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Hemorrhage transformation (HT) is the most dreaded complication of intravenous

thrombolysis (IVT) in acute ischemic stroke (AIS). The prediction of HT after IVT is

important in the treatment decision-making for AIS. We designed and compared different

machine learning methods, capable of predicting HT in AIS after IVT. A total of 345 AIS

patients who received intravenous alteplase between January 2016 and June 2021 were

enrolled in this retrospective study. The demographic characteristics, clinical condition,

biochemical data, and neuroimaging variables were included for analysis. HT was

confirmed by head computed tomography (CT) or magnetic resonance imaging (MRI)

within 48 h after IVT. Based on the neuroimaging results, all of the patients were divided

into the non-HT group and the HT group. Then, the variables were applied in logistic

regression (LR) and random forest (RF) algorithms to establish HT prediction models. To

evaluate the accuracy of the machine learning models, the models were compared to

several of the common scales used in clinics, including the multicenter stroke survey

(MSS) score, safe implementation of treatments in stroke (SITS) score, and SEDAN

score. The performance of these prediction models was evaluated using the receiver

operating characteristic (ROC) curve (AUC). Forty-five patients had HT (13.0%) within

48 h after IVT. The ROC curve results showed that the AUCs of HT that were predicted

by the RF model, LR model, MSS, SITS, and SEDAN scales after IVT were 0.795

(95% CI, 0.647–0.944), 0.703 (95% CI, 0.515–0.892), 0.657 (95% CI, 0.574–0.741),

0.660 (95% CI, 0.580–0.740) and 0.655 (95% CI, 0.571–0.739), respectively. The RF

model performed better than the other models and scales. The top four most influential

factors in the RF importance matrix plot were triglyceride, Lpa, the baseline NIHSS, and

hemoglobin. The SHapley Additive exPlanation values made the RF prediction model

clinically interpretable. In this study, an RF machine learning method was successfully

established to predict HT in AIS patients after intravenous alteplase, which the sensitivity

was 66.7%, and the specificity was 80.7%.
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INTRODUCTION

Stroke is a major global public health issue with high
morbidity and mortality. According to China’s Ministry of
Health, 77.8% of strokes are ischemic (1). Currently, poststroke
outcomes are significantly improved by reperfusion therapy, such
as intravenous thrombolysis and endovascular thrombectomy
(2–6). Despite its efficacy, IVT also increases the risk of
the development of hemorrage transformation (HT). The
occurrence of HT significantly affects functional recovery and
is independently associated with a higher mortality (7). It was
shown in previous studies that a total of 10–48% of the AIS
patients who received IVT developed HT (8) and the incidence of
symptomatic intracranial hemorrhage (SICH) ranged from 2 to
7% (9). There is currently a lack of understanding of the benefits
of IVT relative to its risks, which include HT, in both clinicians
and patients (or their relatives). This results in patients not always
receiving a timely intervention.

Previous reports have indicated that there are a number
of clinical, laboratory, and radiographic factors associated with
the risk of HT after alteplase. A systematic review and meta-
analysis of 55 studies have reported on factors that are associated
with HT, and these included age; the severity of the stroke;
the baseline glucose; the use of antiplatelet drugs or statins;
leukoaraiosis; early signs of infarction on head CT; the presence
of atrial fibrillation, diabetes, previous ischemic heart disease
or cerebral vascular diseases; and congestive heart failure (10).
Lipoprotein (11), the neutrophil-to-lymphocyte ratio (NLR) (12)
and the serum homocysteine level (13) were also reported
as factors associated with HT after IVT. Numerous scoring
systems have been devised to assess the risk for HT in AIS
patients after IVT, and these include the Hemorrhage After
Thrombolysis (HAT) score (14), multicenter stroke survey (MSS)
score (15), safe implementation of treatments in stroke (SITS)
score (16), SEDAN score (17) and GRASPS score (18). However,
existing HT models cannot address the full complexity of all the
factors that are involved. Each of the methods has limitations
and disadvantages (14–18), which implies a certain degree of
inaccuracy. The risk of HT after IVT in AIS patients cannot be
avoided to the greatest extent when the stroke patients are only
assessed based on the existing assessment system. Therefore, it
is an urgent priority to find more reliable and effective methods
to develop an early and timely prediction for HT after IVT in
AIS patients.

Machine learning (ML) is a branch of artificial intelligence
that can establish ideal models for classification, prediction, and
estimation by allowing computers to “learn” from large, noisy
or complex input and output datasets (19). In recent years,
machine learning has been applied in medical research. For
example, machine learning has been applied for the prediction
of the outcomes in acute stroke patients (20) and endovascular
treatment outcome in AIS (21). In the present study, we
developed machine learning-based models that included a
logistic regression (LR) model and a random forest (RF) model
to predict HT. We then compared the predictability to several
scales that are currently used in the clinic, including the MSS
score, SITS score and SEDAN score.

MATERIALS AND METHODS

Participants
AIS patients treated with rt-PA therapy after admission to
Zhongda Hospital Affiliated to Southeast University between
1 January 2016 and 30 June 2021 were enrolled in this
retrospective study. Inclusion criteria were as follows: (1) age
≥ 18 years, (2) AIS confirmed by magnetic resonance imaging
(MRI), and (3) onset of stroke symptoms within 4.5 h and
treated with rt-PA. Exclusion criteria were as follows: (1)
additional endovascular therapy after intravenous thrombolysis,
(2) no head computed tomography (CT) or MRI patients
within 48 h after intravenous thrombolysis, (3) patients treated
with urokinase thrombolytic therapy. This retrospective study
was approved by the Research Ethics Committee of Affiliated
ZhongDa Hospital and the Southeast University (approval
number: 2021ZDSYLL300-P02).

Data Collection
The clinical data were collected by a certified stroke neurologist.
Overall, 61 clinical variables were initially selected for the
model construction.

The study collected demographic data including patient
sex, age, body weight, past history (including hypertension,
diabetes, coronary artery disease, atrial fibrillation, stroke,
antiplatelet therapy, smoking, and alcohol consumption),
clinical characteristics, including baseline indicators (the
baseline NIHSS, the baseline blood pressure, early infarction
signs seen on a head CT on admission and the baseline
laboratory tests), the time from onset to thrombolytic
therapy (OTT), the rt-PA dose (0.9 or 0.6 mg/kg), the
NIHSS score (1 h after IVT), the NIHSS score (2 h after
IVT), and the laboratory test results on the second day
after IVT.

FIGURE 1 | Flow chart illustrating patient selection. IVT indicates introvenous

thrombolysis. HT indicates hemorrhage transformation. IVT, intravenous

thrombolysis; HT, hemorrhage transformation.
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TABLE 1 | Demographic and clinical characteristics of the study sample.

Parameter HT

(n = 45)

No-HT

(n = 300)

t/χ2/z

value

P-value FDR-adjusted

P-value

Age, years 78 (68, 82) 70 (63, 80) −2.847 0.004 0.026

Body weight, kg 60 (54, 70) 66 (55, 72) −1.424 0.154 0.282

Sex

Male 24 (53.3%) 200 (66.7%) 3.055 0.080 0.190

Past history

Smoking 10 (22.2%) 115 (38.3%) 4.396 0.036 0.121

Alcohol consumption 5 (11.1%) 62 (20.7%) 2.283 0.131 0.273

Comorbidities

Hypertension, n (%) 29 (64.4%) 210 (70.0%) 0.567 0.451 0.656

Diabetes, n (%) 10 (22.2%) 81 (27.0%) 0.460 0.498 0.694

Coronary artery disease, n (%) 7 (15.6%) 39 (13.0%) 0.221 0.638 0.772

Atrial fibrillation, n (%) 15 (33.3%) 58 (19.3%) 4.597 0.032 0.114

Previous stroke, n (%) 13 (28.9%) 75 (25.0%) 0.311 0.577 0.754

PAT 6 (13.3%) 34 (11.3%) 0.153 0.696 0.810

Statin use 3 (6.7%) 13 (4.3%) 0.099 0.754 0.815

OTT 180 (120, 238) 165 (120, 200) −1.147 0.252 0.428

SBP on admission 159 (148, 175) 152 (139, 164) −2.302 0.021 0.084

DBP on admission 84.9 ± 14.1 85.5 ± 14.4 0.267 0.789 0.828

Rt-pa dose 0.457 0.499 0.694

0. 9 mg/kg 33 (73.3%) 205 (68.3%)

0.6 mg/kg 22 (26.7%) 95 (31.7%)

Early infarction signs on admission with head CT 5 (11.1%) 25 (8.3%) 0.111 0.739 0.815

Circulation, n (%) 4.441 0.109 0.241

Anterior circulation infarct 38 (84.4%) 236 (78.7%)

Posterior circulation infarct 3 (6.7%) 50 (16.7%)

Both 4 (8.9%) 14 (4.7%)

Leukoaraiosis 35 (77.8%) 201 (67.0%) 2.103 0.147 0.277

Stroke subtype, n (%) 14.185 0.001 0.009

Cardioembolic 13 (28.9%) 41 (13.7%) 6.868 0.009 0.044

Large artery atherosclerosis 20 (44.4%) 93 (31.0%) 3.211 0.073 0.180

Small vessel occlusion 12 (26.7%) 166 (55.3%) 12.876 <0.001 0.009

Baseline NIHSS score 11 (6, 17) 7 (4, 12) −3.211 0.001 0.009

NIHSS score (1 h after IVT) 8 (4, 17) 4 (2, 10) −3.257 0.001 0.009

NIHSS score (2 h after IVT) 8 (4, 15) 4 (2, 10) −3.150 0.002 0.014

Baseline laboratory test

WBC, 109/l 6.55 (4.95, 9.11) 7.36 (6.11, 8.84) −1.852 0.064 0.169

RBC, 109/l 4.36 (3.98, 4.77) 4.69 (4.37, 5.02) −3.221 0.001 0.009

Hemoglobin, g/l 133 (124, 145) 143 (132, 153) −3.466 0.001 0.009

Platelet, 109/l 174 (144, 221) 193 (159, 241) −2.012 0.044 0.141

Neutrophil, 109/l 4.54 (3.05, 6.63) 4.51 (3.53, 6.16) −0.370 0.711 0.813

Lymphocyte, 109/l 1.45 (1.11, 2.24) 2.05 (1.37, 2.57) −2.799 0.005 0.029

NLR 2.76 (1.73, 5.02) 2.29 (1.53, 3.82) −1.466 0.143 0.277

PT, s 11.85 (11.28, 12.65) 11.4 (10.8, 12.0) −3.137 0.002 0.014

APTT, s 28.91 ± 4.54 28.23 ± 3.86 −1.029 0.304 0.463

Fibrinogen, g/l 3.46 ± 0.80 3.32 ± 0.86 −1.039 0.299 0.463

INR 1.07 (1.03, 1.14) 1.05 (0.99, 1.10) −2.667 0.008 0.043

Blood glucose, mmol/l 7.91 (6.48, 10.93) 7.13 (6.08, 8.87) −1.875 0.061 0.169

AKP, u/l 85.0 (69.5, 96.3) 80.5 (67.0, 97.0) −0.506 0.613 0.772

Albumin, g/l 41.9 (39.0, 45.5) 42.1 (39.2, 44.9) −0.072 0.942 0.942

Blood urea nitrogen, mmol/l 6.48 (5.63, 7.80) 6.20 (5.00, 7.40) −1.714 0.086 0.197

(Continued)
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TABLE 1 | Continued

Parameter HT

(n = 45)

No-HT

(n = 300)

t/χ2/z

value

P-value FDR-adjusted

P-value

Creatinine, µmol/l 75 (67, 88) 73 (62, 87) −1.040 0.298 0.463

Uric acid, µmol/l 326 (264, 402) 342.0 (280.0, 411.0) −0.588 0.557 0.754

Potassium, mmol/l 3.77±0.52 3.81±0.45 0.470 0.639 0.772

Sodium, mmol/l 140.6 (138.2, 143.7) 140 (138, 142) −1.505 0.132 0.273

Chloride, mmol/l 103.6 (101.0, 105.9) 103.8 (101.4, 105.7) −0.090 0.929 0.942

Calcium, mmol/l 2.27 (2.18, 2.42) 2.29 (2.22, 2.39) −0.300 0.764 0.815

Phosphorus, mmol/l 1.08 (0.96, 1.20) 1.08 (0.94, 1.19) −0.482 0.630 0.772

C–reactive protein, mg/l 7.40 (3.47, 19.10) 3.94 (0.82, 8.84) −2.438 0.015 0.069

Laboratory test on the second day after IVT

Neutrophil after IVT, 109/l 5.52 (4.73, 9.48) 5.79 (4.25, 7.16) −1.141 0.254 0.428

Lymphocyte after IVT, 109/l 1.19 (0.86, 1.69) 1.36 (0.94, 1.88) −1.452 0.146 0.277

NLR after IVT 4.61 (2.67, 8.78) 3.83 (2.39, 7.02) −0.802 0.423 0.630

Potassium after IVT, mmol/l 3.65 (3.33, 3.89) 3.74 (3.58, 3.97) −2.207 0.027 0.102

Sodium after IVT, mmol/l 139.5 (138.2,141.1) 139.6 (138.0,141.1) −0.395 0.693 0.810

Chloride after IVT, mmol/l 104.1 (101.6, 105.9) 105.2 (102.7, 107.0) −1.836 0.066 0.169

Calcium after IVT, mmol/l 2.21 ± 0.13 2.17 ± 0.10 −1.921 0.061 0.169

Phosphorus after IVT, mmol/l 1.01 (0.81, 1.12) 1.01 (0.87, 1.12) −0.563 0.573 0.754

Tg, mmol/l 0.88 (0.69, 1.25) 1.26 (0.87, 1.83) −3.666 <0.001 0.009

CHOL, mmol/l 4.32 ± 1.23 4.54 ± 1.04 1.260 0.208 0.370

HDL, mmol/l 1.24 (1.00, 1.48) 1.21 (1.02, 1.39) −0.313 0.754 0.815

LDL, mmol/l 2.58 (1.97, 3.10) 2.71 (2.20,3.26) −1.095 0.273 0.448

ApoA−1, g/l 1.15 (0.98, 1.30) 1.10 (0.97, 1.31) −0.074 0.941 0.942

ApoB, g/l 0.80 (0.60, 0.94) 0.84 (0.70, 1.00) −1.842 0.065 0.169

Lpa, mg/l 237.5 (130.5, 357.5) 148.0 (69.8, 285.0) −2.305 0.021 0.084

PAT, previous antiplatelet therapy; SBP, systolic blood pressure; DBP, diastolic blood pressure; NLR, neutrophil-to-lymphocyte ratio; OTT, onset-to-treatment time; WBC, white blood

cell; RBC, red blood cell; AKP, alkaline phosphatase; BUN, blood urea nitrogen; HDL, high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol, Tg, triglycerides;

ApoA-1, Apolipoprotein A 1; ApoB, Apolipoprotein B; Lpa, lipoprotein (a); CHOL, cholesterol; Significant difference between the 2 groups (FDR-adjusted P-value < 0.05).

HT Scores
The SEDAN, MSS, and SITS scores were used for the measuring
the HT scores, all of the patients were evaluated based on
the scale, and they were evaluated after IVT and after having
medications for 48 h. When the score was higher, there was a
greater risk that the AIS patient would develop HT after IVT.

Machine-Learning Algorithms
To compare the machine-learning risk algorithms, the study
population was split into a “training” cohort from which the HT
risk algorithms were derived and a “validation” cohort in which
the algorithms were applied and tested. The “training” cohort was
derived from a random sampling of 80% of the AIS patients, and
the “validation” cohort was comprised of the remaining 20% of
the AIS patients. The machine learning models were trained with
all of the variables as inputs to classify the patients whowere likely
to have HT after IVT for AIS. Two of the commonly used classes
of machine-learning algorithms were utilized: logistic regression,
and random forest. To evaluate the accuracy of the machine
learning models, we calculated three of the common scales used
in the clinic as references: the MSS score, SITS score and SEDAN
score. An ROC (receiver operating characteristic) curve was used
to evaluate the performance of the models.

The effects of the features on the RF prediction model
were measured using the functions of the SHapley Additive
exPlanations (SHAP) Python package (version 0.40.0), which
assessed the importance of each feature using a game-theoretic
approach (22).

Statistical Analysis
SPSS 22.0 was used for the descriptive analysis and the
comparison of clinically defined groups. Continuous variables are
expressed as means ± SD or as medians (interquartile range).
Categorical variables are expressed as percentages. Continuous
data were compared between the groups using t-test or a
non-parametric test. Categorical data were compared using the
χ2 test. P-values were corrected for multiple testing with the
Benjamini-Hochberg false discovery rate (FDR) correction using
the Statsmodels package in Python. In all cases, FDR-adjusted P
< 0.05 was considered to indicate statistical significance.

RESULTS

A total of 498 patients who received IVT with rt-PA within 4.5 h
of stroke onset were included in the cohort during the study
period. Ultimately, 345 patients were included (Figure 1), after
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excluding 20 patients with missing laboratory tests or clinical
data, 81 patients who did not have acute infarct lesions that
were found on DWI, 51 patients who underwent endovascular
therapy, and 1 patient without a second scan. The study sample
included 121 (35.1%) females and 224 (64.9%) males. Their ages
ranged from 29 to 95 years with a median (IQR) of 70 years (63–
81). Forty-five (13.0%) patients developed HT, and ten (2.9%)
patients developed SICH (defined as a clinical deterioration
expressed by an increase of at least 4 points on the NIHSS
scale). The patients who developed HT were older (FDR p-value:
0.026), had higher baseline NIHSS scores (FDR p-value: 0.009),
NIHSS scores 1 h after IVT (FDR p-value: 0.009), NIHSS scores
2 h after IVT (FDR p-value: 0.014), PT values (FDR p-value:
0.014), and INR values (FDR p-value: 0.043), and they had lower
RBC counts (FDR p-value: 0.009), hemoglobin (FDR p-value:
0.009), lymphocytes (FDR p-value: 0.029), and triglycerides
after IVT (FDR p-value: 0.009). Also, more of patients who
developed HT had cardioembolic events (FDR p-value: 0.044)
compared to the non-HT group. However, there were less
HT patients that had small vessel occlusion (FDR p-value:
0.009) compared to the non-HT group. The demographic

and clinical characteristics of this study population are shown
in Table 1, Figure 2.

Comparison of the Models for the
Prediction of Hemorrhage Transformation
in Acute Ischemic Stroke After Intravenous
Alteplase
The ROC curve results showed that the AUCs of HT, as
predicted by the RF model, LR model, MSS, SITS, and SEDAN
scores after IVT in AIS patients were 0.795 (95% CI, 0.647–
0.944), 0.703 (95% CI, 0.515–0.892), 0.657 (95%CI, 0.574–0.741),
0.660 (95% CI, 0.580–0.740) and 0.655 (95% CI, 0.571–0.739),
respectively. When the optimal cutoff value of the RF model was
0.169, the sensitivity was 66.7%, and the specificity was 80.7%.
When the optimal cutoff value of the LR model was 0.140, the
sensitivity was 60.0%, and the specificity was 78.0%. The RF
model performed significantly better than the other models. The
AUCs are presented in Figure 3. The importance matrix plot for
the RF method is shown in Figure 4 and reveals that the top 4

FIGURE 2 | Comparison of Tg, Lpa, baseline NIHSS score, hemoglobin between patients in the HT and no-HT group. Tg, triglycerides; Lpa, lipoprotein(a); HT,

hemorrhage transformation.
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FIGURE 3 | Area under the receiver operating characteristics curves (AUC) for

predicting HT in AIS after Intravenous Alteplase. HT, hemorrhage

transformation; AIS, acute ischemic stroke.

parameters with the greatest importance for predicting HT of
AIS after IVT in this model with all available parameters were
triglyceride, Lpa, the baseline NIHSS and hemoglobin.

SHAP Value-Based Interpretation of the RF
Model
A SHAP summary plot was used to illustrate the positive or
negative effects of the features attributed to the RF model
(Figure 5). The SHAP dependence plot showed how a single
feature of the top 4 factors affected the output of the RF
prediction model (Figure 6).

DISCUSSION

In this retrospective cohort study, we developed and validated
machine learning algorithms using 61 features to predict
HT after IVT for AIS. The results demonstrated that the
use of machine learning models can accurately predict HT.
The RF model performed better than the LR model in
predicting HT.

Numerous factors affect, with varying significance and
mechanisms, the development of HT after IVT in AIS patients.
To avoid HT as much as possible, it is important to consider
as many influential factors as possible before proceeding with
IVT. Unfortunately, the scales that are commonly used in the

FIGURE 4 | Importance matrix plot of the RF model. Top 15 parameters for predicting HT of AIS after IVT. RF, random forest; HT, hemorrhage transformation; AIS,

acute ischemic stroke; IVT, intravenous thrombolysis.
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FIGURE 5 | SHAP summary plot of the top 15 features of the RF model. The higher the SHAP value of a feature (x-axis), the higher the probability of HT after IVT.

Taking the feature Lpa as an example, red points are on the right whereas blue points are on the left. This means prediction scores will be smaller when patients have

a low level of Lpa. SHAP, SHapley Additive exPlanation; RF, random forest; HT, hemorrhage transformation; IVT, intravenous thrombolysis; Tg, triglycerides; WBC,

white blood cell; RBC, red blood cell; NLR, neutrophil-to-lymphocyte ratio.

clinic, such as the MSS score (15), SITS score (16), and SEDAN
score (17), are only calculated based on a few important variables.
However, machine learning could provide a multi-characteristic
analysis in deciphering the factors that are associated with the risk
of HT after IVT.

Many risk factors have been confirmed to be associated with
HT after IVT. A systematic review and meta-analysis of 55
studies reported that age, severity of the stroke, baseline glucose,
use of antiplatelet drugs or statins, leukoaraiosis, early signs of
infarction on head CT, and the presence of atrial fibrillation,
diabetes, previous ischemic heart disease or cerebral vascular
diseases, and congestive heart failure were associated with HT
after IVT (10). In addiction, hypertension (23–25) and the NLR
(12, 26–28) were also shown to be associated with HT after IVT.
The results of the present study confirmed the results of previous
reports. Meanwhile, the baseline NIHSS, systolic blood pressure
on admission, and the NLR were ranked the top six features in
the present study, and the higher their values were, the greater
the risk of HT.

The NIHSS score is widely used to assess the clinical stroke
severity. It has been suggested that the baseline NIHSS score is an
independent risk factor for HT after IVT and that a high NIHSS
score is a predictor of HT (25, 29). Moreover, it was reported
that 1.6% of IVT patients had fatal HT when their NIHSS score

was 5 to 10, while it increased to 6.8% when their NIHSS score
was ≥ 22 (9).

The patient’s blood pressure (24), especially systolic blood
pressure before IVT (23, 25) was also previously shown to be a
risk factor for HT. This result was consistent with the present
study. This may be because if patients have higher blood pressure,
there is more damage to the vascular endothelial cells.

A high NLR was reported to predict HT in AIS patients after
IVT in previous studies (12, 26–28). The NLR on admission
rather than the NLR post-IVT was an independent risk factor for
an increased risk of HT after IVT (28). The results in this study
were the same as the results of the above studies. The underlying
mechanism of HT remains uncertain. It has been suggested
that the NLR is associated with the inflammatory destruction of
neutrophils and the protective effect of lymphocytes. Neutrophils
plays a role in the disruption of the blood brain barrier (BBB)
through inflammation (30, 31) and enhance the expression of
matrix metalloproteinase-9 (MMP-9) (32). Rt-PA can not only
promote neutrophils to release MMPs but also promote the
migration of neutrophils to ischemic tissue (33). Moreover,
the stress response leads to an increase in the production
of catecholamines in an overactivated sympathetic nervous
system, resulting in a decrease in the number and activity of
lymphocytes (34).
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FIGURE 6 | SHAP dependence plot of the RF model. The SHAP dependence plot shows how a single feature affects the output of the RF prediction model. SHAP

values for specific features exceed zero, representing an increased risk of HT after IVT. SHAP, SHapley Additive exPlanation; RF, random forest; HT, hemorrhage

transformation; IVT, intravenous thrombolysis; Tg, triglycerides; Lpa, lipoprotein(a).

Our study also obtained some new findings. The factors that
were ranked in the top four factors in the present study were
triglyceride, Lpa, the baseline NIHSS and hemoglobin, among
which, triglyceride, Lpa, and hemoglobin were negelected by
commonly used scales in clinic currently.

Several studies have shown that a high level of triglycerides
contributes to atherosclerosis (35–37), while a low level is a risk
factor for cerebral hemorrhage (38). It was also reported that a
low level of triglycerides was a modest risk factor for HT after
IVT (11). In the RF model-based machine learning, triglycerides
were negatively associated with HT after IVT. This is probably
because a high level of triglycerides is correlated with elevations
in coagulation factor VII and plasminogen activator inhibitor,
and the viscosity of blood and plasma (39).

The results from previous reports on the association between
Lpa and stroke are controversial. Several studies have shown
that there is no evidence of an association between the Lpa
levels and stroke (35, 40). However, a meta-analysis suggested
that Lpa was a significant risk factor for ischemic stroke
(41). In the present study, we reveal that Lpa as a positive
factor that increases HT after IVT, which is a novel finding.

Therefore, more detailed studies on the relationship between
lipids and the risk of AIS and HT after IVT may be important
and informative.

It has been demonstrated that lower hemoglobin
levels on admission are associated with hematoma
expansion (HE) after intracranial hemorrhage and worse
clinical outcomes (42). As indicated by the present
study, it was also implicated to be associated with the
development of HT after IVT. This may be the result
of coagulopathies and prolonged bleeding in anemic
patients (43).

There are several limitations in the present study. First,
this was a single-center retrospective study, and this study
requires validation with larger datasets from other sources.
Additionally, the data was too small to further analysis the
prediction of SICH. Second, the algorithm was built from
the input features, and some hidden relationships may have
been ignored because unknown or neglected features were
not evaluated by physicians. Third, the patients did not have
susceptibility-weighted imaging (SWI), which might have led to
an underestimation of HT.
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CONCLUSION

This study demonstrated that machine learning algorithms,
especially the RF model, can improve HT prediction for
ischemic stroke patients after intravenous alteplase. It may aid
clinicians, as well as patients and families, in the process of
decision-making when determining the AIS patient’s eligibility
for thrombolytic treatment.
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