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Abstract: A small gram-negative bacterium, Coxiella burnetii (C. burnetii), is responsible for a zoonosis
called Q fever. C. burnetii is an intracellular bacterium that can survive inside microbicidal cells like
monocytes and macrophages by hijacking several functions of the immune system. Among several
virulence factors, the lipopolysaccharide (LPS) of C. burnetii is one of the major factors involved
in this immune hijacking because of its atypical composition and structure. Thus, the aim of this
mini-review is to summarize the repressive effects of C. burnetii LPS on the antibacterial immunity
of cells.
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1. Introduction

Coxiella burnetii is an intracellular bacterium responsible for a worldwide zoonosis known as Q
fever [1,2]. After primary infection, approximately 60% of humans remain asymptomatic, while 40%
manifest clinical signs consisting of isolated fever, hepatitis, and pneumonia [3]. The principal clinical
manifestation of Q fever is endocarditis with a lethal prognosis without treatment. The treatment
involves a combination of doxycycline and hydroxychloroquine [1,3]. However, this long-term
treatment carries the persistent risk of relapse [4].

C. burnetii is a small bacterium measuring approximately 0.2 to 0.4 µm wide and 0.4 to 1 µm long,
and it has been classified in the Proteobacteria subdivision based on its 16S ribosomal RNA sequence.
As C. burnetii harbours lipopolysaccharide (LPS) in its membrane, it is defined as a gram-negative
bacterium. Though C. burnetii is not stained by Gram stain, it can be stained by Gimenez stain [5].
C. burnetii primarily infects domestic ruminants and pets, but arthropods have also been found to be
infected. In animals, the infection is asymptomatic but induces abortions in livestock. Both abortion
and parturition contribute to the bacteria spreading into the environment, since the placenta of infected
animals contains large amounts of C. burnetii. Contamination via aerosols also remains the major route
of infection in both animals and humans [3,6]. C. burnetii has been categorized as a biological weapon
due to its high infectivity, the possibility of producing large quantities of bacteria, its environmental
stability through a sporulation-like mechanism, and its dispersion via aerosolization [7,8]. C. burnetii
was likely used as a bio-weapon during World War II, as a Q fever outbreak was observed during this
time among army troops [9].

C. burnetii resides primarily within myeloid cells (monocytes and macrophages) [10,11] but has
also been shown to infect trophoblasts [12] and adipocytes [13]. The adaptation of C. burnetii to
its environment is probably critical for its survival. To survive within its host, C. burnetii interferes
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with the host’s antimicrobial response (immunity and phagolysosome biogenesis). For this purpose,
C. burnetii has an arsenal of virulence factors [14–17], including LPS [18]. The molecular variations
observed in C. burnetii LPS, a major component of its outer membrane, contribute to its pathogenic
properties [19–21]. Moreover, the intracellular fate of virulent C. burnetii in myeloid cells is also
determined by its LPS composition [18].

2. Coxiella burnetii LPS: Structure and Composition

As observed in enterobacteria, C. burnetii displays antigenic variations, from a smooth-rough form
called Phase I to a rough form known as Phase II. The Phase I form is isolated from natural sources
and defined as a virulent form of C. burnetii. It is characterized by full-length LPS and survives inside
monocytes and macrophages [10,11]. After several passages of the virulent C. burnetii in embryonated
eggs or tissue culture, an irreversible modification is observed in the molecular weight of C. burnetii
LPS. C. burnetii harbouring a truncated LPS is defined as an avirulent microorganism and eliminated
by monocytes and macrophages [22,23]. This avirulent form does not exist in the natural environment.
It was shown that this LPS modification occurs due to a genomic deletion [3]. The difference between
the virulent and avirulent forms of C. burnetii lies in the O-antigen; specifically, LPS from virulent
C. burnetii has an O-antigen that contains unusual sugars, L-virenose, dihydrohydroxystreptose,
and galactosamine uronyl-α-(1,6)-glucosamine residues, whereas LPS from the avirulent form does
not have any O-antigen [19–21,24–32]. Virenose and dihydrohydroxystreptose have not been found in
any other enterobacterial LPSs and are thus unique biomarkers of virulent C. burnetii. Interestingly,
the lipid A molecules of both virulent and avirulent C. burnetii display the same ionic species and
fragmentation profiles in mass spectrometry, suggesting that they have very similar and likely identical
structures. The C. burnetii lipid A structure differs considerably from the published standard form
of enterobacterial lipid A. An analysis of lipid A from C. burnetii identified two major tetra-acylated
molecular species sharing the classical backbone of a dephosphorylated GlcN (acylated D-glucosamine
residues) disaccharide in which both GlcN I and GlcN II carry an amide-linked iso or normal (n)
C16:0(3-OH) [24,33]. The core polysaccharide is conserved between virulent and avirulent C. burnetii
LPSs and contains a heptasaccharide localized in the proximal region of lipid A. The heptasaccharide is
formed by two terminal D-mannoses (Man), 2- and 3,4-linked D-glycero-D-manno-heptoses, and terminal
4- and 4,5-linked 3-deoxy-D-manno-oct-2-ulosonic acid residues [20,29]. It is important to note that a
third C. burnetii LPS has been identified as an intermediate-length LPS at the surface of the Nine Mile
Crazy strain [34]. Large chromosomal deletions have been found in these avirulent C. burnetii Nine
Mile and Nine Mile Crazy strains [35]. These deletions eliminate open reading frames involved in
the biosynthesis of O-antigen sugars, including the rare sugar virenose [35]. The description of the
virenose biosynthesis pathway suggests the formation of GDP-β-D-virenose via the modification of
GDP-L-fucose by the addition of a methyl group at position C3”, and perhaps the open reading frame
CBU0691, and the inversion of the stereochemistry at position C2” [36].

3. C. burnetii LPS Interferes with Phagocytosis

It is known that phagocytosis efficiency depends on the activation of phagocytic receptor CR3
(complement receptor-3) through αvβ3 integrin and CD47 (integrin-associated protein). C. burnetii,
via its LPS, subverts receptor-mediated phagocytosis [22] by inhibiting the interplay between integrins,
including CR3, remodelling the actin cytoskeleton organization, and activating protein tyrosine kinases.
This strategy possibly determines the evolution of Q fever. C. burnetii, via its LPS, interacts with
macrophages through αvβ3 integrins, and avoids internalization by inhibiting the interaction between
αvβ3 integrins and CR3, which is essential for bacterial uptake [22,37]. Inhibition of the interplay
between αvβ3 integrins and CR3 leads to poor internalization of virulent C. burnetii compared with
its avirulent form, which harbours a truncated LPS and is largely internalized by monocytes and
macrophages. Interestingly, the inhibitory mechanism mediated by virulent C. burnetii through its LPS
does not target CD47 [22]. Note that CR3, not αvβ3 integrin, is excluded from the cytoskeleton
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protrusions formed during the cytoskeleton reorganization induced by virulent C. burnetii LPS,
thus decreasing the efficiency of phagocytosis [22,37,38]. An in-depth analysis has demonstrated that
the uptake of avirulent C. burnetii requires both CD11b/CD18 and CR3, whereas virulent organism
internalization does not involve CR3. It has been shown that the LPS from virulent C. burnetii prevents
the activation of CR3 by interfering with its lectin sites [22]. This leads to conformational changes in
the I domain and in the exposure of activation epitopes and cytoskeleton reorganization [39].

Finally, virulent C. burnetii induces early protein tyrosine kinase activation as well as the tyrosine
phosphorylation of two Src-related kinases: Hck and Lyn [40]. By contrast, the avirulent form does
not stimulate protein tyrosine kinases. Tyrosine-phosphorylated proteins co-localize with F-actin
inside protrusions. Cell membrane protrusions are induced via the activation of protein tyrosine
kinases by C. burnetii LPS, which in turn down-modulates C. burnetii uptake [40,41]. The use
of protein tyrosine kinase inhibitors rescues C. burnetii phagocytosis. It has been hypothesized
that the membrane ruffling induced by protein tyrosine kinase activation may interfere with the
co-localization of CR3 with αvβ3 integrin and C. burnetii [42,43]. It has also been shown that
C. burnetii LPS interferes with Toll Like Receptor (TLR)-2 and TLR-4 signalling through cytoskeleton
reorganization [38,41,42]. Indeed, cytoskeleton reorganization induces a redistribution of TLR-2 and
TLR-4 on the membrane of macrophages. This redistribution disrupts the colocalization between TLR-2
and TLR-4, in contrast to what is observed in macrophages challenged with LPS from the avirulent
strain of C. burnetii. Co-immunoprecipitation experiments have revealed that a possible physical link
between TLR-2 and TLR-4 is broken in cells challenged with virulent C. burnetii LPS. As a consequence,
p38α Mitogen-Activated Protein Kinase (MAPK) is not activated in macrophages challenged with
virulent C. burnetii and LPS extracted from virulent C. burnetii [18,41,44]. However, the existence of a
TLR2/TLR4/p38α MAPK axis in C. burnetii infection remains to be demonstrated.

4. C. burnetii LPS Interferes with the Antibacterial Immune Response

Macrophage immune polarization is reoriented by C. burnetii to deactivate the macrophage
microbicidal response [45,46]. Indeed, C. burnetii is responsible for atypical M2 macrophage activation,
and it has been shown to induce expression of M2 polarization-related genes (transforming growth
factor-β1, interleukin (IL)-1 receptor antagonist, Chemokine (C-C motif) ligand (CCL)18, mannose
receptor, arginase-1). By contrast, the expression of genes related to M1 polarization (tumor necrosis
factor, CD80, C-C chemokine receptor type (CCR)7) is inhibited. It is interesting to note that the
expression of arginase-1 is associated with the absence of nitric oxide production, while the expression
of the Interleukin (IL)-6 and Chemokine (C-X-C motif) ligand (CXCL)8 genes (M1-related genes) is
increased, although their proteins are weakly secreted [45]. In addition, monocytes produce high
levels of IL-10 in response to C. burnetii or its LPS. IL-10 favours the persistence of C. burnetii by
down-regulating the expression of tumor necrosis factor [47–49]. It is also responsible for the expression
of Programmed cell Death protein (PD)-1 by monocytes in vitro, and most likely, in patients with Q fever
endocarditis. The LPS of C. burnetii does not induce the expression of PD-1 by monocytes. PD-1
delivers an inhibitory signal to T cells [50,51], and its expression in Q fever contributes to the immune
suppression observed in Q fever endocarditis [52].

5. C. burnetii LPS as a Determinant Factor in Phagolysosome Biogenesis

In human macrophages, it has been observed that, in contrast to virulent C. burnetii, the avirulent
form is quickly eliminated in degradative phagolysosome-like compartments [11,47]. Their replication
is partially controlled in resident mouse peritoneal macrophages [53]. Immediately after phagocytosis,
both virulent and avirulent forms of C. burnetii are localized within an early phagosome, transiently
harbouring EEA1 (early endosome auto-antigen-1). This early phagosome undergoes a maturation
process and is transformed into a late phagosome, presenting the markers Lamp-1, CD63,
mannose-6-phosphate receptor, and V-H+ATPase and possessing an acidic pH. The major difference
between the compartments containing virulent and avirulent forms of C. burnetii is the absence of the
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small GTPase Rab7 at the surface of the phagosome containing the virulent C. burnetii [11,17,18,23].
In contrast to the vacuole with avirulent bacteria, the phagosome containing the virulent strain
of C. burnetii does not mature in phagolysosomes [23]. Surprisingly, the intracellular trafficking
of C. burnetii LPS is similar to the trafficking of intact bacteria. Indeed, the LPSs from virulent and
avirulent C. burnetii traffic through early phagosomes characterized by the presence of the small GTPase
Rab5 and EEA1 [18,54]. Nevertheless, endosomes containing LPS purified from avirulent bacteria
develop into late endosomes (Rab7, Lamp1) and then into lysosomes containing the lysosomal enzyme
cathepsin D. The endosomes transporting LPS isolated from virulent bacteria mature from early to late
endosomes but do not become lysosomes. Interestingly, in terms of intact C. burnetii, late endosomes
containing LPS do not express the Rab7 protein on their surface [18,23,55]. This result suggests that
LPS is responsible for blocking phagolysosome maturation induced by C. burnetii. Investigations
of C. burnetii LPS have demonstrated that the LPS from pathogenic C. burnetii does not induce the
phosphorylation of p38α MAPK by Mitogen-Activated Protein Kinase Kinase (MKK)6. This defect in
the activation of p38α MAPK prevents the serine phosphorylation (S796E) of Vps41. In the absence of
phosphorylation, Vps41 does not promote the targeting of the HOPS (homotypic fusion and protein
sorting) complex to endosome–vacuole fusion sites, and thus it fails to recruit the GTP-bound Rab7
required for phagosome–lysosome fusion [56–61]. The absence of p38α MAPK activation is most
likely due to the engagement of TLR4 by two unusual sugars, virenose and dihydrohydroxystreptose,
present in the LPS of pathogenic C. burnetii. Thus, LPS from virulent C. burnetii acts as an antagonist
of TLR-4.

6. Concluding Remarks

Collectively, this evidence highlights the importance of LPS and its composition in the strategies
used by C. burnetii to infect cells and develop an efficient infection that leads to Q fever. It is interesting
to observe that the particular composition of C. burnetii LPS allows several axes of the immune
response to be modulated, ranging from phagocytosis to vesicular trafficking. Certainly, the virulence
of C. burnetii does not only depend on LPS, as other virulence factors have been identified in
C. burnetii [11,14]. The recent successful culturing of C. burnetii in axenic conditions might significantly
develop our understanding of C. burnetii infection by facilitating the identification of new virulence
factors [62,63]. Further work is required to understand the mechanisms implied in anti-microbicidal
response hijacking. It might be interesting to generate transgenic Escherichia coli expressing the LPSs
from both the virulent and avirulent C. burnetii to better understand LPS action. Similarly, as several
new C. burnetii strains that cause severe Q fever have been isolated [2], it will be interesting to analyse
their LPS composition to determine if the virulence and clinical issues observed are linked to any
particular structure or composition of LPS.
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