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ABSTRACT
Background. Cancer is a disease of abnormal cell proliferation caused by abnormal
expression of cancer-related genes. However, it is still difficult to distinguish benign
and malignant lesions in many cases. KIF4A has been reported to be associated with
a variety of cancer lesions. We aimed to explore whether KIF4A could be used as a
biomarker of pan-cancer diagnostic.
Methods. We identified twenty-eight cell cycle-related genes that were overexpressed in
no less than ten types of cancer. We determined KIF4A mRNA and protein expression
in osteosarcoma (OS) cells. Furthermore, to determine the effect of KIF4A in OS,
we silenced KIF4A in OS cells and detected cell viability, colony formation, invasion,
migration, apoptosis and cell cycle parameters.
Results. KIF4A exhibited upregulated expression in eleven types of cancer. Cell
cycle-related genes are extensively overexpressed in various types of cancers. KIF4A
overexpression can serve as a diagnostic and prognostic marker in various cancers.
Silencing KIF4A inhibited the viability, colony formation, invasion and migration and
induced apoptosis and cell cycle arrest of OS cells. Our findings revealed that high
expression of KIF4A could serve as a diagnostic and prognostic marker in OS cancers.
Conclusion. KIF4A could serve as a pan-cancer diagnostic and prognostic marker.
KIF4A could be used as a novel therapeutic target for OS.

Subjects Bioinformatics, Cell Biology, Oncology, Orthopedics, Medical Genetics
Keywords Bioinformatics analysis, Chromosome instability biomarker, KIF4A, OS

INTRODUCTION
Osteosarcoma (OS) is the most common malignant bone tumor in the world (accounting
for nearly 60% of bone malignant tumors), which seriously affects the daily life of
patients (Gianferante & Mirabello, 2017). Essentially, cancer is a disease of abnormal
cell proliferation caused by accumulated genomic mutations (Hu et al., 2018). Previous
studies in molecular medicine have divided cancers into increasingly specific molecular
subtypes according to their specific genomic status or transcriptome pattern, which has
greatly improved the prognosis of many cancer types (Yang, Wang & Zheng, 2019;Hu et al.,
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2019; Knight et al., 2020). However, it is still difficult to distinguish benign and malignant
lesions in many cases. There is an urgent need for effective treatment. Therefore, it is
necessary to identify different cancers according to the current trend of developing more
precise drugs.

Transcriptome analysis to identify differential gene expression between tumor and
paired normal tissues can help to reveal the key process of cell proliferation in cancer.
RNA-seq data from the Cancer Genome Atlas (TCGA) dataset could systematically analyze
the expression profiles of bidirectional genes and gene pairs in cancer (Tu & Li, 2019).
We plan to screen RNA-seq data covering dozens of cancers and matched normal tissues
from TCGA. We will further use bioinformatics to analyze whether KIF4A is involved in
chromosome segregation and whether it is abnormally expressed in various types of cancer.

The KIF4A gene encodes the chromokinesin protein KIF4A, an Adenosine triphosphate
(ATP) dependent molecular motor that promotes mitotic chromosome condensation and
segregation (Mazumdar, Sundareshan & Misteli, 2004). KIF4A can also directly bind to
chromatin and participate in DNA damage repair by associating with BRCA2 (Wu & Chen,
2008; Wu et al., 2008). Many studies have noted the presence of upregulated expression of
KIF4A in various cancer tissues and its positive correlation with poor prognosis (Hou et
al., 2017; Narayan et al., 2007; Taniwaki et al., 2007;Minakawa et al., 2013).

However, the role of KIF4A in OS remains unknown. We studied the role of KIF4A
in OS cells. Our results indicated that KIF4A could be a predictive factor and therapeutic
target in OS.

MATERIAL AND METHODS
The Cancer Genome Atlas (TCGA) dataset
Data acquisition and analysis were conducted using R software (version 3.5.1 or above),
unless otherwise mentioned. RNA-seq and clinical data were downloaded using the
TCGA Biolinks R/Bioconductor package (version 2.10.5) (Colaprico et al., 2016; Le, 2020).
Generally, we used TCGA Biolinks to download all available samples with Illumina HiSeq
RNASeqV2 data from 33 cancer types.

Data analysis, gene network analysis and pathway enrichment
analysis
The fragments per kilobase of transcript per million fragments mapped (FPKM) parameter
is the most commonly used normalization method for analyzing RNA transcript reads.
The upper quantile normalized FPKM (FPKM-UQ ) method have used the upper quantile
gene count instead of the total gene count for normalization , which is considered to have
superior sensitivity in the identification of gene differential expression (Hsu, 2020; Bullard,
2010). In this study, FPKM-UQ RNA-seq data were downloaded and prepared using the
GDC query, GDC download, and GDC prepare functions. All analysis codes used are freely
available at https://github.com/hutaobo/prognosis.

Cell culture and transfection
The normal osteoblast cell line hFOB1.19 and the human OS cell lines MG63, U2OS and
HOS were purchased from the Cell Bank of the Chinese Academy of Sciences and cultured
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in 5% CO2 at 37 ◦C in DMEM (Sigma) containing 10% FBS (Gibco), 100 U/ml penicillin
and 100 pg/ml streptomycin. The cells were evaluated in the logarithmic growth phase. A
siRNA against KIF4A (siKIF4A) and EX-A3631-Lv105 (oe-KIF4A, GeneCopoeia, Inc.) were
purchased, and the transfection was performed using Lipofectamine 2000 (Invitrogen).

Cell Counting Kit-8 (CCK-8)
To assess cell viability, cells were seeded in a 96-well plate at a density of 5×10 (Yang,
Wang & Zheng, 2019) cells per well. At the indicated times (24, 48 and 72 h), 10 µl CCK-8
solution (Dojindo) was added to each well, and the plates were incubated at 37 ◦C for 2
h. The proliferation of cells was determined with a CCK-8 assay kit. The absorbance was
measured at 450 nm.

Wound healing assay
The cells were seeded in 6-well plates and incubated to nearly 100% confluence. The cell
monolayer was scratched with a 10 µl plastic pipette tip. The wells were washed with
phosphate-buffered saline (PBS), FBS was added to the well, and the area of scratch
closure was used to estimate the migratory ability with an inverted phase microscope. The
percentage of wound closure was calculated as a ratio of the wound area at 24 h to that at
0 h and 48 h.

Cell colony formation
The indicated cells (200 cells/2 ml) were plated into 6-well plates and incubated for two
weeks. The colonies were fixed with methanol and stained with 1% crystal violet. The
absorbance was measured at 550 nm.

Flow cytometry analysis
Cell cycle parameters were detected by propidium iodide (PI) staining. Briefly, 48 h after
transfection, cells were collected and fixed overnight with 90% cold ethanol at 20 ◦C. The
next day, the cells were incubated at RT for 5 min. The cells were washed with PBS twice
and then cultured with 1 ml PI staining solution (50 µg/ml; 1 mg/ml RNase A, and 0.1%
Triton X-100 in PBS) in the dark for 30 min. Cell cycle proportions were detected by flow
cytometry (FACS Calibur).

Cell apoptosis was detected by using Annexin V-FITC/PI double staining. Briefly, after
the transfected cells were collected and washed, they were incubated with 500 µl binding
buffer, 5 µl Annexin V-FITC (BD) and 5 µl propidium iodide (PI). The apoptotic rate was
determined by using flow cytometry.

Western blotting
Proteins were separated using a 10% SDS-PAGE gel and then transferred to PVDF
membranes. After blocking in nonfat milk, the immunoblots were incubated with primary
antibodies against the following molecules: KIF4A (1:1000, ab122227, Abcam), Bax
(1:2000, ab32503, Abcam), Bcl-2 (1:1000, 12789-1-AP, Proteintech), cleaved-caspase 3
(1:500, ab32042, Abcam), Wnt3a (1:1000, ab28472, Abcam), β-catenin (1:6000, 51067-
2-AP, Proteintech) and p-β-catenin (1:500, PA5-36827, proteintech) were purchased.
Anti-β-actin antibodies (1:5000, 66009-1-Ig, Proteintech) were used as an internal control.
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Protein bands were visualized using an enhanced chemiluminescence (ECL) machine
(Advansta).

Transwell assay
Transwell assays were conducted to detect cell invasion. Crystalline violet was dissolved
in 95% ethanol, mixed with ammonium oxalate solution, and stood for 48 h. A total of
1×106 cells were added to the upper chambers and cultured in 200 ml serum-free DMEM.
After incubation for 48 h at 37 ◦C, the upper surface of the membrane was wiped with a
cotton tip, and the cells on the lower membrane were fixed with 4% polyformaldehyde and
stained with 0.1% crystal violet for 30 min. The absorbance was measured at 550 nm.

Real-time quantitative reverse transcription PCR (qRT-PCR) analysis
The transcription level was determined by qRT-PCR. Briefly, total RNA of the cells
was dissociated with an RNA extraction kit. RNA was reverse-transcribed into cDNA
with a reverse transcription kit (ComWin Biotech). Quantification of gene expression
was conducted using the 2−11CT method, and the results were normalized to
β-actin mRNA levels. The sequences of the primers were as follows: KIF4A: F-
TGTTGGATGTGGGCCTTAGC, R-GTGACTTAGCACCCTTCTGGA; β-actin: F-
ACCCTGAAGTACCCCATCGAG, R-AGCACAGCCTGGATAGCAAC.

Statistical analysis
All bioinformatic analyses were conducted using R software. The SPSS22.0 software
program was used for the statistical analysis. The t -test and one-way analysis of variance
(ANOVA) were used for comparisons between two groups, and comparisons among
multiple groups were made using two-way ANOVA. P < 0.05 was considered statistically
significant.

RESULTS
Cell cycle-related genes are extensively overexpressed in various
types of cancers
The expression of 57,035 genes in 12 types of cancer and their paired normal tissues from
TCGA were analyzed. The 12 analyzed types of cancers were breast invasive carcinoma
(BRCA) (The Cancer Genome Atlas Network, 2012c), kidney renal clear cell carcinoma
(KIRC) (The Cancer Genome Atlas Network, 2013), lung adenocarcinoma (LUAD) (The
Cancer Genome Atlas Network, 2014b), stomach adenocarcinoma (STAD) (The Cancer
Genome Atlas Network, 2014a), colon adenocarcinoma (COAD) (The Cancer Genome
Atlas Network, 2012b), kidney renal papillary cell carcinoma (KIRP) (Linehan et al.,
2016), lung squamous cell carcinoma (LUSC) (The Cancer Genome Atlas Network, 2012a),
thyroid carcinoma (THCA) (The Cancer Genome Atlas Research Network, 2014c), head
and neck squamous cell carcinoma (HNSC) (The Cancer Genome Atlas Network, 2015a),
liver hepatocellular carcinoma (LIHC) (The Cancer Genome Atlas Network, 2017), prostate
adenocarcinoma (PRAD) (The Cancer Genome Atlas Network, 2015b), and uterine corpus
endometrial carcinoma (UCEC) (Cherniack et al., 2017). The sample number for each
cancer type is listed in Table 1.
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Table 1 List of full names and sample numbers for each type of cancer.

Abbr. Cancer type N of samples

TCGA-BRCA Breast Invasive Carcinoma 112
TCGA-COAD Colon Adenocarcinoma 41
TCGA-HNSC Head and Neck Squamous Cell Carcinoma 43
TCGA-KIRC Kidney Renal Clear Cell Carcinoma 72
TCGA-KIRP Kidney Renal Papillary Cell Carcinoma 31
TCGA-LIHC Liver Hepatocellular Carcinoma 50
TCGA-LUAD Lung Adenocarcinoma 57
TCGA-LUSC Lung Squamous Cell Carcinoma 49
TCGA-PRAD Prostate Adenocarcinoma 52
TCGA-STAD Stomach Adenocarcinoma 27
TCGA-THCA Thyroid Carcinoma 58
TCGA-UCEC Uterine Corpus Endometrial Carcinoma 23

Total: 615

For statistical analysis, only those genes reaching genome-wide significancewere included
and defined as differentially expressed genes (DEGs) (p value less than 5×10−8) (Panagiotou
& Ioannidis, 2012). Approximately three-quarters of the genes did not show elevated
expression in any cancer type. Thus, only 9% of all the analyzed genes (n= 5343) showed
elevated expression in more than one type of cancer. Among them, 28 genes were found to
be overexpressed in no less than 10 types of cancer (Table 2). In gastric adenocarcinoma
and thyroid cancer, only 6 and 13 of 28 pan-cancer DEGs are overexpressed. In the other
10 cancer types, at least 20 DEGs are overexpressed. This difference was not caused by
sample size, as thyroid carcinoma had the third largest sample size. Therefore, this finding
indicates the existence of an intrinsic difference in stomach adenocarcinoma and thyroid
carcinoma compared with other cancer types. The GeneOntology (GO)molecular pathway
analysis showed that the 28 pan-cancer DEGs were enriched in 116 biological processes,
most of which were cell cycle-related processes (Table S1). This is no surprise, since cancer
is essentially a disease of uncontrolled cell proliferation. However, only 28 DEGs of 1263
genes involved in the cell cycle have been extensively altered in different types of cancer.
This suggested that these genes may be the key to cancer cell cycle regulation. The 28
selected DEGs also had strong protein–protein interactions, as plotted using STRING
(Fig. 1A).

KIF4A overexpression can serve as a diagnostic and prognostic
marker in various cancers
Among the pan-cancer DEGs, KIF4A showed elevated expression in eleven types of
cancer (Figs. 1B–1M). KIF4A was also found to be upregulated in multiple cancer types.
Elevated expression of the KIF4A protein was also verified in five types of cancer using
immunohistochemistry data from the Human Protein Atlas (HPA; Fig. S1).

High expression of the KIF4A gene was significantly correlated with poor prognosis in
four kinds of cancer, KIRC, KIRP, LUAD, and LIHC, as shown by Kaplan–Meier survival
analysis (Figs. 1N–1Q).
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Table 2 Expression conditions of the top 28 DEGs in the 12 types of cancers investigated.

BRCA COAD HNSC KIRC KIRP LIHC LUAD LUSC PRAD STAD THCA UCEC N

KIF4A + + + + + + + + + N.S. + + 11
STIL + + + + + + + + + + N.S. + 11
TMEM132A + + + + N.S. N.S. + + + + + + 10
TRIP13 + + + + + + + + + + N.S. N.S. 10
GTSE1 + + + + + + + + + N.S. N.S. + 10
UBE2T + + + + + + + + N.S. N.S. + + 10
AURKA + + + + + + + + + N.S. N.S. + 10
TPX2 + + + + + + + + + N.S. N.S. + 10
BIRC5 + + + + + + + + + N.S. N.S. + 10
ORC6 + + + + + + + + N.S. N.S. + + 10
CLSPN + N.S. + + + + + + N.S. + + + 10
CDC45 + + + + + + + + N.S. N.S. + + 10
CDC6 + + + + + + + + N.S. N.S. + + 10
MMP11 + + + + + + + + N.S. + + N.S. 10
CDKN3 + + + + + + + + + N.S. N.S. + 10
MYBL2 + + + + + + + + + N.S. N.S. + 10
E2F1 + + + + + + N.S. + N.S. + + + 10
RNASEH2A + + + + + + + + N.S. N.S. + + 10
ASF1B + + N.S. + + + + + + N.S. + + 10
EZH2 + + N.S. + + + + + + N.S. + + 10
FOXM1 + + + + + + + + + N.S. N.S. + 10
CDCA3 + + + + + + + + + N.S. N.S. + 10
KIF20A + + N.S. + + + + + + N.S. + + 10
CENPA + + + + + + + + + N.S. N.S. + 10
KIF14 + + + + + + + + + N.S. N.S. + 10
NCAPH + + + + + + + + + N.S. N.S. + 10
HJURP + + + + + + + + + N.S. N.S. + 10
PKMYT1 + + + + + + + + N.S. N.S. + + 10

Notes.
+: specific gene is overexpressed in that cancer type compared to normal tissue.
N.S., not significant.

Expression of KIF4A in OS cell lines
To further validate the bioinformatics analysis results, the expression of KIF4A in OS
cell lines was detected. The above analysis results found that KIF4A is highly expressed
in osteosarcoma. We determined the mRNA and protein expression of KIF4A in three
OS cell lines (MG63, U2OS and HOS) and normal osteoblast cells using RT-PCR and
Western blotting (Fig. 2). The results showed that the level of mRNA and protein of
KIF4A in osteosarcoma cell lines were significantly higher than those of normal osteoblasts
hFOB1.19. The results of TCGA data analysis were consistent with the results of cell
experiment.
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Figure 1 Result of bioinformatics analysis. (A) Protein–protein interactions (PPI) involving the 28
differentially expressed genes (DEGs) were identified using the STRING database. The ‘‘experiment’’,
‘‘database’’, and ‘‘coexpression’’ evidence channels were chosen for network construction. Clustering was
performed using the MCL algorithm with inflation parameter 10. Different colors indicate different clus-
ters and the line thickness indicates the strength of evidence. (B–M) Expression profile of KIF4A in cancer
tissues and paring normal tissues. (N–Q) Kaplan–Meier survival curves for four cancer types in regard to
KIF4A expression.

Full-size DOI: 10.7717/peerj.11455/fig-1
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Figure 2 KIF4AmRNA and protein expression were down-regulated inMG63 and U2OS cells
transfected with si-KIF4A. (A) KIF4A mRNA level was higher in OS cells than in the normal osteoblast
hFOB1.19. (B) KIF4A protein expression was significantly higher in OS cell lines than in the normal
osteoblast hFOB1.19. (C) PCR assay confirmed that KIF4A mRNA expression were downregulated in
MG63 and U2OS cells transfected with si-KIF4A. * p< 0.05, *** p< 0.001.

Full-size DOI: 10.7717/peerj.11455/fig-2

Effect of silencing KIF4A on the viability, colony formation, invasion
and migration of OS cells
Among the three OS cell lines, KIF4A expression was highest in MG63 and U2OS cells;
therefore, these two lines were chosen for subsequent assays. The silencing plasmid and
overexpression plasmid was transfected into MG63 and U20S cells respectivel. The results
showed that the transfection was successful (Figs. 3A–3D). The CCK-8 assay revealed
that decreased KIF4A expression markedly suppressed the viability of MG63 and U2OS
cells. Overexpression of KIF4A enhanced cell viability (Fig. 3E and 3F). Colony formation
experiments showed that after knocking out KIF4A, the cloning ability of MG63 and U2OS
cells was greatly reduced. After overexpression of KIF4A, the clonality of cells was promoted
(Figs. 3G–3I), which indicated that KIF4A increased the stemness of OS cells. Transwell
assays revealed that the silencing of KIF4A strikingly decreased the invasion ability ofMG63
and U2OS cells (Fig. 4A and 4B). However, the cell invasion ability of the oe-KIF4A group
was significantly increased. The date of wound healing assay showed that the migration
ability of MG63 and U2OS cells was significantly decreased after KIF4A knockdown. After
KIF4A was up-regulated, the cell migration ability increased significantly (Figs. 4C–4F). In
short, KIF4A could affect the activity of MG63 and U2OS cells.

Effect of KIF4A silencing on the apoptosis and cell cycle of OS cells
The above results indicate that KIF4A could affect the activity of MG63 and U20S cells. We
further investigated whether apoptosis would be affected. Flow cytometry results showed
that KIF4A silencing could induce apoptosis, leading to cell cycle arrest in G1 phase. KIF4A
overexpression can inhibit cell apoptosis and reduce the proportion of cells in G1 phase
(Figs. 5A–5X). The expression of apoptosis-related proteins (caspase-3, Bax and Bcl-2) was
determined by Western blot analysis. The Western blot results showed that silencing of
KIF4A significantly upregulated the protein levels of Bax and caspase-3 and decreased the
Wnt3a, p-β-catenin and Bcl-2 ratio. The data overexpressing KIF4A showed the opposite
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Figure 3 KIF4A could affect OS cell viability and colony formation andmigration. (A–D) Expression
of KIF4A in cells was detected by RT-PCR and Western blot. (E and F) CCK8 was used to detect cell pro-
liferation. (G–I) Colony formation results confirmed that in MG63 and U2OS cell lines, OS cell colony
formation were inhibited by silencing KIF4A. *P < 0.05 compared with Control, #P < 0.05 compared
with si-NC, &P < 0.05 compared with oe-NC.

Full-size DOI: 10.7717/peerj.11455/fig-3

result (Figs. 5Y–5BB). In summary, KIF4A could affect the apoptosis process of MG63 and
U20S cells.

DISCUSSION
Kinesin superfamily(KIF) proteins play a key role in cellular functions, such as mitosis and
intracellular transport of organelles and vesicles, and there are 14 recognized kinesin families
(kinesin 1–14A/B) (Jungwirth et al., 2019). Upregulated expression of KIF proteins leads to
premature separation of chromosomes, which can cause progression of cancer(Manning,
Hooper & Sahai, 2015; Kato et al., 2016). The KIF4A gene encodes the chromokinesin
protein KIF4A, an ATP-dependent molecular motor that promotes mitotic chromosome
condensation and segregation (Mazumdar, Sundareshan & Misteli, 2004). KIF4A can also
directly bind to chromatin and participate in DNA damage repair by associating with
BRCA2 (Wu & Chen, 2008; Wu et al., 2008). Many studies have shown that the expression
of KIF4A in liver cancer, cervical cancer and oral cancer tissues is up-regulated, and is
positively correlated with poor prognosis (Hou et al., 2017; Narayan et al., 2007; Taniwaki
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Figure 4 Silencing KIF4A inhibited migration of Osteosarcoma cells. (A and B) Transwell assay was
used to test the invasion. Magnification×100, scale bar = 100 µm. (C–F) Wound healing assay was uti-
lized to detect the migration. Magnification×100, scale bar= 100 µm. *P < 0.05 compared with Control,
#P < 0.05 compared with si-NC, &P < 0.05 compared with oe-NC.

Full-size DOI: 10.7717/peerj.11455/fig-4

et al., 2007; Minakawa et al., 2013). KIF4A overexpression might promote lung cancer
resistance to cisplatin, while in breast cancer cells, its overexpression promotes cell apoptosis
during treatment with doxorubicin (Wang et al., 2014).

Our bioinformatics analysis results showed that overexpression of KIF4A played a role
in mitosis and could become a potential new diagnostic and prognostic marker for various
cancers. The observed pan-cancer upregulation of KIF4A is probably an indicator of the
increased mitotic rate in cancer cells. High KIF4A expression was correlated with poor
overall survival of OS patients. In vitro experiments showed that silencing KIF4A could
inhibit OS cell viability, colony formation, migration and invasion, and induce apoptosis
and cell cycle arrest.
β-Catenin, the core mediator of Wnt/β-catenin signaling pathway, is regulated by

GSK-3β-promoted phosphorylation and ubiquitin/proteasome pathway degradation.
β-catenin mutation could lead to the abnormal activation of Wnt target gene, leading to
the occurrence of cancer (Qi & Yang, 2020). TheWnt/β-catenin signaling pathway plays an
important role in chromosomal instability (Hadjihannas & Behrens, 2006). Various studies
have proven that the Wnt/β-catenin signaling pathway is implicated in the pathogenesis of
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cancers, especially OS (Chen, Zhao & Fan, 2020; Li et al., 2020; Yin et al., 2020; Zhao et al.,
2020). Our results indicated that KIF4A modulates the Wnt/β-catenin pathway in OS cells.

In conclusion, KIF4A could be used as a biomarker and prognostic indicator for
pan-cancer diagnostic. KIF4A could regulate Wnt/β-catenin signaling as a new target for
OS therapy.
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