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Abstract 

Intermediate risk acute myeloid leukemia (AML) comprises around 50% of AML patients and is featured with 
heterogeneous clinical outcomes. The study aimed to generate a prediction model to identify intermediate risk 
AML patients with an inferior survival. We performed targeted next generation sequencing analysis for 121 
patients with 2017 European LeukemiaNet-defined intermediate risk AML, revealing 122 mutated genes, with 
24 genes mutated in > 10% of patients. A prognostic nomogram characterized by white blood cell count 
≥10×109/L at diagnosis, mutated DNMT3A and genes involved in signaling pathways was developed for 110 
patients who were with clinical outcomes. Two subgroups were identified: intermediate low risk (ILR; 43.6%, 
48/110) and intermediate high risk (IHR; 56.4%, 62/110). The model was prognostic of overall survival (OS) and 
relapse-free survival (RFS) (OS: Concordance index [C-index]: 0.703, 95%CI: 0.643-0.763; RFS: C-index: 0.681, 
95%CI 0.620-0.741), and was successfully validated with two independent cohorts. Allogeneic hematopoietic 
stem cell transplantation (alloHSCT) reduced the relapse risk of IHR patients (3-year RFS: alloHSCT: 
40.0±12.8% vs. chemotherapy: 8.6±5.8%, P= 0.010). The prediction model can help identify patients with an 
unfavorable prognosis and refine risk-adapted therapy for intermediate risk AML patients. 

Key words: Acute myeloid leukemia; Intermediate risk; Nomogram; Prediction model; allogenic hematopoietic 
stem cell transplantation 

Introduction 
Acute myeloid leukemia (AML) is a 

heterogeneous disease featured with impaired 
differentiation and uncontrolled proliferation of 
myeloid progenitors, accompanied by the 
suppression of normal hematopoietic cells [1-4]. For 
several years, cytogenetics has been used for AML 
risk classification [5-7]. With the advent of next 

generation sequencing (NGS), numerous mutated 
somatic genes have been identified in AML [8-10]. In 
2010, the European LeukemiaNet (ELN) incorporated 
the cytogenetic and molecular characteristics and 
proposed a classification dividing AML patients into 
favorable, intermediate, and adverse risk groups, and 
was revised in 2017 [11, 12]. However, this 
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classification does not completely reflect the 
heterogeneity within each subgroup, in particular, the 
biology and prognosis of patients in the “intermediate 
risk AML” group are highly different. Numerous 
studies have attempted to improve risk stratification 
[13-22]. A study from Karolinska Institute validated 
six of most promising molecular-based models for 
AML risk stratification [17-21]. As expected, these 
models combining molecular and clinical data added 
prognostic value to the current risk classification [23].  

 The more recent 2017 ELN AML classification 
includes molecular data, however, the mutation data 
is restricted to NPM1, CEBPA, TP53, ASXL1, RUNX1 
and FLT3-ITD. Other gene mutations also have 
predictive values for prognosis. For instance, 
DNMT3A mutation can serve as a poor prognostic 
factor in AML [24, 25]. In an intermediate risk AML 
cohort treated at Cleveland Clinic, DNMT3A, U2AF1 
and EZH2 mutations were important prognostic 
factors for overall survival (OS) and relapse-free 
survival (RFS) [26]. Hou et al. re-stratified 229 AML 
patients with intermediate cytogenetics into three 
groups with distinct prognoses based on an 8-gene 
mutation panel including DNMT3A [27].  

 Appropriate post-remission therapy (PRT) for 
intermediate risk AML remains inconclusive [28-30]. 
We previously reported that allogeneic hematopoietic 
stem cell transplantation (alloHSCT) was a preferable 
treatment for intermediate risk AML patients [28]. 
However, long-term survival is discounted by 
non-relapse mortality (NRM). To select the patients 
who would truly benefit from alloHSCT at early stage 
of the disease is the goal of risk stratification. In this 
study, we developed and validated a prediction 
model that combined clinical and molecular profiles. 
The model improved risk stratification by dividing 
intermediate risk patients into two groups with 
distinct prognosis and identified patients for whom 
alloHSCT significantly reduced relapse rates and 
prolonged survival.  

Materials and methods 
Patients 

In total, 265 newly diagnosed AML patients 
(excluding acute promyelocytic leukemia), who were 
diagnosed and treated in Changhai Hospital from 
January 2010 to January 2019, were included, and 
patients who were with Eastern Cooperative 
Oncology Group (ECOG) performance status >3 
(n=3), died from any reasons before or during 
induction (n=4), without bone marrow samples at 
diagnosis (n=2) were excluded. At diagnosis, the 
leukemic DNA of all patients was sampled and 
cryopreserved for mutation analysis. The median 

follow-up duration was 34 months (range: 1-114 
months). The last follow-up was May 31, 2019. 

 

Table 1. Clincal features of intermediate risk AML patients ≤65 
years old. 

Parameters Number of patients 
Total cohort 121 
Males, n (%) 70 (57.9%) 
Females, n (%) 51 (42.1%) 
Median age(range), years 44 (14-65) 
Laboratory parameters  
WBC count, median (range) ×109/L 11.6 (0.5-210.0) 
Platelet count, median (range) ×109/L 31.0 (4.0-561.0) 
Hemoglobin count, median (range) ×g/L 87.5 (42.0-204.0) 
BM blast, median (range) % 64.5 (21.0-98.1) 
LDH, median (range) U/L 260.0 (61.0-2567.0) 
ECOG Performance Status at Diagnosis, n (%)  
≤1 77 (63.6) 
2 38 (31.4) 
3 6 (5.0) 
Normal karyotype 63 (52.0) 
Other 58 (39.7) 
CR reached after  
Cycle1 (early CR) 74 (61.2) 
Cycle2 (late CR) 23 (19.0) 
Other 24 (19.8) 
Hematopoietic stem cell transplantation, n (%)  
No 75 (61.9) 
Yes 46 (38.1) 
Relapse, n (%)  
No 79 (65.3) 
Yes 42 (34.7) 
Death, n (%)  
No 65 (53.7) 
Yes 56 (46.3) 
Treatment, n (%)  
DA 101 (83.5) 
D-CAG 12 (9.9) 
Other 8 (6.6) 
3-year OS, % 48.3±5.1 
3-year RFS, % 36.5±5.0 
Follow-up, median (range) months 35.2 (1.1-102.4) 

Abbreviations: WBC, white blood cell count; BM, bone marrow; LDH, lactate 
dehydrogenase, MRD, minimal residual disease before cycle1, cycle2 or before post 
remission chemotherapy; ECOG, Eastern Cooperative Oncology Group, AML, 
acute myeloid leukemia; FAB, French-American British classification; NOS, 
non-specific type; CR, complete remission; DA, daunorubicin +cytarabine; D-CAG, 
decitabine combined with low-dose arabinosylcytosine (Ara-c), aclarubicin and 
granulocyte colony-stimulating factor (G-CSF); OS, overall survival (with event 
death whatever the cause); RFS, relapse-free survival (with event death in first CR 
or relapse). 

 
 According to the ELN criteria [12], 62 patients 

were classified as having a favorable risk (62/265, 
23.4%), 127 patients with an intermediate risk (47.9%), 
and 76 patients with adverse risk (28.7%). Among 
patients with intermediate risk AML, 121 patients 
were aged ≤ 65 years (Table 1). To build a prediction 
model, 110 of 121 patients with clinical outcomes were 
included (Supplementary Figure S1). Patients with a 
favorable risk had better survival outcomes than those 
with an intermediate and adverse risk, respectively 
(Supplementary Figures S2A-2B). For external 
validation, we used two independent intermediate 
risk AML cohorts. Cohort 1 was ELN intermediate 
risk AML patients from The Cancer Genome Atlas 
(TCGA), who aged between 14 and 65 and treated 
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with intensive therapy (n=41). Because the relapse 
data were not available in TCGA database, we used 
OS data of cohort 1 herein. Cohort 2 was patients aged 
14-65 years with ELN-defined intermediate risk AML 
from Chinese PLA General Hospital (n=99, 
Supplementary Table S1). 

Institutional databases were retrospectively 
reviewed to extract demographic, clinical and genetic 
data. All procedures complied with the tenets of the 
Helsinki Declaration, and approved by respective 
Institutional Review Boards. The requirement for 
written informed consent was waived, owing to the 
non-interventional and retrospective nature of the 
study. 

High-throughput sequencing, data processing 
and variant calling workflow sequencing 

 Genomic DNA was extracted from bone marrow 
samples of the patients at diagnosis using a 
customized kit, and library amplification was 
performed on the basis of the KAPA Hyper Prep Kit, 
and a 210-gene panel (Acornmed Biotechnology, 
Supplementary Table S2) was used to capture the 
target region. Multiplexed libraries were sequenced 
using 150-bp paired-end runs on Illumina Novaseq. 
To ensure the data quality, the following criteria were 
applied to filter the raw variant results: average 
effective sequencing depth of ≥1,000×on target per 
sample; allele mutation frequency ≥0.5% for a single 
nucleotide variation, and insertion or deletion; all 
reads were filtered with a high mapping quality (≥30) 
and base quality (≥30); the mutant reads were 
confirmed in the positive and negative strands. 

Bioinformatics analysis 
Pre-processing of raw sequences and quality 

control statistics were performed using an in-house 
QC package for parameter optimization using FastP 
(0.19.3). The reads were aligned to the hg19 version of 
the human genome using the Burrows-Wheeler 
Alignment tool (BWA, version 0.7.12). PCR duplicates 
were marked using the MarkDuplicates tool in Picard. 
IndelRealigner and BaseRecalibrator from the 
Genome Analysis Toolkit (GATK, version 3.8) were 
used to realign and recalibrate the results of BWA 
alignment, respectively. Mutect2 was used to identify 
the variant calling of single nucleotide variants 
(SNVs), and insertions or deletions (INDELs). 
Candidate variants were obtained through 
background database filtering of normal samples. 
Pindel was used to detect FLT3-ITD. Quantitative 
analysis of FLT3-ITD was performed using in-house 
tools based on machine learning. All variants were 
annotated using the ANNOVAR software. These 
variants were further filtered to exclude synonymous 

variants, as well as SNVs listed as SNPs in the 1000 
Genomes Project database (Oct 2014 release), 
dbSNP142 or our in-house SNP database, but were 
not reported in COSMIC as hematopoietic or somatic 
mutations. 

Treatment protocols 
 The treatment protocols were previously 

reported [28]. In brief, patients achieving complete 
remission (CR) received four cycles of consolidation 
with cytarabine (PR-CT group) or proceeded to 
alloHSCT (alloHSCT group) after at least 2 cycles of 
consolidation, when a matching donor was available. 
In the alloHSCT group, patients were conditioned 
with the myeloablative regimen as previously 
reported [28, 31]. Anti-thymocyte globulin was 
administered to patients with an unrelated or 
mismatched related donor. All transplanted patients 
received cyclosporine, short-term methotrexate, and 
mycophenolate mofetil as prophylaxis for graft versus 
host disease [32].  

Definitions 
 Hematological CR was defined as the presence 

of <5% of blasts in the bone marrow, the absence of 
extramedullary disease, an absolute neutrophil count 
of >1.0×109/L, a platelet (PLT) count of >100×109/L, 
and independence from red blood cell transfusions. 
Relapse was defined as the presence of ≥5% blasts in 
the bone marrow aspirate or peripheral blood, or the 
presence of extramedullary disease. OS was 
calculated from the date of the diagnosis until death 
or the last follow-up, while RFS was measured from 
the date of CR1 until death, the first relapse, or the last 
follow-up in continuous CR. 

Statistical analysis 
Clinical characteristics across groups were 

compared using the chi-square or a two-sided Fisher’s 
exact test for categorical variables, and the t-test or 
nonparametric test was used for continuous variables. 
The Kaplan–Meier method was used to estimate OS 
and RFS. The log-rank test was performed to compare 
the survival curves. As the median time from 
diagnosis to alloHSCT was 123 days, a four-month 
landmark was set for OS in training cohort. For RFS, 
as the median time from CR to alloHSCT was 96 days, 
a three-month landmark was set. Correspondingly, 
three-month and two-month landmarks were set for 
OS and RFS in cohort 2, respectively. (Supplementary 
Table S1) Cumulative incidence of relapse (CIR) and 
NRM were compared between groups as described 
previously by Gray with estimates reported by 
Kalbfleisch and Prentice [33]. 

 Next, we used the Least Absolute Shrinkage and 
Selector Operation (LASSO) Cox regression model to 
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determine prognostic factors from the variables with 
P<0.05 in the log-rank tests, which is a robust method 
widely used to select variables and generate a 
predictive model [34-36]. The penalty parameter λ 
controls the amount of shrinkage, and the λ values 
were chosen by 10-time cross-validations using the 
1-SE criteria. A formula was derived to generate the 
prediction model on the basis of variables selected 
from the LASSO Cox regression model, and weighted 
using the Cox regression coefficient. X-tile plots were 
used to generate the optimum cutoff point for the 
formula [37]. A nomogram was constructed to 
determine the mortality risk among individuals. The 
discrimination of the prediction model was measured 
using the concordance index (C-index) and areas 
under the time-dependent receiver-operating 
characteristics (ROC) curves (AUCs), while the 
calibration of the prediction model was graphically 
explored using calibration plots. A bootstrap with 
1000 re-samples was used for internal validation. 

  SAS 9.4 (SAS Institute Inc., Cary, NC, USA) and 
R 3.5.1 were used for the statistical analysis. The 
following R packages were used: “rms” to construct 
the nomogram, “glmnet” to conduct the LASSO, and 
“survival” and “timeROC” to determine the C-index 
and AUCs, respectively. A P-value of <0.05 was 
considered statistically significant. 

Results 
Treatment outcomes 

Among 121 intermediate risk AML patients aged 
≤65 years, seventy-four patients (74/121, 61.2%) 
achieved CR after one cycle of induction, and 23 
patients (19.0%) after two cycles of induction. 46 
patients (46/121, 38.1%) were treated with alloHSCT, 
and 75 patients (61.9%) received PR-CT. The 3-year 
OS and RFS were 48.3±5.1% and 36.5±5.0%, 
respectively. As expected, survival outcomes were in 
favor of transplantation arm. (OS: alloHSCT 
61.2±8.0%, PR-CT 40.8±6.3%, P=0.044; RFS: alloHSCT 
56.1±8.0%, PR-CT 26.5±5.7%, P=0.003; Supplementary 
Figures S2C-2D).  

 Forty-two patients (34.7%) relapsed. Among 
these patients, eight patients relapsed after alloHSCT. 
The 3-year CIR was significantly lower in patients 
who received alloHSCT when compared to patients 
treated with PR-CT (16.53±0.34% vs. 60.07±0.47%, 
P<0.001, Supplementary Figure S2E). NRM was 
slightly higher in the alloHSCT group than in the 
PR-CT group (24.27±0.48% vs. 9.86±0.15%, P=0.080; 
Supplementary Figure S2F). 

Mutation spectrum 
 In total, 122 mutated genes were detected in 121 

intermediate risk AML patients. Among these, 24 

genes were mutated in more than 10 patients (Figure 
1, Supplementary Table S3, Supplementary Table S4). 
CEBPA (26.4%) and NRAS (26.4%) mutations were the 
most common molecular events for the entire cohort, 
followed by KIT (25.6%), DNMT3A (23.1%) and 
FLT3-ITD (19.8%) mutations (Supplementary Table 
S3). The median number of mutated genes per patient 
was six (range: 0-11), and the median number of 
mutations was seven (range: 0-14). Median variant 
allele frequency (VAF) of these mutated genes was 
0.42. The median VAFs of genes involved in signaling 
pathways was the lowest (0.16), suggesting that 
mutations in signaling pathways were acquired in the 
relatively late phase of AML pathogenesis 
(Supplementary Figure S3).  

 Significant co-occurrence was observed for 
IKZF1 and CEBPA, EZH2 and CEBPA, GATA2 and 
CEBPA, FLT3-ITD and DNMT3A, IDH1 and 
DNMT3A, NPM1 and DNMT3A, ASXL2 and KIT, 
NPM1 and FLT3-ITD mutations (Supplementary 
Figure S4). 

Correlations between molecular profile and 
treatment outcomes 

 Then we analyzed the impact of several 
variables on survival outcomes in 121 intermediate 
risk AML patients who were ≤ 65 years. In univariate 
analysis, an age of ≥55 years old at diagnosis, 
treatment modality (PR-CT), WBC count ≥ 10×109/L 
at diagnosis, and DNMT3A mutation were associated 
with both reduced OS and an increased risk of relapse 
(Supplementary Table S5). To perform a multivariate 
analysis and establish a prognostic prediction model, 
the LASSO method was adopted for simultaneous 
shrinkage and variable selection. The optimal tuning 
parameter identified three variables: mutations in 
signaling pathway genes, DNMT3A mutation status, 
and WBC count at diagnosis, as independent factors 
for OS (Figure 2A, Supplementary Table S6).  

 Next, we evaluated the characteristics of patients 
with DNMT3A (DNMT3Amut) mutation in 
comparison with those with wild type DNMT3A 
(DNMT3Awt) (Supplementary Table S7). It was found 
that DNMT3Amut patients were significantly older 
than DNMT3Awt patients (median: 47 vs. 41 years, 
P=0.009), and more likely to have higher PLT counts 
at diagnosis (median: 91.5 vs. 30×109/L, P=0.011). The 
3-year OS and RFS for DNMT3Amut patients was 
24.0±9.3% and 21.2±9.3%, respectively, and 54.8±5.7% 
and 46.5±5.9% for DNMT3Awt patients (P=0.001 and 
P=0.009, respectively; Supplementary Figures 
S5A-5B). The survival for intermediate risk patients 
with DNMT3Amut (n=28) was as poor as that of 
adverse risk AML patients with the same age group 
(n=65; 3-year OS: 24.0±9.3% vs. 33.3±6.9%, P=0.468; 
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RFS: 20.2±9.3% vs. 39.1±7.4%, P=0.247; Supplementary 
Figures S5C-5D). 

Development of a prediction model combining 
clinical features and mutation profiles  

 A nomogram was developed with the risk 
factors for OS from the multivariate analysis. The risk 
score was calculated using the following equation: 
0.6749 × signaling pathway + 1.1147 × DNMT3A + 
0.7829 × WBC; where signaling pathway and 
DNMT3A equals 1 for the presence and 0 for the 
absence of a respective feature, and WBC equals 1 if 
the WBC count was higher than 10×109/L (Figure 2B). 
The genes in signaling pathways included NRAS, KIT, 
FLT3-ITD, FLT3, KRAS, NF1, NTRK3, MACF1, 
ANKRD26, NOTCH1, CSF3R, PTPN11, CBL, MSH6, 
ATRX, SOCS1, JAK3, JAK2, SH2B3, MAP2K1, PIK3R1, 
PLCG2, ATM, SOS1, TRAF3, IL7R, MAPK1, BTK, 
NOTCH2 and PDGFRB. The presence of any 
mutations in these genes equals 1. The predictive 
accuracy for OS and RFS calculated using the C-index 
was 0.703 (95% CI: 0.643-0.763) and 0.681 (95% CI: 

0.620-0.741), respectively. In the internal validation, 
the corrected C-index of OS was 0.697 after bootstraps 
resampling. Similarly, in the validation calculations, 
the C-index for OS in cohort 1 was 0.708 (95% CI: 
0.620-0.797). In cohort 2, the Cindex of OS and RFS 
was 0.708 (95% CI: 0.638-0.779) and 0.680 (95%CI: 
0.617-0.744), respectively. 

The calibration curves of the alternative 
nomogram to predict the 3-year OS presented in 
Figures 2C-2E suggested a good fit for the observed 
nomogram, when compared with the ideal 
nomogram. The panel displayed an AUC value of 
0.753 (95% CI: 0.656-0.849) at 1-year OS, 0.751 (95% CI: 
0.643-0.860) at 3-year OS, and 0.772 (95% CI: 
0.658-0.885) at 5-year OS (Figure 2F). For validation 
sets, the panel had high AUC values at these 
timepoints (cohort 1: 0.776 [95% CI: 0.627-0.924], 0.774 
[95% CI: 0.625-0.923], and 0.923 [95% CI: 0.829-1.000], 
respectively; cohort 2: 0.720 [95% CI: 0.600-0.840], 
0.741 [95%CI: 0.624-0.858], and 0.697 [95%CI: 
0.553-0.840]; Figure 2G-2H). 

 

 
Figure 1. The mutation spectrum of intermediate risk AML patients (n=121). The frequency of mutations detected in ≥ 10 patients. The bars are color-coded in accordance with 
the common functional classification of pathways assigned to each mutated gene. CEBPA and NRAS mutation frequencies were the highest (CEBPA: n=32, 26.4%; NRAS: n=32, 
26.4%), followed by those of KIT (n=31, 25.6%), DNMT3A (n=28, 23.1%), and FLT-ITD (n=24, 19.8%). 
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Table 2. Basic characteristics of patients according to the proposed risk score in intermediate risk AML patients (n=110), the cohort 
1(n=41) and cohort 2 (n=99). 
Variables ELN defined intermediate risk AML (n=110) Cohort 1 (TCGA) (n=41) Cohort 2 (n=99) 

ILR (risk score < 1) 
(n=48) 

IHR (risk score ≥ 1) 
(n=62) 

P ILR 
(n=13) 

IHR 
(n=28) 

P ILR 
(n=56) 

IHR 
(n=43) 

P 

Score median (range) 0.67 (0,0.67) 1.46 (1.11,2.57) <0.001 0.78 (0, 78) 1.79 (1.46,2.57) <0.001 0.67 (0, 0.78) 1.46 (1.11, 2.57) <0.001 
Gender, males, n (%) 31 (64.58) 34 (54.84) 0.303 8 (61.54) 11 (39.29) 0.184 32 (57.14) 23 (53.49) 0.717 
 Females, n (%) 17 (35.42) 28 (45.16)  5 (38.46) 17 (60.71)  24 (42.86) 20 (46.51)  
Age, median (range), years 44 (16, 61) 44.5 (14, 65) 0.290 51 (22,63) 56.5 (25,65) 0.227 44 (19,64) 43 (15,65) 0.432 
Laboratory parameters          
WBC count, median (range)×109/L 4.35 (0.54, 207.73) 25.17 (0.70,210) <0.001 12.1 (0.6,50.3) 47 (1.20,202.70) 0.001 4.94 (1.10,202.13) 53.80 (3.60,405.13) <0.001 
PLT, median (range) ×109/L  30 (4, 268) 51.5 (5, 561) 0.139 NA NA NA NA NA  
Hb, median (g/L, range) 86 (47, 148) 88.5 (2, 204) 0.519 NA NA NA NA NA  
BM blast, median (range) % 63 (22, 96.5) 67 (21,98) 0.734 61 (34,95) 81.5 (39,100) 0.025 57 (21.5,94.2) 73.6 (20,94.4) 0.037 
LDH, median (range) U/L 226 (61, 1370) 353 (97, 2567) 0.003 NA NA NA NA NA  
ECOG at diagnosis, n (%)   0.595 NA NA NA NA NA NA 
≤1 32 (66.67) 38 (61.29)  NA NA NA NA NA NA 
2 15 (31.25) 20 (32.26)  NA NA NA NA NA NA 
3 1 (2.08) 4 (6.45)  NA NA NA NA NA NA 
DNMT3A mutation   <0.001   <0.001   <0.001 
No 48 (100) 37 (59.68)  13 (100) 11 (39.29)  56 (100) 25 (58.14)  
Yes 0 (0) 25 (40.32)  0 (0) 17 (60.71)  0 (0) 18 (41.86)  
Mutations in signaling Pathway   <0.001       
No 20 (41.67) 5 (8.06)  12 (92.31) 4 (14.29) <0.001 39 (69.64) 3 (6.98) <0.001 
Yes 28 (58.33) 57 (91.94)  1 (7.69) 24 (85.71)  17 (30.36) 40 (93.02)  
Cytogenetics, n (%)   0.016   0.790   0.022 
Normal karyotype 32 (66.67) 27 (43.55)  8 (61.54) 16 (57.14)  29 (51.79) 32(74.42)  
Other 16 (33.33) 35 (56.45)  5 (38.46) 12 (39.29)  27 (48.21) 11 (25.58)  
CR reached after   0.017   NA   0.246 
Cycle1 (early CR) 31 (64.58) 37 (59.68)  NA NA  34 (60.71) 22 (51.16)  
Cycle2 (late CR) 13 (27.09) 8 (12.90)  NA NA  15 (26.79) 10 (23.26)  
Other 4 (8.33) 17 (27.42)  NA NA  7 (12.50) 11 (25.58)  
alloHSCT, n (%)   0.597   0.790    
No 31 (64.58) 43 (69.35)  5 (38.46) 12 (42.86)  38 (67.86) 26 (60.47) 0.446 
Yes 17 (35.42) 19 (30.65)  8 (61.54) 16 (57.14)  18 (32.14) 17 (39.53)  
Relapse, n (%)   0.484   NA   0.036 
No 34 (70.83) 40 (64.52)  NA NA  38 (67.86) 37 (86.05)  
Yes 14 (29.17) 22 (35.48)  NA NA  18 (32.14) 6 (13.95)  
3-year OS (%) 72.3±7.2 29.5±6.6 <0.0001 57.7±14.7 26.2±8.7 0.019 75.7±6.6 32.2±7.8 <0.0001 
3-year RFS (%) 63.9±7.6 19.4±6.3 <0.0001 NA NA NA 52.5±7.1 9.6±5.1 <0.0001 

Abbreviations: WBC, white blood cells; PLT, platelet; Hb, hemoglobin; BM, bone marrow; LDH, lactate dehydrogenase; CR, complete remission; OS, overall survival; RFS, 
relapse free survival; NA, not available. 

 
The cut-off point of these risk scores was 1.00. 

Accordingly, the patients were divided into two 
subgroups: intermediated-low risk (ILR) group (risk 
score <1, n=48) and intermediated-high risk (IHR) 
group (risk score ≥1, n=62). The comparison of clinical 
characteristics between derivation and validation 
groups is presented in Table 2. The 3-year OS and RFS 
in patients with ILR AML were significantly better 
than those of patients with IHR AML (3-year OS: 
72.3±7.2% vs. 29.5±6.6%, P<0.0001, Figure 3A; 3-year 
RFS: 63.9±7.6% vs. 19.4±6.3%, P<0.0001; Figure 3B). 
Similar results were obtained in the validation of 
cohort 1 (ILR vs. IHR: 3-year OS, 57.7±14.7% vs. 
26.2±8.7%, P=0.019; Figure 3C) and cohort 2 (ILR vs. 
IHR: 3-year OS, 75.7±6.6% vs. 32.2±7.8%, P<0.0001; 
3-year RFS: 52.5±7.1% vs. 9.6±5.1%, P< 0.0001; Figure 
3D-3E). A risk score of ≥1 indicated a risk of 4.43 (95% 
CI: 2.30-8.52, P<0.0001) for death and 3.10 (95% CI: 
1.72-5.59, P<0.0001) for relapse. As shown in 
Supplementary Figure S6, the prognosis of patients 
with a risk score of ≥1 was as poor as those of adverse 
risk AML (n=65, 3-year OS: 29.5±6.6% vs. 33.3±6.9%, 
P=0.794; 3-year RFS: 19.4±6.3% vs. 39.1±7.4, P=0.294).  

Furthermore, the prognosis of patients in the two 
subgroups with different PRT was evaluated by 
landmark analysis. PRT modalities did not influence 
the survival of ILR patients at the landmark date 
(3-year OS: PR-CT: 70.8±9.4% vs. alloHSCT: 
65.4±13.1%, P=0.936; 3-year RFS: PR-CT: 55.0±10.2% 
vs. alloHSCT: 66.8±12.8%, P=0.225; Figures 4A-4B). 
However, patients in the IHR group who underwent 
alloHSCT had a survival advantage over those treated 
with PR-CT (3-year OS: 51.6±12.0% vs. 22.3±7.4%, 
P=0.043; 3-year RFS: 40.0±12.8% vs. 8.6±5.8%, P= 
0.010; Figures 4C-4D). Due to the unavailable data in 
cohort 1, the landmark analysis was only performed 
in cohort 2. Consistent results were observed (Figure 4 
E-4H). 

Comparison of prediction model  
To assess the quality and value of the present 

prediction model in intermediate-risk AML, we 
compared the AUCs of this model with other 
published prediction models in training set, which 
were PINA score (including NPM1, FLT3-ITD, 
CEBPA, WBC, age and ECOG) [38], Yang’ score 
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system [including age, hematopoietic cell 
transplantation-comorbidity index (HCT-CI), WBC, 
Hb, CEBPA, DNMT3A, FLT3-ITD, NPM1, ELN risk 
status] [39], and CPSS score (including age, FAB, 
LDH, ECOG, cytogenetics, favorable or unfavorable 
gene mutations, chromatin-spliceosome) [40]. As 
shown in Figure 5, the AUC of the present model was 
higher than other three models in predicting 3-year 
OS, although only the difference between our model 
and PINA score was significant [0.751 (95%CI: 
0.643-0.860) vs. 0.587 (95%CI: 0.462-0.712), P=0.016]. 
For 3-year RFS, our model showed statistically higher 
AUC than others [our score: 0.761 (95%CI: 
0.652-0.871), PINA score: 0.592 (0.463-0.721), Yang’s 
score: 0.548 (0.415-0.680), CPSS score: 0.563 
(0.422-0.704), all P values <0.05].  

Discussion 
Most studies on the mutation landscape of AML 

have focused on general AML population, AML with 
normal cytogenetics, or the comparison of mutation 
spectrums between young and old patients [26, 41-44]. 
In the present study, intermediate risk patients were 
recruited in accordance with the 2017 ELN criteria 
with strict age limits to increase the homogeneity of 
the population. It was found that 99.2% (120/121) of 
AML patients had at least one mutation detected by 
targeted NGS. Consistent with previous reports [22, 
45, 46], only 24 genes were mutated in > 10% patients, 
with CEBPA and NRAS mutations being the most 
common (26.4%). In a recent study reported by Wang 
et al., the frequency of CEBPA mutation in 

intermediate risk AML was similar to our 
observations (28.4%) [46]. Previous studies reported a 
specific association between CEBPA and GATA2 
transcription factor mutations was observed in 
35%-39% of cases [42, 47]. GATA2 mutation was also 
detected in 24.2% of patients with CEBPA mutations 
in our cohort. The frequency of NPM1 mutations in 
the present cohort (11%) was lower than that reported 
in other studies [16, 46, 48]. Mutated NPM1 without 
FLT3-ITD or with FLT3-ITDlow is categorized as 
favorable risk in 2017 ELN classification, thus 
decreasing the NPM1 mutation frequency in 
intermediate-risk group.  

 The prognostic value of DNMT3A mutations in 
AML has been previously reported [26, 48, 49]. Young 
patients with DNMT3A mutation were predisposed to 
have a lower CR rate after induction therapy [48]. 
Herein, there were not any strong connections 
between DNMT3A mutation and CR rate. In a large 
cohort of AML patients reported by Ley et al., [24] 
DNMT3A mutation was an independent predictor for 
inferior survival in patients with intermediate risk 
cytogenetics. DNMT3A R882H mutation exerts a 
dramatic effect on transcriptional regulation [50]. In a 
DNMT3A R882H mutant model, a significant increase 
in PLT count were observed along with Mpl 
upregulation. The protein encoded by Mpl, regulates 
both megakaryocytic progenitors and other myeloid 
progenitor cells [51]. Consistent with our previous 
study, DNMT3Amut patients were predisposed to 
higher PLT counts (≥40×109/L) at diagnosis, and 
higher PLT counts were associated with poor survival 

 
Figure 2. Nomogram for patients with intermediate risk AML. (A) Cross-validation for tuning parameter selection in the LASSO model. The solid vertical lines are binomial 
deviance±standard error (SE). Dotted vertical lines were drawn at the optimal values per the minimum criteria and 1-SE criteria. We plotted the partial likelihood deviance versus 
log (λ), where λ is the tuning parameter.Herein, a value of ln(λ)=-2.12 was selected through 10-time cross-validations via 1-SE criteria. (B) The nomogram based on data from 110 
intermediate risk AML patients to predict individual prognosis. The calibration curves of an alternative nomogram to predict 3-year OS of intermediate risk AML patients (C, 
n=110), cohort 1 (D, n=41) and cohort 2 (E, n=99). The x-axis represents the predicted survival probability calculated using the nomogram, while the y-axis represents the actual 
survival probability for patients in the present study. The gold 45-degree line represents the ideal nomogram, while the black line represents the observed nomogram. The AUC 
values were 0.772-0.753 (F), 0.774-0.923 (G) and 0.697-0.741 (H) in the 110 intermediate risk AML patients, cohort1 and cohort 2, respectively. 
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outcome in intermediate risk group [52]. On the other 
hand, concomitant mutation of NPM1 and FLT-ITD 
with DNMT3A was observed in our cohort as 
frequently found in other independent cohorts [53, 
54]. Guryanova et al. reported the interactions among 
the three mutated genes [55]. It was recently reported 

that simultaneous mutations in the three genes was 
highly associated with the expression of GPR56, a 
leukemia stem cell marker [56]. These evidences 
further demonstrated that the three-gene mutated 
AML was with very poor outcome.  

 

 
Figure 3. Kaplan-Meier curves for OS and RFS for patients withwith different risk score. (A) OS; (B) RFS. The results were validated in cohort 1 (C) and cohort 2 (D-E). 
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Figure 4. Kaplan-Meier curves for OS and RFS. (A) OS and (B) RFS according to different PRT modalites in ILR group of the training cohort. (C) OS and (D) RFS according to 
different PRT modalites in IHR group of the training cohort. A landmark was set at 4 months for OS and 3 months for RFS in the training cohort. (E) OS and (F) RFS according 
to different PRT modalites in ILR group of cohort 2. (G) OS and (H) RFS according to different PRT modalites in IHR group of cohort 2. A landmark was set at 3 months for OS 
and 2 months for RFS in cohort 2. 
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Figure 5. The comparison between the present prediction model for intermediate-risk AML and published models in the training set. ROCs of the prediction model for 
intermediate-risk AML, PINA score, Yang’s score system, and CPSS score. (A) time-dependent ROC curve at 3-year OS; (B) time-dependent ROC curve at 3-year RFS. 

 
 Long-term survival widely varied among 

intermediate risk AML patients. The ELN stratified 
cytogenetically normal AML patients into two risk 
groups with the mutation profiles of NPM1, FLT3-ITD 
and CEBPA [11]. The reference models with which 
our prediction model should be compared are the 
studies from Patel and Hou’s [22, 27]. They developed 
18- and 8-gene panels, respectively, to reclassify 
cytogenetic intermediate-risk AML into favorable, 
intermediate and unfavorable subgroups. These 
studies, including Wakita’s [57], potentially reduced 
the proportion of intermediate-risk AML patients, 
however, these risk profiles were not correlated with 
treatment modalities. The models identified patients 
with high risk, but not those for whom alloHSCT 
significantly prolonged the RFS. We did not observe 
distinct benefits of alloHSCT for low risk patients 
within our predictive model. Nevertheless, we 
demonstrated that alloHSCT would benefit for 
intermediate risk patients with high risk score, which 
suggested that high-risk patients benefit substantially 
from alloHSCT. Tsai et al. recently incorporated long 
non-coding RNA (IncRNA) expression profiles to 
refine the 2017 ELN risk classification [58]. The 
IncRNA scoring system helped dichotomize patients 
into two groups. However, their intermediate-risk 
group was a very small cohort (n=29). Additionally, 
analysis of IncRNA expression was costly and not 
widely applicable in clinical settings, thus restricting 
its widespread application. To our knowledge, our 
study is the first to comprehensively investigate 
genetic alterations in 2017 ELN intermediate risk 
AML. Based on the prediction model we proposed, 
intermediate risk AML patients who can truly benefit 

from alloHSCT over chemotherapy can be easily and 
precisely identified upon diagnosis with a higher 
efficiency as shown in Figure 5.  

The risk profile was derived from the 
retrospective study is the potential limitation to our 
work. Furthermore, the sizes of the derivation and 
validation cohorts are relatively small. Further 
prospective studies with more patients recruited are 
needed to verify this point.  

In conclusion, we described the genetic mutation 
landscape of young patients with intermediate risk 
AML. The integration of clinical and molecular 
profiles would allow evaluation of the possible 
benefits of alloHSCT for IHR patients who can be 
rapidly recognized by at diagnosis.  
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