Computational and Structural Biotechnology Journal 23 (2024) 2949-2962

ELSEVIER

Contents lists available at ScienceDirect
Computational and Structural Biotechnology Journal

journal homepage: www.elsevier.com/locate/csbj

Review article

L)

Check for

Systematic data analysis pipeline for quantitative morphological o

cell phenotyping

a,b,*

Farzan Ghanegolmohammadi

, Mohammad Eslami ©, Yoshikazu Ohya "

@ Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Y Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
¢ Harvard Ophthalmology AI Lab, Schepen’s Eye Research Institute of Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, USA

ARTICLE INFO ABSTRACT

Keywords:

Morphological profile
Image-based cell profiling
Cell morphology
High-content imaging

Quantitative morphological phenotyping (QMP) is an image-based method used to capture morphological fea-
tures at both the cellular and population level. Its interdisciplinary nature, spanning from data collection to result
analysis and interpretation, can lead to uncertainties, particularly among those new to this actively growing field.
High analytical specificity for a typical QMP is achieved through sophisticated approaches that can leverage
subtle cellular morphological changes. Here, we outline a systematic workflow to refine the QMP methodology.

For a practical review, we describe the main steps of a typical QMP; in each step, we discuss the available
methods, their applications, advantages, and disadvantages, along with the R functions and packages for easy
implementation. This review does not cover theoretical backgrounds, but provides several references for inter-
ested researchers. It aims to broaden the horizons for future phenome studies and demonstrate how to exploit
years of endeavors to achieve more with less.

1. Introduction

Phenotypic diversity involves variations in molecular aspects (e.g,
proteome, transcriptome, and metabolome), cellular characteristics (e.
g, cell morphology), fitness metrics (e.g., growth rate, colony size, and
yield of biomass), and visible features (e.g., colony morphology and
invasive growth) of a cell population. Morphology defines the basic
phenotypic characteristic of both unicellular and multicellular organ-
isms. The effects of genetic or environmental perturbations result in
diverse morphological phenotypes through natural selection [110,54,
56]. Investigating this diversity enables direct observation of the cellular
processes to answer various biological questions. In multicellular or-
ganisms, cell morphology reflects cell behaviors and intracellular com-
munications [96,155]. In unicellular organisms, like Saccharomyces
cerevisiae, morphology dynamically changes in response to life-cycle
events (e.g., cell cycle progression), stressors, genotype, and genetic
networks and has been used to gain a global understanding of cell sys-
tems [154].

Imaging platforms are employed for morphological studies,
including 1) phenotypic screening (a targeted method for quantifying a
single process or cellular function), such as studying variations in cell

size due to genetic or environmental perturbations, and 2) phenotypic
profiling (an unbiased approach that quantifies as many features as
possible). The latter is also known as quantitative morphological phe-
notyping (QMP). Due to its inclusive nature, QMP has played a signifi-
cant role in opening new frontiers in biology (Supplementary Table 1).
The amount of biological information captured by a typical QMP
experiment is comparable with that of other high-throughput methods
[78]. However, mapping variations in morphology related to specific
phenotypes is not a straightforward task due to their complexity [71],
and the intricate interactions among different biological domains [79,
165]. Consequently, there is a demand for efficient data collection and
analytical strategies. It is essential to define a proper methodological
pipeline to complement the available conventional choices. This in-
cludes preprocessing, statistical modeling, and follow-up analysis (e.g.,
clustering and classification) to obtain accurate results. A clear pipeline
can also eliminate unnecessary duplication of efforts across different
groups and organizations.

To support biologists in constructing a typical QMP pipeline, we
illustrate a comprehensive QMP workflow to transform quantified
morphological data into biologically meaningful insights. The workflow
includes: 1) image analysis, 2) data modeling, 3) knowledge extraction,
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4) sharing, and 5) transformative knowledge exploration (Fig. 1). For
each step, we documented the importance and applicability, various
computational methods, often overlooked challenges, and relevant R
functions and packages. Each step included a set of examples to further
demonstrate QMP applications for addressing various biological ques-
tions, and readers are encouraged to review the cited publication(s) and
references, vignettes in Supplementary Tables, and the R book [25] for
further information and practical examples. It is important to note that
before QMP initiation, well-designed experiments followed by proper
sample preparation and image acquisition are required [73]. While this
review does not cover them, these upstream steps are crucial for laying
the foundation of a successful QMP.

2. Step 1: Image analysis

To generate reproducible results, high-quality assays and appro-
priate imaging techniques are vital as the initial steps of a QMP exper-
iment. These conditions minimize artifacts and save time for further
analysis, but are not always met. Thus, a typical QMP begins with
checking the quality of the captured images (Step 1-1), followed by
extracting morphological information from high-quality images using
computer vision techniques (Step 1-2). This data lays the foundation for
successful data analysis subsequently.

2.1. Step 1-1: Image quality assessment

Errors during sample preparation (e.g., human errors, uncalibrated
instruments, etc.) and image acquisition (e.g., improper focusing) can
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introduce artificial variations into the data. Therefore, image analysis
must include an objective image assessment step to filter out unwanted
data and low-quality images [178].

Manual verification of image quality in a large number of images
from high-throughput experiments is not feasible. Thus, a systematic
approach is required to objectively flag or remove artifacts and noise,
such as non-uniform light source or shady edges. Several methods have
been proposed for image preprocessing (Supplementary Table 2).
However, as a general rule, it is highly recommended to apply various
methods to increase the likelihood of artifact identification. In our
experience, inevitable situations, such as changing fluorescence filters,
which might affect data modality (Step 2-3: Modality), can be added as
confounders to the statistical model to avoid possible misleading
inferences.

2.2. Step 1-2: Quantifying cell morphology

Quantifying cell morphology involves two sub-steps. First, segmen-
tation involves partitioning cell boundaries and subcellular structures
(Fig. 2a and Supplementary Table 3). This is usually performed by
manually optimized algorithms or trained classifiers. The former typi-
cally requires human intervention and has limited application, partic-
ularly in high-throughput experiments [100]. A trained classifier is
mainly preferable in large-scale experiments; however, classifiers are as
good as their training set and their applications are limited in the
absence of a standard training set (Supporting Text). A global segmen-
tation algorithm [18] or foundation models could be used to address this
problem, but are beyond the scope of this review.

sz
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Fig. 1. Quantitative morphological phenotyping (QMP) workflow. This figure illustrates the main steps of a typical QMP process. As depicted, each step represents a
broad spectrum of analytical methods and diverse approaches designed to accommodate the varying conditions in each study. Additional details are provided in

Supplementary Tables 2-15.
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Fig. 2. Segmentation and feature extraction steps of a budding yeast cell. a. The segmentation steps in the CalMorph image analysis tool [114] include three stages of
processing of triple-fluorescent stained cells: the cell region (top), the nucleus (middle), and the actin cytoskeleton (bottom). Different versions of CalMorph (http://
www.yeast.ib.k.u-tokyo.ac.jp/CalMorph/index.html) can extract morphological features at either single-cell level or population level (i.e., arithmetic mean of single
cell data). b. CalMorph extracts 501 morphological features at the cell population level. Further information is provided in the “Image Processing in CalMorph”

section in [35].
The figure has been modified from [35].

Second, feature extraction involves using an image processing tool/
algorithm to extract as many features as possible (Supplementary
Table 4). The extracted morphological measures cover a wide range of
functionality and usability [29,168] particularly if the tool is designed
for a specific goal [e.g., CalMorph for S. cerevisiae [114], Fig. 2b] or as a
multipurpose tool [e.g., CellProfiler for human, fruit fly, worm, or yeast
[149]]. When choosing an image analysis tool, we recommend consid-
ering the aims of the study (i.e., the specific morphological measures one
wants to acquire, such as single-cell data), accessibility, and ease of use.

Tools of any kind typically extract the morphological features of
individual cells, but the output can be at either the single-cell or
population-level (also referred to as image-level or well-level). Single-
cell resolution is commonly employed to capture cell variations and rare
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phenotypes. Population-level measures, on the other hand, are ensemble
averages of single-cell measurements that summarize the typical popu-
lation features. The aggregation procedure varies depending on the aim
and properties of the data. Previously applied strategies include: 1) mean
profiles for normally distributed data [66,114]; however, these profiles
are susceptible to outliers and 2) for non-normally distributed data, al-
ternatives such as the median (or median absolute deviation), the Kol-
mogorov-Smirnov statistic [122], or the Anderson-Darling statistic, could
be employed [17].

Another issue with population profiles is the nonlinear dependency
between the morphological variations (coefficient of variation; CV) and
mean measures in a heterogeneous population, introducing bias into the
analysis. Locally estimated scatterplot smoothing (LOESS) regression
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has been proposed to discriminate changes between variance and mean
phenotypes [81]. As Levy and Siegal [81] suggested, after fitting a
LOESS curve, the residual distance of each point from the regression line
(i.e., observed value — predicted value) represents a measure of variance
controlled for the mean [6,81]. We suggest incorporating these residual
values beside other morphological parameters, such as mean and ratio,
to capture a global view of cell morphology. However, selecting the
optimal smooth span (f) can be challenging. We recommend exploring a
range of spans (f-values: 0.10-0.99) and determining the best-fit model
using a model selection method, such as the Akaike Information Crite-
rion (AIC, Supplementary Table 8).

3. Step 2: data modeling

After data collection, a methodology that balances specificity and
sensitivity must be employed to detect subtle morphological changes.
Additionally, before proceeding to hypothesis testing [51], data wran-
gling and verification of statistical assumptions are necessary
(Supplementary Table 5). We will first detail the specific techniques and
methods used for data wrangling, including approaches to handle out-
liers, missing data, batch effect, and plate-layout effect. Then, we will
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explore methods for verifying statistical assumptions. These preparatory
steps are crucial for ensuring the integrity of our analyses and will be
thoroughly discussed in the following sections to elucidate their impact
on achieving robust and defensible research outcomes. Readers inter-
ested in practical examples of statistical learning and predictive models
are encouraged to consult “An introduction to statistical learning” [34,
63] and “Applied Predictive Modeling” [74]. These books provided
numerous practical examples in R and Python.

3.1. Step 2-1: data quality check

The obtained morphological measures are based on empirical data.
The accuracy of measures and consequently the data quality, signifi-
cantly affect the final results in both enhancing and corrupting the final
conclusion [118,128,3]. Quality control is a critical step that involves
addressing misrecognized and unrecognized morphological features, as
well as correcting for technical and experimental variations or con-
founds (Supplementary Table 6).

Outliers are extraordinary measures acquired from either unusual
phenotypes or errors (Fig. 3a). These extreme values should be managed
with careful techniques and protocols to avoid discarding
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Fig. 3. Assessing the quality of extracted morphological features. a. Example of how outliers can be generated due to misrecognition of neck width in budding yeast
cells by CalMorph. b. Example of using Euclidian distances to detect outliers, as previously described by [152]. Briefly, following Z-transformation, the data were
subjected to PCA [scatter plot: circles represent 109 replicates of haploid wild-type yeast strain, and red square shows means of PC1 and PC2]. Euclidian distances
(see inset formula) were calculated using the first two principal component (PC) scores (bar plot on the right). P-values were estimated by fitting a Gamma dis-
tribution to the Euclidean distances. The false discovery rate was estimated by converting P-values to g-values. c. Schematic illustration depicting the edge effect in a
48-well plate, where unfavorable edge conditions resulted in lower cell counts at the plate’s edges.
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subpopulations exhibiting interesting phenotypes. Otherwise, outliers
might lead to misinterpretation of the results or undermine the analyt-
ical power. To detect outliers, we first recommend using simple strate-
gies including visual presentations (e.g., box plots) and univariate
methods (e.g, 3- or 5-standard deviation rules, Winsorization, and re-
sidual plots). Although these methods are not sufficiently robust, they
can provide a general overview of the data. Alternatively, we assessed
data variability using principal component analysis (PCA) to project the
morphological profile onto lower dimensions [152]. We then use PC
scores to calculate Euclidian distances of each entry (i.e., a replicate in a
population dataset or a cell in a single-cell dataset) from the center of the
PC spaces. Significant deviations from the center of these spaces are
considered outliers (Fig. 3b).

Other approaches include building multivariate statistical models,
such as Hotelling’s T-squared test, distance-based measures [132,134,
84], or training a classifier [24,55]. These methods have been proven
efficient but require greater effort and experience. Perez and Tah [121]
employed a multi-step approach to detect outliers, initially using a
dimensionality reduction (DR) method (t-distributed stochastic
neighbor embedding; t-SNE) to reduce high-dimensional features into a
lower probability density distribution. Subsequently, they applied the
interquartile range method to identify outliers from the density distri-
bution of these features [121].

Missing values arise when the image-processing tool fails to extract
morphological features (Step 1-1), resulting in gaps in the data. These
incomplete values are generally indicated by specific symbols [e.g., NaN;
Not a Number] or a numerical value (e.g., —1). Although missing data
are relatively common in the data collection step, they pose serious
challenges during data analysis. The approach to handling missing
values depends on available logistics, experimental conditions, and the
nature of extracted data. Ideally, the best course of action is to repeat the
experiment, although this is often not feasible. For a small proportion of
observations with missing values, general options include removing
affected cells or using imputation techniques [57,77]. It is important to
note that artificially replacing missing values can reduce data disper-
sion. Therefore, as Caicedo et al. [17] previously recommended, features
with a large proportion of observations having missing values should be
omitted.

Batch effects refer to unexpected technical variations (e.g., different
laboratory conditions or equipment calibrations) that can lead to false
conclusions and misinterpretation of the results. Thus, correcting these
misleading signals is an important step. At the experimental level, po-
tential sources of variations should be identified and removed. However,
achieving this desired uniformity is often challenging.

There are several approaches to mitigate the adverse effects of batch
effects, such as standardization and quantile normalization at the plate
level rather than to the entire screen [11], or canonical correlation
analysis to transform data and maximize the similarity between tech-
nical replicates across experiments [161]. In our labs, we address batch
effects by including sources of variation as confounding factors in the
statistical model [111]. Subsequently, a model selection analysis (such
as likelihood-ratio test) between the null and confounding factor models
determines the goodness of fit. This process is straightforward when
batch effects are known (e.g., using different microscopes for imaging).
However, detecting unknown variability is also essential. Recommended
methods to identify possible batch effects include estimating the dis-
tance from the means of all replicates (Fig. 3b), analyzing class dis-
tinctions [5], and performing correlation analysis among profiles [17,
108]. The latter involves creating heatmaps that illustrate the correla-
tions between all well pairs in an experiment, sorted by repeated ex-
periments. Batch effects can then be detected as patterns of high
correlation that indicate technical artifacts.

Plate-layout effect: Edge effects result from slight environmental dif-
ferences between peripheral and inner wells of a multi-well plate in
high-throughput assays (Fig. 3c), which affect experimental consistency
and demand correction during both sample preparation and data
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analysis steps. For the former, a common correction strategy is to
distribute samples randomly across the plates given the experimental
conditions [89]. At the data analysis level, we primarily suggest a visual
check of the measured variable as a heatmap in the same spatial format
as the plate (Fig. 3c, inset). Objective approaches include two-way
median polish for correcting positional effects [14], 2D polynomial
regression (using the LOESS function) and employing corresponding
residuals to correct spatial biases [129], and building a distance matrix
in a reduced multi-dimensional space [42].

3.2. Step 2-2: probability distribution

A common practice in biology involves comparing a phenotype of
interest with a baseline condition; thus, accurately estimating the true
values from noisy biological measurements is central to quantitative
biological studies. Here, we review core concepts and the most recent
approaches for maximizing insights from data.

Data type. Each data type has specific properties that can be best
described by certain probability distributions (Supplementary Table 7).
Defining the data type is a crucial preliminary step in planning further
analytical approaches such as normalization, statistical inference, etc.
We previously demonstrated [36,113] that morphometric measures
generally fall into five categories (Fig. 4): 1) Basic morphometric fea-
tures of a cell population, such as shapes, intensities, and contexts, are
continuous semi-infinite measures with non-negative values (i.e., 0 < y);
2) Ratios of two related morphological features (e.g., cell axis ratio) are
continuous bounded measures (0 <y < 1); 3) Residual or noise vari-
ables are continuous positive and negative values (—oo <y < +o0). As
mentioned earlier, these values are derived from decoupling variance
and mean phenotypes using methods such as LOESS regression; 4)
Proportions of specific features in the population, such as proportion of
budded cells to all cells, are discrete finite measures (0 <y < 1); and 5)
Single-cell features (e.g., number of actin patches) are discrete infinite
measures with positive values (0 < y). Additionally, Rohban and co-
workers [133] illustrated how fusions of different data types can add
new dimensions to the morphological profile. In their study, incorpo-
rating dispersion and covariance estimates to the population averages
improved the predictive performance in linking mechanism of action of
a compound to gene pathways.

Understanding specific data types is not just a technical detail; it is
fundamental to achieving broader research objectives [8,32]. It also
facilitates the development of more robust models that effectively cap-
ture the complex interactions within biological systems [115]. Rigby
and colleague’ book [131] offers both a theoretical background and
practical examples in R for various data types, detailing appropriate
probability models for each. These can be implemented using the gamlss
package [148].

Probability model selection: Natural variables do not always follow a
normal distribution [113,174,8]. However, the apparent simplicity of
applying normal distribution models often makes them the method of
choice. It is essential to first understand the main characteristics of data
by conducting simple exploratory data analysis, such as plotting (e.g.,
histograms, cumulative distribution curves, and quantile-quantile plots)
or performing normality tests (e.g., Shapiro and Kolmogorov-Smirnov
tests).

Non-normal data are often transformed to achieve approximately
normal distributions through various methods, including square-root
transformation, logarithmic transformation [31], Box-Cox trans-
formation [6], and centering and scaling by the mean and standard
deviation of negative controls [94]. It is necessary to employ and
compare several normalization methods because their performances can
vary significantly. For example, square-root transformations generally
perform better with discrete infinite measures, while arcsine trans-
formations are more suitable for discrete finite measures [9104].

Although normalization is an accepted approach for achieving fairly
accurate repeatability from non-normal data that have been transformed
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Fig. 4. Morphological data at a glimpse. a. The five types of morphological measurements, each with a clear definition and characteristics. Schematic examples of
features defined in yeast cell morphology, along with their associated biological measurements for each data type, are depicted. b. Example histograms for each data
type illustrating the distributions. To increase statistical specificity, models of the probability distributions for each morphological parameter must be determined to
accommodate the statistical model used in a generalized linear model analysis (Supplementary Table 7). The best fit can be determined using a model selection

metric (Supplementary Table 8).
The figure has been modified from [36].

to approximate normal distributions, it may limit the ability to detect
subtle changes. Indeed, true values are best described by appropriate
probability distributions defined according to the data type and its dis-
tribution (Supplementary Table 7).

We recently examined various probability distributions for
morphological measures of budding yeast generated by CalMorph [36].
After testing 33 probability distributions, we determined the best fit
using AIC, considering model complexity, available computation power,
and runtime. We ultimately selected nine distributions that best
matched the experimental error of the morphological features. We then
compared the results with our previous study [114]. The impact of
selecting the appropriate probability models on detecting subtle mor-
phologies was significant, with approximately 1.5 times greater detec-
tion power achieved (Fig. 5a). Further pathway enrichment analysis
revealed that the additional data provided useful biological information
that was previously masked.

3.3. Step 2-3: Modality

In biology, the definition of modality is context-dependent. It
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sometimes refers to mixed populations, while in other instances, it can
indicate various datasets representing different aspects of cellular
biology (e.g., transcriptome, proteome, etc.). In this review, we focused
on the former, where profiling of subpopulations helps identify the full
range of phenotypes within a population (e.g., majority and over- and/or
under-represented). Generally, biological modality enhances our un-
derstanding of dynamic transitions in cellular phenomena [47].

In statistics, modality refers to the number of peaks or modes in a
probability distribution. It reflects the complexity of distribution, where
the possible asymmetry of multimodal distributions can violate as-
sumptions regarding the mean and dispersion [1160]. Therefore, to
estimate true values and achieve more accurate predictions and in-
ferences, simpler statistical approaches are more effective with unim-
odal distributions.

Single-cell level: Cells, even in monoclonal populations, respond to
perturbations in a variety of ways; thus, cell populations are usually
multimodal or heterogeneous [1145,146,84]. Recognizing this fact can
reveal important biological insights [87,119], such as observing how
different groups of cells respond to a drug treatment. This can lead to
more personalized medical approaches [53] or aid in identifying
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Morphological profiling to predict intracellular targets of compounds. Morphological defects in a mutant caused by loss of gene function can mimic those in cells
treated with chemical compounds. An abstract methodology of this process is shown, where morphological profiles of drug-treated cells are compared to a library of
mutants. Mutants with significantly high positive correlation values (e.g., Pearson correlation coefficient) are identified as the most probable target. Various
computational approaches for generating mechanism of action hypotheses have been reported by [158]. ¢. Morphological phenotyping for phenotypic diagnosis of
lineage. Examples of 27 sake yeast strains and BY4743 strain (control). Morphological analysis revealed two clusters (brown and dark gray) at AU (Approximately
Unbiased) p-values > 0.95. Strains are color-coded based on their origin, and are shown on the map as light-gray, indicating an unknown origin. d. A biplot
illustrating the clustering of mannoprotein mutants according to their morphological defects. Morphological space was subjected to Gaussian mixture model clus-
tering with no prior assumptions, resulting in mutants exhibiting similar defects grouped together. Pie charts show the proportion of significant morphological
parameters. e. Clustering of Ca®"-sensitive mutants based on morphology. An example of chemical-genetic morphological profiles illustrates that mutants with
similar morphological defects exhibited similar functions.

(a) The figure has been modified from [112]. (b) The figure has been modified from [37]. (c) The figure has been modified from [38].

subpopulations within tumor cell populations [44,93]. heterogeneity can also be dissected prior to imaging using techniques,
A powerful approach to detect modality at the single-cell level in- such as microfluidics [153] and morphology-based cell sorting, which

volves grouping cells based on a previously known cellular state. In our offer several advantages, including reduced cell damage and stress.

laboratories, we use CalMorph to categorize cells into three groups ac- Further information on these methods is available from published

cording to their spatial (i.e., mother/bud cells) and temporal (i.e., cell sources [109,116,139,159].

cycle stages) attributes (Fig. 6a). Others applicable approaches include Population level: Morphological measures at the population level

using the cell shape [137,175,2] and cell type [144,145]. Cell reflect dominant biological characteristics influenced by the
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Fig. 6. Data modality concepts. a. Histogram depicting the whole-cell size of haploid wild-type (WT) yeast cells (n = 109). The built-in classification algorithm in
CalMorph uses both cell shape and nuclear DNA images to identify the nuclear cell cycle phase, categorizing cells into G1, S/G2, and M phases. b. An illustration of
the effect of confounding factors on data modality. Dashed lines are various experimental conditions; for further detailed information see [111]. The solid black and
red lines show the null and overall distributions, respectively, influenced by confounding factors. c. Impact of outliers on modality. Left: Gaussian mixture modeling
of diploid WT yeast cells (n = 114). Each circle is color-coded according to the detected cluster. CCV114_C represents a noise parameter of the “bud axis ratio” (i.e.,

normally distributed). Right: Unimodal distribution after outlier removal.
These figures have been adapted from [36].

experimental conditions. However, it remains unclear whether the
population data are truly unimodal. Thus, investigating the possibility of
subpopulations using either supervised or unsupervised methods is
necessary (Supporting Text). Since reference phenotypes are not always
available, unsupervised approaches, such as k-means [137,162] and
mixture model clustering [133] are more commonly used. These
methods organize the population into clusters based on feature simi-
larity, potentially revealing hidden patterns that correspond to different
sub-populations.

We previously attempted to characterize modality within a large set
of wild-type yeast replicates using probabilistic mixture models with no
prior assumption [36]. Our analysis revealed that the predominance of
the observed modality could be attributed to confounding variables
(Fig. 6b) and outliers (Fig. 6¢). Subsequently, by incorporating con-
founding variables into our statistical model and excluding outliers
using strategies, such as the one percentile rule, we enhanced the sta-
tistical robustness of subsequent analytical steps.
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3.4. Step 2-4: hypothesis testing

QMP experiments have a high level of information, but appropriate
data analysis is essential to effectively use this information [91].
Morphological data are not always normally distributed (Step 2-2). For
non-normal data, non-parametric methods, such as Mann-Whitney U
test [47,64] (Supplementary Table 9a) are applicable. However, para-
metric approaches (Supplementary Table 9b) offer improved differen-
tiation and are, therefore, preferable [104,108]. This necessitates the
application of generalized linear models (GLMs) that cover additional
probability distributions besides the Gaussian distributions, accommo-
dating the data type (Step 2-2) and answering biological questions more
precisely.

GLM analysis is widely utilized in morphological analysis, as
demonstrated in several studies [167,67,85,95]. We primarily employed
GLM to answer various questions, such as to identify relevant patterns
among morphological profiles and define the intracellular target of a
compound (Fig. 5b), study genetic diversity and ecological origins
(Fig. 5¢), and to investigate risk management in industrial settings [35].
However, the field has used diverse approaches, including supervised
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machine learning algorithms (see below) for prediction [10] and
capturing non-linear morphological variabilities [2,64], factor analysis
[86], and studying morphological diversity on principal component
space [6,31]. Additional examples are provided in Supplementary
Table 9. Finally, deep learning algorithms (DL; see Step 5), which require
minimal data transformation, can be more effective in capturing bio-
logical information contained within the images [72] and have recently
gained widespread acceptance for morphological phenotyping [20].

4. Step 3: knowledge extraction

After applying a statistical modeling method, various ML approaches
can be employed to recognize, understand, and obtain new biological
knowledge by comparing, categorizing, and predicting (dis)similar
morphologies. This section briefly covers the main approaches. Readers
are encouraged to review the cited references for additional
information.

4.1. Step 3-1: dimensionality reduction

QMP experiments are inherently high-dimensional, generating a
detailed morphological spectrum for the phenotype of interest. This
complexity poses a significant challenge in identifying the features
carrying the most valuable information to address the biological ques-
tions. Additionally, a large feature space contributes to higher data
sparsity, variance, and multicollinearity due to redundant features [4].
These challenges are typically addressed by DR approaches, which
provide a better representation of informative features. DR improves the
identification of hidden structures, enhances visualization, facilitates
accurate model building, reduces the risk of overfitting, and decreases
computational cost (CPU time and memory).

Selecting pertinent features based on prior biological knowledge is
the most straightforward but subjective DR method. However, our
research [37] has demonstrated that selecting a limited subset of fea-
tures may not comprehensively represent the entire morphological
spectrum. This is evident from the observations that mutations in cell
wall components (e.g., DSE2, EGT2, and SUN4) can concurrently affect
the morphology of the nucleus and actin structures (Fig. 5d).

There are two main techniques to reduce dimensionality: feature
selection, which involves reducing dimensionality by selecting a subset
of original features to remove redundant or irrelevant features. Main-
taining the original features helps preserve data interpretability in
downstream models [45,136]. As reviewed previously [17], filtering
based on replicate correlation is the most commonly used feature se-
lection approach.

Feature extraction projects the features onto a lower dimensional
subspace while maintaining the information content. This trans-
formation, however, can render the resulting feature set less interpret-
able. PCA is the most commonly choice in biology demonstrating
superior performance over alternative DR techniques [123,130].
Nonetheless, PCA primarily focuses on capturing variance (i.e., inter-
group variability) and identifies linear relationships. This limitation may
restrict its applicability in scenarios that require the detection of com-
plex, non-linear patterns within the data. The applications of various
feature selection and feature extraction methods are discussed in the
Supporting Text and Supplementary Table 10.

4.2. Step 3-2: downstream analysis

Complementary to data analysis, downstream analysis is the process
of discovering, interpreting, and validating biological patterns in
morphological profiles using a ML approach, such as clustering and
classification. These techniques should not be applied arbitrarily, but
selecting the optimal method can sometimes be challenging [41,103].
The choice largely hinges on the access to supplementary information
sources and the confidence level in the predictive power [50,83]. In our
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laboratories, collaboration between computational and experimental
biologists consistently enrich our methodologies, facilitating more
nuanced and accurate data interpretations.

Morphology-based clustering is a practical tool for investigating
cellular and molecular phenomena, and has effectively been employed
to study gene functions [107]. Improvements in QMP enable objective
clustering of mutants. For instance, hierarchical clustering (HC) is
broadly used to identify patterns in morphological data [137,172,26].
We have also previously [38] applied HC to categorize morphological
responses of Ca®*-sensitive mutants (Fig. 5e). However, HC requires: 1)
a predefined distance metric to estimate (dis)similarity; 2) a linkage
criterion to determine how distances between clusters are defined and
how clusters are merged at each step; and 3) a cut-off height for the tree.
These choices significantly affect the final clustering results. In our
experience, probabilistic methods, such as Gaussian mixture model
(GMM) clustering, present a preferable alternative for several reasons.
Firstly, morphological data often undergoes Z value transformation
and/or PCA projection prior to clustering, ensuring data normality.
Secondly, GMM uses the Expectation-Maximization algorithm, which
aids in optimal determination of the number of clusters and maintaining
objectivity [140,61,88]. Clustering methods and their applications are
discussed in Supporting Text, Supplementary Table 11, and Fig. S1.
Additionally, Giordani and coworkers’ book [39] on clustering with R is
an application-oriented textbook that covers the most common clus-
tering methods from a theoretical perspective, complemented by various
examples.

Classification serves as an essential tool for labeling new samples
using pre-existing data [17]. The application of classification in
morphological phenotyping is vast, encompassing developmental
biology [157], functional genomics [12], decoding disease mechanisms
[68,141], and guiding drug discovery strategies [20]. Advanced imaging
technologies and computational analysis have significantly enhanced
the accuracy and scalability of these classifications [101], for further
information, see Supporting Text, Supplementary Table 12 and Fig. S2.

4.3. Step 3-3: knowledge prediction

As discussed previously, cell morphology can be affected by both
external and internal stimuli. Thus, predicting cellular networks based
on phenomic variations is an important goal in biological research. The
primary tools for predicting these relationships include regression,
classification [21,69,90], and DL models (see Label-free imaging section).
However, the predictability of the model and associations among vari-
ables, whether linear, nonlinear, or (co)variational, are critical factors in
choosing the appropriate tool [82]. No singular model can universally
address all challenges, emphasizing the need for adopting a multifaceted
strategy. In our approach, building multiple models and rigorously
evaluating their predictive capabilities (Supplementary Table 13) was
deemed necessary.

Integrating predictive modeling with morphological data has proven
potential for advancing our understanding across a broad spectrum of
biological and medical fields. This includes studying drug efficacy
[143], immune responses [126], cell morphogenesis and differentiation
[16,92], underlying causes of diseases [28], and metabolic activities
[62]. Advancements in imaging techniques, combined with the advent
of more sophisticated analytical algorithms, has accelerated the pace of
discovery and opened new avenues for exploring cellular mechanisms
with unprecedented depth and scope.

5. Step 4: sharing

The final step in any study is sharing, which offers undeniable ben-
efits for transparency [179], standardization [40,170], archiving [46],
and reproducibility [120,60,7]. Scientists greatly benefit from sharing
codes and data, known as open science, through public databases or, at a
minimum, via institutional website or journal supplementary files. Open
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science enhances data aggregation methods, bolsters confidence in re-
ported results, provides opportunities for deeper data analysis, and in-
creases the impact of research [135,142,171,40].

Sharing code and scripts is an integral scientific practice that ensures
a broader audience for replicating studies, validates findings, and builds
further upon existing work. Platforms, such as GitHub and Bitbucket, are
commonly used for this purpose, ensuring that the code is accessible,
well-documented, and well-maintained. Furthermore, these platforms
help educate students and early-career researchers about best practices
in coding and research methodologies [19].

In addition to the new data management and sharing policy of the
National Institutes of Health (effective since January, 2023), the
morphological phenotyping community has increasingly embraced
sharing and collaboration (Supplementary Table 14). However, there is
still a lack of a unified reference database for consolidating available and
future data and preventing redundancies. One solution is to integrate
data into community databases (e.g., the Saccharomyces Genome Data-
base for budding yeast) or well-known databases (e.g., NCBI), because of
their popularity and logistics. Such databases could serve as a bench-
mark for developing novel methods. Meanwhile, researchers are
encouraged to adhere to the FAIR (Findable, Accessible, Interoperable,
and Reusable) principles [169] and deposit their data into an appro-
priate database (Supplementary Table 14a).

Similar principles should apply to image analysis tools to support
open research and avoid duplicative efforts. One solution could be to
develop a plugin or extension for existing platforms (Supplementary
Table 4), if possible. However, developing new tools may be the best
option for meeting unprecedented needs. When developing a new image
analysis tool, the true costs of development and maintenance, interop-
erability, and a long-term sustainability plan should be considered [80].

Eventually, scientific image forums (Supplementary Table 14b) are
ideal for discussing bioimage analysis-related questions, sharing new
bioimage tools or libraries, and fostering collaborations. These forums
are typically sponsored by experienced field experts and facilitate
learning, problem-solving, and networking.

6. Step 5: transformative knowledge exploration
6.1. Step 5-1: label-free imaging

High-throughput screening via fluorescent labeling provides high
contrast and specificity. However, challenges, such as labor intensity
and potential artifacts or perturbations caused by labeling, limit its ap-
plications [10,69]. In contrast, high-throughput label-free imaging
overcomes these barriers. In label-free imaging, features are extracted
based on variations in the optical properties of cellular and subcellular
structures, such as light absorption, scattering, and phase. Although this
approach yields lower contrast and resolution compared to labeled im-
ages [29], advanced DL methods can extract abundant of data from
label-free images with high sensitivity [43,64].

A common method to extract data from bright field images is training
neural network classifiers [117,147,41,99], such as convolutional neu-
ral networks (CNNs) [151,164,90,96], U-Net [30,150], and
region-based CNN (R-CNN) [33,59]. These techniques have been widely
adopted for morphological phenotyping and actively contribute to ad-
vancements in biomedical problem-solving [23], identification of dis-
ease mechanisms [102,138,58], and drug discovery [20]. For further
information readers are encouraged to refer to previously published
sources [125,163]. Further enhanced capabilities may be achieved by
combining DL and high-throughput cell microscopy [109], ghost
cytometry [116] and imaging flow cytometry [10], which may even-
tually replace classical image processing.

While this integration offers abundant opportunities, it also in-
troduces new challenges. Two major limitations can be noted with DL.
First, these methods perform reliably when the classifier is trained by a
large set, increasing the computational cost and requiring high-quality
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ground truth data [75,127]. This underscores the need for a
well-annotated global database (see Sharing section). Second, the
training sets for classifier learning are restricted to our knowledge
boundaries, which increases the risk of overfitting. Consequently,
caution must be exercised while interpreting DL-based results. Students
new to DL as well as more experienced individuals looking to broaden
their understanding can benefit from the abundant practical examples
provided in “Deep learning with Python” [22].

6.2. Step 5-2: towards trans-omics networks

Linking morphological changes to a single omics data type does not
fully address the intricate biological questions that require a global
understanding of the interplay among various biological domains. A
prime example of this complexity is observed in cancer development and
progression, where cellular processes are orchestrated by networks
spanning multiple omics layers [13,48,65,70]. Such phenomena can be
better understood through the integration of multi-omics data into a
cohesive framework [52].

While DR techniques are commonly applied to single-omics datasets,
methods that concurrently decompose and integrate multiple datasets
have been less frequently explored. Meng et al. [97] listed several ap-
proaches for integrative analysis of multi-omics data [97]. Among them,
we employed canonical correlation analysis (CCA; Supplementary
Table 15) in our previous works [36,111] to link morphological varia-
tions to functional genomics characteristics (Fig. 7). CCA facilitates the
exploration of the relationship between two sets of multidimensional
data by identifying their maximally correlated linear combinations. CCA
provided us with significant predictive power regarding gene functions
based on morphological defects. Remarkably, the obtained precision
was comparable with other omics data such as protein interaction and
genetic interaction profiles [111].

To our knowledge, there are only a few examples of such system-
level integrations in morphological phenotyping. Kurita et al. com-
bined image-based screening of HelLa cells with untargeted metab-
olomics analysis to predict the identity and mode of action of natural
products [76]. Nassiri and McCall [105], Hasle et al. [49], and Way et al.
[166] used different approaches to associate morphological profiles
with transcriptomic changes to infer and predict mechanisms of action
[105,166,49]. The demand for integrating two or more profiles is ex-
pected to grow as image-based analysis continues to evolve rapidly using
deep learning approaches [124,156,173].

System-level integration of multi-omics studies, i.e., trans-omics
models [176], can bring different types of knowledge together and
allow models to learn from specific and/or common connections. Such
integrative models can offer novel insights if the combined profiles carry
complementary information [15,177,98] or facilitate data translation if
they are largely redundant. Genomics data have been commonly inte-
grated with epigenomics, transcriptomics, proteomics [106], and chro-
matography-mass spectrometry data. Despite the potential of these
advanced methodologies to impact our understanding of cell
morphology, comprehensive incorporation of morphological data into
trans-omics models remains an underexplored frontier.

7. Limitations of computational models

Before the advent of computers, exploring complex biological pro-
cesses through computational studies was largely impractical, primarily
due to the large number of equations that needed to be constructed and
solved by hand. Nowadays, a wide array of software tools is accessible,
enabling modeling and analysis of cellular structures and molecular
dynamics. These tools allow researchers to effectively modify model
properties to test hypotheses, delve into the causes of specific outcomes,
and distinguish differences between models. However, this process is not
without its challenges [41].

Determining the most appropriate model is a critical step that hinges
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(a) This figure has been adapted from [111]. (b) The figure has been adapted from [36].

on a thorough understanding of the biological system and adequate
computational expertise to design a structured experiment. Key steps in
model development include conceptual model formulation (i.e., cata-
loging of all variables), counting for potential associations, identifying
confounders, and minimizing errors. However, building an efficient
model demands significant effort and time, and may necessitate further
assumptions or revisions. Poor choices can produce misleading results,
emphasizing the importance of diligence in these procedures. Once a
computational model is finalized, it must undergo rigorous testing to
ensure accuracy and reliability.

Another significant challenge is the vast heterogeneity across data-
sets. Major sources of variability are sample preparation and different
microscopy processes (e.g., varying resolutions, bit depths, magnifica-
tions, dimensions (2D or 3D), and multiple light wavelength channels).
Adequate data annotation and labeling are essential for mitigating these
challenges.

Ultimately, even though computational models offer varying per-
spectives, they cannot replace wet-lab experiments. Instead, they should
be viewed as valuable, complementary tools that enrich our under-
standing [15,51].

8. Coding dilemma

Morphological phenotyping is an interdisciplinary field that en-
compasses biology, computer science, optics, microfluidics, and data
science. Users with no or limited computational knowledge find it
challenging to write or modify scripts in programming languages
(mainly Python, R, or MATLAB). However, a general understanding of
the principles underlying each method allows researchers without a
strong background in data science to critically analyze their data using
publicly available tools (Supplementary Table 16). This allows a broader
range of users to build their own statistical and ML models, adding a new
dimension to their research. As highlighted throughout this review,
using these tools without understanding their output can cause misin-
terpretation of the results, and it is researchers’ responsibility to be their
own strongest critics.

9. Conclusions

With the wealth of available morphological data, it is challenging to
extract the most relevant information without appropriate skills and
background. This review aimed to bridge this gap by documenting
available methods, providing the principles underlying each step, and
their proper applications. The presented workflow offers an extensible
approach to enhancing state-of-the-art QMP method.

While routine analytical methods, utilizing various open-source and
commercial software (e.g., SPSS), are valued for their simplicity and
availability, they often overlook considerable statistical power. Proper
use of this power could not only detect subtle changes, but also reduce
bias induced by misestimations of true effects. Moreover, a higher sta-
tistical power directly impacts reproducibility, ensuring that statistically
significant findings accurately reflect the actual effects and their
magnitude.

The QMP workflow lays a foundation for further studies, but has its
own limitations. Particularly, GLM implementation requires familiarity
with a broad range of probability distributions beyond just the Gaussian
distribution. Basic programming knowledge is also essential for a suc-
cessful study. Therefore, the community would benefit from engaging
researchers capable of conducting interdisciplinary studies, such as
computational biologist, biostatisticians, and data scientists. However,
recruiting and retaining experts, as well as providing sufficient time and
computational resources to develop and maintain software, all come at a
cost.
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