]. It was proved that neutrophils,
platelets, macrophages, and chemokine were involved in CTCs’ protection in this environ-
ment [59–62]. A useful application of CTCs’ isolation in OC is the opportunity to predict
platinum resistance and the prognosis and detect mutations related to (MRP1-10, MDR1,
ERCC1, RRM1, RRM2) [63,64] through qualitative and quantitative analysis. Levels of
CTCs were supposed to correlate with therapeutic response and survival [65], but all in all,
data were not consistent (Table 3) [66–69].

Table 3. Most relevant evidence about the role of CTCs in PtR OC.

Author, Year Material and Methods Results Conclusions

Kuhlmann
JD.
2014
[66]

• 143 new diagnosed EOC pts.
• Immunomagnetic CTCs enrichment

targeting EPCAM and mucin 1 followed
by multiplex reverse transcription PCR.

• Classified according to the presence of
CTCs expressing ERCC1 (ERCC1+

CTCs vs. ERCC1−CTCs).

Platinum resistance ERCC1+ CTCs vs.
ERCC1−CTC
OR, 8.5 (1.7–43.6), p = 0.01

The presence of CTCs
expressing ERCC1 is
an independent
predictor of platinum
resistance

Obermayr E.
2013
[67]

• 216 pts with EOC.
• RT-qPCR analysis of EpCAM in CTCs

at follow up.

Frequency of CTCs with
overexpression of PPIC gene in PtR
vs. platinum sensible patients at
follow up:
35.7% vs. 10.1%, p = 0.024

CTCs with
overexpression of
PPIC gene correlate
with platinum
resistance

Poveda A.
2011
[68]

• 216 pts ROC (PtR 34%) treated with
PLD ± trabectedine

• CTCs isolated from blood using Cell
Search system and reagents (Veridex)

• Classified according to CTCs at
baseline: CTCs ≥ 2 vs. CTCs < 2.

-PFS ≥2 CTCs vs. <2 CTCs:
3.2 months vs. 6.6 months; p = 0.0024.
-OS ≥ 2 CTCs vs. <2 CTCs:
12.4 months vs. 20.6 months; p = 0.0017.
-Multivariate analysis:
PFS HR 1.58 (0.99–2.53) p = 0.058
-Multivariate analysis:
OS HR 1.54 (0.93–2.54) p = 0.096

Levels of CTCs seem
to correlate with
platinum resistance
and worse survival,
but data are
inconsistent
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Table 3. Cont.

Author, Year Material and Methods Results Conclusions

Lee M.
2017
[69]

• 30 pts with ROC (PtR 60%)
• Fresh peripheral blood samples

collected in EDTA vacutainer tubes,
engaging of biotin-doped
PPy-deposited microfluid device,
polydimethylsiloxane microchannels
coniugated with streptavidin and
exposed to antibodies against EpCAM,
TROP2, EGFR, vimentin, and N
cadherin.

• Classified according to CTCs cluster
positivity.

-OS pts with CTCs cluster vs. pts
without CTCs cluster:
21 vs. 74 months, p = 0.008.
-Multivariate analysis OS: HR 1.3
(0.94–17.149) p = 0.94
−65.2% of patients with CTCs cluster
showed platinum resistance (p = 0.001).

Levels of CTCs seem
to correlate with
platinum resistance
and worse survival,
but data are
inconsistent

Abbreviations: CTCs Circulating Tumor Cells, EDTA Ethylenediaminetetraacetic acids, EGFR Epidermal Growth Factor Receptor, EOC
Epithelial Ovarian Cancer, EpCAM Epithelial Cellular Adhesion Molecule, ERCC Excision Repair 1 protein, HR Hazard Ratio, OR
Odds Ratio, OS Overall Survival, PFS Progression Free Survival, PLD Pegylated Liposomal Doxorubicin, PPIC Cyclophilin C gene, PtR
Platinum resistant, Pts Patients, ROC Recurrent Ovarian Cancer, RT-qPCR Real-Time quantitative Polymerase Chain Reaction, TRP-2
Tyrosinase-related protein 2.

These contrasting pieces of evidence must be considered in the future perspective of
using CTCs as biomarkers of OC. Moreover, isolation and characterization of these cells in
clinical practice are also extremely obstructed by their scarcity in the bloodstream (from one
in 100 million to one in a billion normal blood cells) [70–72]. In addition to this, it should
be remarked that CTCs half-life is short (about 4 h) after blood draw [73]. At the same
time, analysis of CTCs allows the identification of numerous other mutations in a single
cell (with respect to cfDNA), leading to a better comprehension of tumor heterogeneity
itself [74]. This is an essential advantage of liquid biopsy, particularly CTCs, given the
assumption that cancer is not a static disease but a dynamic and mutable process from
diagnosis to recurrence. Growing evidence and developments in single-cell isolation
techniques, single-cell -omics, and bioinformatics suggest that CTCs display the same
heterogeneity as the primary tumor [75]. Indeed, CTCs show an intermediate phenotype
between epithelial and mesenchymal and have a highly plastic stem-like state. In the future,
the CTC characterization could shed more light on tumor heterogeneity and therapeutic
resistance mechanisms and uncover novel therapeutic targets [76].

3.2.3. Extracellular Vesicles

Extracellular vesicles (EVs) include exosomes, microvesicles, and other membranous
structures that contain proteins, miRNA, DNA fragments, non-coding RNAs, and lipids.
They are abundantly released into the extracellular space by cancer cells and can be easily
isolated from various body fluids [77]. Several reports have demonstrated that exosomes
can be detected in the bloodstream and ascites of OC patients [78,79]. Compared to CTCs
and ctDNA, EVs have the advantage of being more abundant, stable, and accessible [79].
In fact, exosomes can be used as biomarkers for the early diagnosis of cancer and follow-
up monitoring. Furthermore, exosomes and their cargoes were found to play a crucial
role in disease progression and potentially facilitate chemo-resistance in OC, influencing
prognosis. As a result, soluble E-cadherin is highly expressed in the ascitic fluid of women
with OC, released in the form of exosomes. It is a potent inducer of angiogenesis and
results in a poor prognosis [80]. E-cadherin could be a future therapeutic target, given
the availability of E-cadherin (human) monoclonal antibodies. However, the literature
evidence on this treatment is still missing. In addition, Peng et al. suggested that exosomes
play a role in influencing the immune system; these vesicles, containing heat shock proteins,
major histocompatibility complex class I molecule (MHC-I), and Cluster of Differentiation
81 (CD81), could compromise the cytotoxic activity of peripheral blood mononuclear
cells, in the presence of dendritic cells [81]. Finally, EVs might be useful in assessing
responses to therapy in OC patients. The evidence showed that patients with a good
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response to treatment develop substantial changes in their level of exosomes (with TGF-β1
and MAGE3/6) after chemotherapy in comparison to patients who did not respond [82].
Although these results show that EVs can play a role in approaching OC patients, the
need for fully validated tests (such as Flow Cytometry, Nanoparticle Tracking Analysis, or
Electron Microscopy) represents the major limit to their application in clinical practice [83].
Most data related to exosomes and OC derive from exosomal miRNAs and are discussed
in the relevant sections.

3.3. Epigenetic and Genetic Biomarkers

Overall, cancer development and progression are the results of the accumulation of
genetic and epigenetic alterations [84].

3.3.1. Epigenetic Alteration Markers

Epigenetics refers to the alteration of gene expression without any modification to
the DNA sequence of the gene itself. This phenomenon is involved in cancer initia-
tion, progression, and eventual resolution. Specifically, epigenetic modifications refer to
post-transcriptional gene regulation by miRNAs, DNA methylation, and histone post-
translational modifications.

MicroRNAs

MiRNAs are short (18–25 nucleotides) non-coding fragments of RNA that bind to and
inhibit mRNAs (messenger RNAs). They play a role in cancer development and progres-
sion. They can regulate gene expression post-transcriptionally and function as oncogenes
or tumor-suppressor genes. Moreover, miRNAs can down-regulate multiple mRNAs and
subsequent proteins that are pivotal for drug response, causing platinum resistance. There-
fore, inhibiting specific miRNAs may lead to overcoming this condition [85,86]. In addition,
miRNAs may also be used as biomarkers for predicting the response to chemotherapy,
with the aim of enhancing therapeutic effect and reducing treatment toxicity [87–89].

In epithelial OC patients, circulating miRNAs were detected in the serum/plasma
(miR-21, miR-141, miR-200a, miR-200b, miR-200c, miR-203, miR-205, miR-214) [90] and
in a variety of body fluids, such as urine (miR-30-5p) [91] and ascites (mIR-21, miR-23b,
miR-29a) [92]. miRNAs seem to display remarkable stability, despite the presence of RNase
in circulation. Indeed, they are protected by membrane-enclosed vesicles such as exosomes
and microvesicles, or bound to a carrier protein or lipids (i.e., Argonaute2 and High-Density
Lipoprotein) [93–96].

Several circulating miRNAs are thought to provide useful information for an early di-
agnosis of OC [97–102]. They have also been associated with the prognosis of EOC [103–105]
and may predict therapeutic response. Actually, despite several studies focused on the
effects of tissue miRNAs in modulating the OC cell’s sensitivity to chemotherapeutic agents
(e.g., cisplatin, paclitaxel), data relating to circulating ones are scarce, particularly in PtR
OC. The most relevant evidence about the potential use of miRNA in approaching PtR OC
is summarized in Table 4 [106,107].

Table 4. Most relevant evidence about the potential value of miRNA in PtR OC.

Author, Year Material and Methods Results Conclusions

Benson EA.
2015
[106]

• 14 pts with PtR ROC
• Evaluation of plasma miRNAs in

predicting the response to carboplatin
and decitabine

• 10 miRNAs changed in
concentration at the end of the
first cycle of treatment (ranging
from 2.9 to 4, p < 0.05) and were
associated with response.

• Lower concentrations
miR-148b-5p predicted worse PFS
(p = 0.015).

miRNA analysis
predicts the response
to chemotherapy and
prognosis.
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Table 4. Cont.

Author, Year Material and Methods Results Conclusions

Vigneron N.
2020
[107]

• 35 pts with ROC (16.9% PtR)
• Evaluation of miR-622 levels at relapse
• Classification according to Levels: >0.34

zmol/mL vs. <0.34 zmol/mL

OS miRNA > 0.34 zmol/mL vs. <0.34
zmol/mL:
7.9 months vs. 20.6 months, HR 3.15,
p = 0.006

miRNA analysis
predicts prognosis

Abbreviations: miRNA micro Ribonucleic Acid, OS Overall Survival, PFS Progression-Free Survival, PtR Platinum-Resistant, Pts Patients,
ROC Recurrent Ovarian Cancer.

All in all, circulating miRNA in PtR OC showed a high predictive value, but data are
too limited. Moreover, another drawback is the high cost and limited availability of the test
that allows the measurement of miRNA concentration in serum/plasma.

DNA Methylation

DNA methylation catalyzed by DNA methyltransferases (DNMT) regulates the genes’
expression, transferring methyl-groups (CH3-) from the S-adenosylmethionine (SAM,
methyl donor) to the nucleotide cytosine followed by a guanine (the so-called CpG
site) [108]. Aberrant DNA methylation (in excess or in default) leads to chromosome
instability and changes in gene expression and correlates to the development and progres-
sion of cancer. For 20 years, it has been evident that cancer-related DNA methylations are
chemically and biologically stable in blood and can be detected in the serum/plasma of
patients. Additionally, DNA methylation analysis has the advantage of not requiring a scan
of the whole gene but can rather be focused directly on the CpG sites [108–110]. It has been
shown that several tumor suppressor genes involved in OC are hyper- or hypomethylated.
This phenomenon was observed in all pathological grades and stages [110]. As the methy-
lation can be detected in a blood test at the time of primary diagnosis or relapse, it could
possibly give information about a response to platinum-based medication and prognosis.
Evidence about the value of methylation in OC are summarized in Table 5 [109–114].

Some of the most relevant genes involved in platinum-resistance in OC include
Phosphatase and Tensin Homolog (PTEN), Regulator of G Protein Signaling 2 (RGS2),
Family with Sequence Similarity 83 member A (FAM83A), Myosin XVIIIB (MYO18B),
which are hypermetylation [115,116] and Msh Homeobox 1 (MSX1) and Transmembrane
Protein 88 gene (TMEM88) with hypomethylation [117,118].

Table 5. Most relevant evidence about the value of methylation alteration in OC.

Author, Year Material and Methods Results Conclusions

Losi L.
2018
[111]

• 102 OC vs. 17 normal ovarian samples
• Analysis of promoter regions of 41

genes
• DNA methylation profiling through the

MLM

% of hypermethylated promoter genes:

• In normal ovarian tissues: 29%
• In serous, endometrioid, and

mucinous carcinomas: 32%, 34%,
and 45%, respectively.

OC is characterized by
a slight increase of
hypermethylation

De Caceres II.
2004
[110]

• 50 pts with new diagnosed OC or PPC
(Stage I-IV) vs. 40 healthy women
(control group)

• Specimens/serum/peritoneal fluid
• Sensitive methylation-specific PCR

% of hypermethylated BRCA 1 and/or
RASSF1A:
68% (regardless FIGO stage) vs. 0% in
control group.

Promoter
hypermethylation is a
common and relatively
early event in ovarian
tumorigenesis
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Table 5. Cont.

Author, Year Material and Methods Results Conclusions

Cacan E.
2016
[112]

• Chemo-resistant OC cells vs.
chemo-sensitive OC cells

• Cell-surface staining through primary
labeled antibodies:
phycoerythrin-conjugated OX-40L,
4-1BBL, PD-L1, MHC-I

The expression of positive
co-stimulatory molecules of T cell,
OX-40L and 4-1BBL, is suppressed due
to DNA hypermethylation and histone
deacetylation in chemo-resistant cells
compared to parental chemo-sensitive
OC cells.

Hypermethylation
correlates with
chemo-resistance in
OC

Gifford G.
2004
[113]

• 138 OC pts from SCOTROC1 trial
(paired samples)

• Evaluation of methylation of the
hMLH1 in plasma before the
chemotherapy and at recurrence

• Methylation of hMLH1 is
increased at relapse

• 25% (34 of 138) of relapse samples
have hMLH1 methylation that is
not detected in matched
pre-chemotherapy plasma
samples

• hMLH1 methylation in cfDNA at
relapse correlated with poor
survival: HR 1.83, p 0.017

• Patients with hMLH1 methylation
and PFS < 6 months from last
platinum were more in percentage
than patients without the
epigenetic alteration (45% vs.
39%)

The acquisition of
hMLH1 methylation in
plasma DNA after
chemotherapy predicts
poor survival for
ovarian cancer patients

Teschendorff
AE.
2009
[109]

• 113 OC pts (vs. 148 healthy controls)
• 27,000 CpGs screened

• 2714 cancer-related CpGs were
identified

• 56% of cancer-related CpGs were
hypomethylated

• Amongst the 50 CpGs with the
highest correlation to cancer, as
much as 87% were
hypomethylated.

Hypomethylation is
correlated with OC

Liao P.
2014
[114]

• 168 tissue samples from patients with
OC

• Evaluation of DNA methylation in
OTICs through qRT–PCR, quantitative
methylation-specific PCR, and
pyrosequencing

In case of hypomethylation of ATG4A
and HIST1H2BN in OTICs:

• PFS: HR, 1.8 (1.0–3.6)
• OS: HR, 1.7 (1.0–3.0) [118]

In OTICs,
hypomethylation of
ATG4A and
HIST1H2BN is
associated with poor
prognosis

Abbreviations: ATG4A Autophagy Related 4A Cysteine Peptidase gene, BRCA Breast Cancer gene, cfDNA cell-free DNA, DNA Deoxyri-
bonucleic acid, HIST1H2BN Histone H2B type 1-N, hMLH1 MutL homolog 1, HR Hazard Ratio, MHC-I Major Histocompatibility Complex
Class I, MLM Methylation Ligation-dependent Macroarray, OC Ovarian Cancer, OS Overall Survival, OTICs ovarian tumor-initiating cells,
OX-40L OX40 Ligand, PCR Polymerase Chain Reaction, PD-L1 Programmed cell Death Protein Ligand 1, PFS Progression-Free Survival,
PPC Primary Peritoneal Cancer, Pts patients, RASSF1A Ras Association Domain Family 1 Isoform A, RT-qPCR Real-Time quantitative
Polymerase Chain Reaction, SCOTROC1 Scottish Randomised Trial in Ovarian Cancer 1, 4-1BBL 4-1BB Ligand.

Even if most of these data come from newly diagnosed OC or in vitro, it is reasonable
to assume that the methylation of cfDNA in blood could also serve as a useful marker in
PtR OC. Finally, methylation profiles could also be a target for testing new combination
treatment regimes. Preclinical evidence from different cancers (including OC) showed that
hypomethylating agents can re-sensitize cancer cells to platinum in vitro and in murine
models by restoring tumor-suppressor genes expression (such as RASSF1A, BRCA1, DAPK,
OPCML, and hSulf-1) [119–122].

Hence, several studies have assessed the role of Hypomethylating agents (HMAs)
in PtR OC. First of all, the administration of decitabine in combination with carboplatin
was tested, but the results were contrasting [123–126]. Other authors assessed the role
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of azacitidine, a hypo-methylating agent, in combination with carboplatin for platinum-
resistant HGSOC [127] in a phase Ib-IIa study. In 30 enrolled patients, an Overall Response
rate (ORR) of 13.8% was found (4/29; 95% CI, 10.1–17.5%): 1 clinical complete response
(CR), 3 clinical partial responses (PRs) and 10 stable diseases. The PFS was 5.6 months
and median OS 23 months. Moreover, azacitidine seems to enhance the sensitivity to
platinum in association with a DR4-mediated caspase 8-dependent apoptosis13. Therefore,
a correlative analysis showed that DR4 methylation in peripheral blood leukocytes de-
creased during treatment in 75% of objective responders (3/4), more than in non-responders
(5/13, 38%) [127]. Most recently, a phase II randomized trial compared the combination of
guadecitabine and carboplatin (51 patients) versus treatment of choice (TC topotecan, pegy-
lated liposomal doxorubicin, paclitaxel, or gemcitabine) (49 patients, of which 27 crossed
over to the other arm) in PtR OC. This trial did not show superiority for PFS of the com-
bination versus TC (16.3 weeks vs. 9.1 weeks p 0.07), while the 6-month PFS increased
(37% vs. 11%, P 0.003) [128]. In summary, identifying DNA methylation in the blood of
patients may guide the physician in predicting platinum resistance and, in some cases,
permit restoration of the sensitivity to this agent. Thus, it is a promising area but nowadays
limited in clinical practice.

Histone Modifications and Involved Enzymes

Histones are small basic proteins bound to DNA in eukaryotic cells. Their principal
function is to regulate gene expression and DNA packaging around nucleosomes, the func-
tional units of chromatin. The presence of histones in the bloodstream is a result of tumor
cell death (apoptosis and necrosis) or active release from living cells. Consequently, circu-
lating histones reflect changes in tumor cells, and, therefore, are promising non-invasive
biomarkers in several cancers [129]. In particular, an increasing level of circulating nucleo-
somes/histones has recently been identified in the blood of oncologic patients [130,131],
and a quantitative measurement can be useful in predicting tumor responses to chemother-
apeutic agents in various cancer types [132]. Despite the fact that these data do not refer to
OC, it is likely that the high level of circulating histones has the same correlation with the
diagnosis and prognosis of this disease. Moreover, histones could undergo modifications
by enzymes. These post-translational modifications of histones included phosphorylation,
acetylation, methylation ubiquitylation, glycosylation, SUMOylation, ADP (adenosine
diphosphate)-ribosylation, and carbonylation [133] and were proved to be correlated to
cancer development and its prognosis [134–136]. Particularly in OC, the importance of the
detection of histone in fluids is attributable to the fact that histone-modifying enzymes
have recently been studied as a possible targeted treatment for this disease, especially
Histone Deacetylases (HDACs). Normally, histone acetyltransferases catalyze the transfer
of an acetyl functional group from a donor (e.g., Acetyl CoEnzyme A) to a lysine residue
protruding from the histone of the nucleosome. The acetylation causes the loss of positive
charge on histones and weakens the bonds of DNA components (relaxed structure of chro-
matin). This euchromatin is more accessible to gene transcription enzymes. Conversely,
deacetylation by HDACs leads to the formation of a more condensed DNA (heterochro-
matin), not transcriptionally active. Among HDACs, sirtuins (SIRT) regulate cell cycle
progression, apoptosis, cell senescence, and oxidative stress resistance, leading to tumori-
genesis [137,138]. Given the evidence of a link between SIRT 1 and stemness (cancer stem
cells), SIRT1 is considered to be associated with recurrence and drug resistance. Indeed,
SIRT1 was proved to significantly enhance the proliferation (p < 0.05), chemo-resistance
(p < 0.05), and aggressiveness of OC cells [139]. Thus, research on SIRT1 is important for
developing novel treatment strategies as an adjuvant to conventional therapies to over-
come drug resistance [140]. Among current HDAC inhibitors, suberoylanilide hydroxamic
acid, valproic acid, and romidepsin have been tested in ovarian cancer as single agents
or in combination with other drugs. The use of therapy targeting modified histones and
the enzymes regulating them is quite promising in ovarian cancer [141–144]. However,
nowadays, robust clinical trials are unavailable, making it difficult to ascertain whether this
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treatment offers beneficial clinical outcomes with tolerated side-effect profiles. Moreover,
whether these drugs will be more efficacious as single agents or in combination remains to
be determined. Consequently, it is still premature to argue that histone modifications can
be used as circulating biomarkers in OC and further evidences are necessary.

3.3.2. Genetic Alteration Markers
TP53 Mutations

The p53 is a nuclear protein that acts as a transcriptional regulator involved in multiple
cellular processes. This protein is encoded by the tumor suppressor gene TP53, located
on chromosome 17 [145]. p53 can activate DNA repair proteins when the DNA has
sustained damage: indeed, p53 leads to the arrest of cell growth by holding the cell
cycle at the G1/S transition. In this way, DNA repair is allowed, and cell death occurs
if DNA damage is irreparable. Given its essential role, p53 is frequently mutated in
cancer. Regarding OC, pathogenic TP53 mutations have been identified in more than 99%
of HGSOC cases [146,147], and approximately 80% of them are missense mutations, in
which a single nucleotide is substituted by another [148]. Most of these mutations result
in loss of p53 suppressive activities (loss-of-function) [149]. Nevertheless, mutant p53
proteins were additionally proved to be able to gain oncogenic functions that provide
cells with growth and survival abilities (gain-of-function) [150,151]. The presence of
TP53 mutations can be detected by finding anti-p53 antibodies in the bloodstream due to
the humoral response associated mainly with missense mutations and accumulation of
mutant protein in the tumor [152,153]. The immunoglobulins are supposed to be a useful
marker at the diagnosis of ovarian cancer [154], while their prognostic significance is still
unclear [155–157]. Moreover, TP53 mutations can be detected in ctDNA from patients
with advanced HGSOC. Some data underlined the diagnostic value of TP53 mutations
in serum ctDNA that can be detected at baseline, which are not present in cfDNA after
chemotherapy, and which re-appeared at the development of relapse [158]. Regarding
other functions, a retrospective analysis demonstrated that TP53 mutations in ctDNA
correlate to prognosis (time-to-progression TTP) and play a role in monitoring the response
to chemotherapy with more efficacy than CA125. As a matter of fact, in recurrent disease,
TTP was significantly longer in cases of low pre-treatment levels of TP53 mutant allele
fraction (below the median level) as opposed than high levels (above the median) (p = 0.001,
168 vs. 245 days, HR 0.33 95% CI 0.17–0.64). Moreover, a decrease in TP53MAF of >60%
after the first cycle of chemotherapy was proven to be an independent predictor of TTP in
multivariable analysis (HR 0.22, 95% CI 0.07–0.67, p = 0.008), while a decrease <60% was
associated with poor response and worse TTP (median TTP 76 days vs. 229 days, p = 0.001,
HR 0.08, 95% CI 0.02–0.34) [159].

Homologous Recombination and BRCA Genes

Homologous recombination is responsible for the repair of DNA double-strand breaks
that occur in case of damaging insults (such as ionizing radiation and chemotherapy) [160].
In the last decade, it has been demonstrated that approximately 50% of HGSOCs have
a homologous recombination deficiency (HRD) [161], caused by the mutation of several
genes, especially Breast Cancer susceptibility gene 1 and gene 2 (BRCA 1 and BRCA
2) mutation (somatic or germinal). The frequency and modalities of detection of these
alterations in HGSOC are summarized in Figure 4 [161].
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ated with a higher sensitivity to platinum drugs, precisely because the main target of plat-
inum compounds is DNA [167–172]. Thus, in recurrent OC with PFI < 6 months, more 
patients with BRCA mutations were proven to have a response to re-treatment with plat-
inum-based chemotherapy in comparison to wild-type ones (80% vs. 43.6%). The same 
occurred in case of non-platinum regimen (42.8% vs. 16.1%, p = 0.001) [173]. Finally, the 
BRCA status might be a predictor of response to other agents, such as Poly (ADP-ribose) 
polymerase inhibitor (PARPis) (predictive role). Indeed, PARPis prevent the mechanism 
of single-strand DNA repair and lead to synthetic lethality in HRD or BRCA carriers. More 
recent evidence shows that the detection of mutations has been considered the only pos-
sibility for targeted maintenance therapy with PARPis after a response to platinum ther-
apy in newly diagnosed or recurrence settings. However, nowadays, it is clear that 
PARPis are also active in wild-type populations, especially if HRD is positive [174–176]. 
However, in the USA, the germline BRCA mutation is still needed for the administration 
of olaparib in monotherapy in recurrent ovarian cancer, regardless of platinum sensitivity, 
based on results of Study 42 [177]. As a result, currently, the BRCA test (germinal on the 
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Despite the platinum sensitivity associated with BRCA mutation, reversion muta-
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HRD and BRCA status is fundamental for patient framing and counseling. First of all,
HRD and BRCA mutation could predict prognosis (prognostic value). Several studies re-
ported a longer OS and PFS in BRCA positive patients as opposed to non-carriers [162–166],
probably due to a higher platinum sensitivity. In fact, preclinical evidence showed that
the deficiency of a specific DNA repair pathway (especially HRD itself) was associated
with a higher sensitivity to platinum drugs, precisely because the main target of platinum
compounds is DNA [167–172]. Thus, in recurrent OC with PFI < 6 months, more patients
with BRCA mutations were proven to have a response to re-treatment with platinum-based
chemotherapy in comparison to wild-type ones (80% vs. 43.6%). The same occurred in case
of non-platinum regimen (42.8% vs. 16.1%, p = 0.001) [173]. Finally, the BRCA status might
be a predictor of response to other agents, such as Poly (ADP-ribose) polymerase inhibitor
(PARPis) (predictive role). Indeed, PARPis prevent the mechanism of single-strand DNA
repair and lead to synthetic lethality in HRD or BRCA carriers. More recent evidence
shows that the detection of mutations has been considered the only possibility for targeted
maintenance therapy with PARPis after a response to platinum therapy in newly diag-
nosed or recurrence settings. However, nowadays, it is clear that PARPis are also active in
wild-type populations, especially if HRD is positive [174–176]. However, in the USA, the
germline BRCA mutation is still needed for the administration of olaparib in monotherapy
in recurrent ovarian cancer, regardless of platinum sensitivity, based on results of Study
42 [177]. As a result, currently, the BRCA test (germinal on the bloodstream and/or somatic
on tissue sample) is part of clinical practice. The BRCA status is surely an easily available
prognostic and predictive biomarker, also in PtR OC.

Despite the platinum sensitivity associated with BRCA mutation, reversion muta-
tions in tumor cells (somatic base substitutions or insertions/deletions) that restore the
open reading frame (ORF) of the primary germline BRCA1 or BRCA2 mutation can oc-



Int. J. Mol. Sci. 2021, 22, 13650 15 of 28

cur, resulting in a functional protein and a proficient homologous recombination DNA
repair [178–180]. Hence, knowledge of the presence of these alterations in cancer cells is a
very useful tool for the identification of patients with BRCA mutation who will not respond
to platinum, avoiding unsuccessful treatment.

Even if tumor biopsy is currently the only way to detect somatic mutation, the analysis
of cfDNA could be a future winning strategy to obtain this information through a blood
sample [181–183]. Data of BRCA reversion mutations in cfDNA from patients with other
tumors are present in literature [184]. Regarding OC, some authors demonstrated the
possibility of detection of reversion mutations in BRCA mutated PtR ROC, with a high
concordance to tissue samples (79%) [49,185]. Moreover, BRCA reversion mutations were
identified in cfDNA particularly in platinum-refractory and –resistant patients, compared
with platinum-sensitive ones (18% and 13% vs. 2%, respectively, p = 0.049) [186].

Currently, BRCA 1 and BRCA 2 mutations are searched in OC patients in clinical
practice. However, the development and the spread of tests that determine HRD status can
provide further information and permit a more personalized approach.

3.4. Angiogenic Biomarkers

Angiogenesis is a process characterized by the generation of new blood vessels from
pre-existing ones and plays a role in the development, growth, and metastatic spread of
solid cancers. The angiogenesis is regulated by multiple mechanisms involving growth
factors. Among them, the most studied one is the VEGF, which plays an essential role
in many tumor types [187–190]. VEGF is secreted by cancer cells, especially in case of
hypoxia and scarcity of nutrients [191,192]. VEGF promotes angiogenesis binding to its
tyrosine kinase receptors (VEGFR) expressed in endothelial cells. A meta-analysis of
data regarding newly diagnosed OC revealed that high levels of soluble VEGF (sVEGF)
identified a subgroup of patients with a higher risk of death and/or recurrence since,
at multivariate analysis, sVEGF was proved to be an independent prognostic factor for
OS and PFS [193]. However, this predictive potential of serum levels of sVEGF was not
confirmed in ROC [194]. In addition, the role of VEGF in predicting response to platinum
first-line therapy was investigated. No differences in sVEGF levels were detected in patients
with platinum-sensitive and -resistant disease at baseline (p = 0.058) and during upfront
treatment (at third and sixth cycle, p = 0.09). Moreover, in this population, haplotypes
were also studied, and the multivariate analysis showed that PFS in the case of AGCGC
haplotype was significantly improved compared to patients with other ones (HR 1.9,
p = 0.036). However, no significant associations were found between haplotypes and
platinum resistance (p = 0.30) [195]. In contrast, in recurrent platinum-resistant OC, it
was found that a rapid decrease in serum VEGF-A levels (>50%) after treatment with
bevacizumab and gemcitabine was associated with worse RR (0% vs.75%, p < 0.01), clinical
benefit (60% vs.100%, p = 0.02) and survival (PFS 7 vs. 10 months, p < 0.01; OS 17 vs.
26 months, p = 0.04). Moreover, the median serum VEGF-A level before the first cycle was
higher in the group with a rapid decrease of VEGF-A (61.2 vs. 3.7 pg/mL, p < 0.01) [196].

Moreover, other authors tested the efficacy of bevacizumab in multi-resistant disease,
and, at the same time, levels of VEGF were assessed prior to each cycle. On the whole,
the results of drug activity were positive (the overall response rate was 30% according to
CA 125. Median PFS 5.9 months (95% CI, 3.5–9.4), median OS 8.6 months (95% CI, 6.6–12.8).
Baseline high levels of VEGF (above the median) appeared to be predictive of no response
to bevacizumab (responders were 60% of patients with low VEGF and 0% of those with
high-level p = 0.0007). In accordance, higher VEGF levels resulted in a worse PFS and OS in
respect to VEGF below the median (PFS 3.5 months vs. 10 months, p = 0.047; OS 5.7 months
vs. not reached, 1-year OS 22% vs. 68%, p = 0.01). Furthermore, in this setting of patients,
VEGF and VEGFR1 gene polymorphisms did not reveal any association with response rate
or survival [197].
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3.5. Immune-Related Biomarkers

Cancer-associated inflammation plays a determinant role in tumor-initiating, prolif-
eration, and survival of malignant cells. Moreover, its correlation with the outcome of
patients affected by different types of malignancies, including ovarian cancer, has recently
been observed.

Cytokine and chemokine signaling pathways are involved in OC progression and in
response to chemotherapy. Circulating cytokines and several other inflammatory biomark-
ers have been investigated as prognostic factors in OC patients. Most relevant evidence
regarding the value of the neutrophil-lymphocyte ratio (NLR) and platelet-lymphocyte
ratio (PLR) with a possible role in PtR OC patients is summarized in Table 6 [198–200].

Table 6. Most relevant evidence about the potential role of PLR and NLR in PtR OC.

Author, Year Material and Methods Results Conclusions

Zhu Y.
2018
[198]

• 2919 pts with OC (meta-analysis) *
• Correlation between level of PLR and

NLR > cut off and survival

PLR > cut off
- OS: metaHR 2.53 (2.16–2.96)
- PFS: metaHR 2.48, (2.10–2.96)
NLR > cut off
- OS: metaHR 2.21 (1.95–2.52)
- PFS: metaHR 1.36 (1.17–1.57)

Higher value of PLR
and NLR are
associated with worse
ovarian cancer
survival

Miao Y.
2016
[199]

• 344 pts with OC (28% PtR) *
• (216 serous OC)
• Evaluation of NLR and PLR

Predictive values for platinum
resistance:
- PLR > 207: SN 60.42%, SP 85.48%,
p < 0.001
- NLR > 3.02: SN 75%, SP 81.45%,
p < 0.001

Assessment of NLR
and PLR has potential
clinical value in
predicting platinum
resistance in patients
with EOC

Kim HS.
2016
[200]

109 pts with CCOC (18.3% PtR)

PLR ≥ 205.4 predicted non-CR
(accuracy, 71.6%)
Predictive values for platinum
resistance:
- NLR ≥ 2.8: SN 68.4%, SP 65.1%,
p < 0.01
- PLR ≥ 178.3: SN 68.4, SP 55.4%,
p = 0.02

NLR and PLR value
correlate with
platinum resistance in
patients with CCOC

* The meta-analysis also includes 344 OC pts from Miao Y et al., 2016 [199]. Abbreviations: CCOC Clear Cell Ovarian Cancer, CR Complete
response, EOC Epithelial Ovarian Cancer, HR Hazard Ratio, NLR Neutrophil-Lymphocyte Ratio, OC Ovarian Cancer, OS Overall Survival,
PFS Progression-Free Survival, PLR Platelet-Lymphocyte Ratio, PtR Platinum resistant, Pts Patients, SN Sensitivity, SP Specificity.

Even if not all these data referred to PtR patients, it is conceivable that a possible
prognostic [198] and predictive value [199,200] of PLR and NLR is also applicable in this
setting of disease. Fibrinogen also seems to be able to predict the response to chemotherapy.
Data from a retrospective study has shown that high plasma fibrinogen levels, combined
with NLR, could be predictive of platinum resistance (p = 0.02) and shortened PFS (p = 0.02)
in OC patients [201]. These inflammatory biomarkers, such as NLR and PLR, would be able
to predict prognosis and chemotherapeutic efficacy due to their ability to reflect systemic
inflammation and organ dysfunction. High NLR levels might indirectly indicate poor
lymphocyte-mediated immune response against cancer. Moreover, neutrophils seem to
accelerate tumor progression by transforming growth factor β (TGF-β) pathways. On the
other hand, platelets produce various types of cytokines, including vascular endothelial
growth factor (VEGF), an important factor for tumor angiogenesis. All these factors are
involved in poor prognoses.

The assessment of these parameters is simple and economically viable. However, to
date, an important limit arises in the form of the cut-off value of these biomarkers, which
has not been universally established but is instead chosen arbitrarily. These differences in
cut-off values cause difficulties in terms of using them in clinical practice. The involvement
of the immune system in cancer development is also the foundation of the success of
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immunotherapy in treating some neoplasms. Actually, in OC the role of immunotherapy
is still uncertain, and results from immunotherapeutic agents administered alone are not
as positive as expected, and nowadays, the use of immunotherapeutic drugs in OC is
limited to clinical trials. Since few and ineffective chemotherapeutic agents are currently
available for PtR OC, immunotherapeutic drugs, especially in combination with other
agents [202–207], could represent a future successful strategy and change the prognosis
of affected women. Consequently, the main challenge regarding the identification of
populations that could benefit more from this approach and biomarkers that predict the
response to this treatment deserves a separate discussion.

Currently, available immunotherapy agents are monoclonal antibodies targeting pro-
grammed cell death protein (PD-1), programmed cell death protein ligand 1 (PD-L1),
and cytotoxic T-lymphocyte antigen 4 (CTLA-4), which act as immune checkpoint in-
hibitors (ICIs) [208,209]. Among biomarkers predicting response to ICIs, the main ones
are intratumor PD-L1/PD-1/CTLA-4 expression, density of TILs, tumor mismatch-repair
(MMR) deficiency. In clinical practice, most of them are obtained from tumor samples.
Some authors evaluated the function of circulating T-cell [210,211] and B-cells [212] in OC,
showing a correlation between the activation of the immunologic system and response to
chemotherapy and vice-versa. These results led the same authors to sustain that the re-
sponse to chemotherapy, and resulting high levels of circulating lymphocytes, may provide
an opportunity for the success of subsequent immunotherapy. In addition, PD-1 and PD-L1
also have soluble forms (sPD-1 and sPD-L1) in the serum. Their levels seem to correlate
with response to immunotherapy and survival in several types of malignancies [213], but
data are conflicting. Interestingly, despite HRD/BRCA-mutated OCs displaying higher
levels of genetic instability, potentially resulting in higher immunogenicity, HRD and
BRCA mutations failed to be associated with a better response to ICIs, while the fraction
of genome altered (FGA) should be investigated further as a biomarker of response to
immunotherapy in OC [214].

Some studies suggest that low levels of sPD-L1 may correlate with longer survival
in patients with non -small cell lung cancer, multiple myeloma, renal cell carcinoma [213].
Conversely, it has been reported that in melanoma patients treated with ICIs an increase
in sPD-L1 was associated with PRs [215]. To date, the reasons for this dual effect remain
unknown. Other blood parameters examined to predict the response to immunotherapy in
malignancies are serum lactate dehydrogenase (LDH), NLR, absolute neutrophil counts
(ANC), absolute lymphocyte counts (ALC), absolute monocyte counts (AMC), absolute
eosinophil count (AEC). However, also in these cases, data in OC is scarce.

Regarding new immunotherapeutic strategies that differ from ICIs, some authors
evaluated the role of immune system status in patients treated with abagovomab (high
affinity murine monoclonal antibody specific for CA125) after CR to primary surgery and
platinum- and taxane-based chemotherapy. They found that higher levels of IFN-γ produc-
ing CD8+T cells were associated with a better Relapse Free Survival (RFS) than those with
fewer IFN-γ producing CD8+T cells (p < 0.05) [216]. Moreover, it was demonstrated that
the efficacy of oregovomab (another anti CA125 antibody) correlated to a less suppressive
immune environment before treatment and a low number of circulating myeloid-derived
suppressor cells, subset type 4 (MDSC4), and low neutrophil-and-monocyte to lymphocyte
ratio (NMLR) were significantly associated to RFS (MDSC 4: p = 0.012, NMLR p = 0.0014).
NMLR was related also with OS (p = 0.048) [217]. Although these data do not come from
PtR OC, the same results can be expected in this patient setting.

4. Conclusions and Future Directions

Circulating biomarkers could help gynecologist oncologists deal with recurrent OC
after a short PFI, and their investigation is a promising and growing field. In clinical
practice, most of the information can be obtained from the immunohistochemical study of
the tissue; however, circulating biomarkers have the advantage of a non-invasive collection,
thus being easily executable and repeatable.
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Currently, the biomarkers routinely used in clinical practice in OC patients are CA125,
HE4, and BRCA/HRD assessment. However, these are not completely satisfying in guiding
clinical management, and greater efforts are needed to provide new useful tools. Potential
circulating biomarkers addressed in this review and their value are summarized in Table 7.

Table 7. Circulating biomarkers in PtR OC, their potential role and limits.

Diagnostic Value Prognostic Value Predictive Value Currently Used in
Clinical Practice Limits

Glicoprotein
markers Low specificity

ctDNA
High fragmentation, low

stability, and low
quantity in bloodstream

CTCs

Controversial data,
scarcity in the
bloodstream.

Short half-life after
blood draw

EVs Need of clinically
validated test

Micro RNAs High cost and scarce
availability of the test

DNA
methilation Less sensitive test

Histone
modification

Need of further
investigation about
treatment efficacy

TP53 (Ab
and ctDNA) Scarce data from PtR OC

BRCA
(somatic and

germinal)
Reversion mutation

Immune
related

biomarkers

Low specificity, not
universally established
cut off, scarce data from

PtR OC

Angiogenic
markers

Scarce and controversial
data

Abbreviations: Ab Antibodies, BRCA Breast Cancer gene, CTCs Circulating Tumor Cells, ctDNA Circulating Tumor DNA, EVs Extracellular
Vesicles, OC Ovarian Cancer, PtR Platinum-Resistant.

Certainly, the most relevant value is the prediction of the treatment efficacy, as these
biomarkers could potentially predict the response to platinum and other agents. Moreover,
several biomarkers represent targets for available drugs and thus could identify patients
who benefit most from a personalized approach. Indeed, using circulating biomarkers
and liquid biopsy in PtR OC ideally allows assessing the instantaneous molecular, genetic
and epigenetic profile of cancer cells selected as platinum-resistant clones from previous
therapies. This information is fundamental in the precision medicine era, in which new
biological and targeted therapies are being discovered continuously, especially in case of
limited treatment options such as for PtR OC patients. Finally, circulating biomarkers could
be non-invasive tools able to evaluate the response to ongoing treatments, thus rapidly
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guiding the medical choice for eventual further chemotherapy cycles or the need to change
treatment strategy.

Regarding the prognostic role, some biomarkers aid in counseling patients due to
their association with a major risk of recurrence or death, regardless of treatment response.
However, an exhaustive prognostic biomarker has not yet been identified. The prognosis is
the result of several factors, depending on the biology of cancer (histotype and grading of
differentiation), disease spread, patient characteristics (performance status, age, and comor-
bidity), and treatment received (optimal surgical cytoreduction, response to chemotherapy).
Besides, as biomarkers can also complement each other, using a single biomarker to pre-
dict prognosis could be highly limiting. Furthermore, the lack of standardized detection
methods, the scarce accessibility in the territory, the high costs, and the uncertainty about
cut-off levels could hinder the use of circulating biomarkers in routine clinical practice.

In conclusion, in the future, circulating biomarkers could represent the verge of
a breakthrough in approaching PtR OC, influencing treatment decisions due to their
characteristic of detecting the heterogeneity of this disease in different phases. However,
the validation of circulating biomarkers is challenging, and further studies are required to
overcome their limits. Translational analysis of wide clinical trials and prospective studies
will pave the way for promoting implementation in clinical routines.
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