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Simple Summary: Thousands of cancer genomes are now publicly available which has led to new in-
sights into the underlying features of cancers. These include the identification of mutational signatures
at both nucleotide and amino acid levels. Here, we discuss C > T transitions as a key nucleotide-level
mutational signature that leads to a dramatic overrepresentation of arginine substitutions in cancers.
We propose that this underlying C > T mutational signature canalizes possible arginine substitution
outcomes, favoring histidine, cysteine, glutamine, and tryptophan. This initial asymmetry is then
acted on at the amino acid level by purifying selection. Thus, a model of “sequential selection” could
explain the documented bias towards arginine substitutions in multiple cancers.

Abstract: Arginine is encoded by six different codons. Base pair changes in any of these codons can
have a broad spectrum of effects including substitutions to twelve different amino acids, eighteen
synonymous changes, and two stop codons. Four amino acids (histidine, cysteine, glutamine, and
tryptophan) account for over 75% of amino acid substitutions of arginine. This suggests that a
mutational bias, or “purifying selection”, mechanism is at work. This bias appears to be driven by
C > T and G > A transitions in four of the six arginine codons, a signature that is universal and
independent of cancer tissue of origin or histology. Here, we provide a review of the available
literature and reanalyze publicly available data from the Catalogue of Somatic Mutations in Cancer
(COSMIC). Our analysis identifies several genes with an arginine substitution bias. These include
known factors such as IDH1, as well as previously unreported genes, including four cancer driver
genes (FGFR3, PPP6C, MAX, GNAQ). We propose that base pair substitution bias and amino acid
physiology both play a role in purifying selection. This model may explain the documented arginine
substitution bias in cancers.

Keywords: mutation; arginine; purifying selection; cancer

1. Introduction

Mutation is an essential feature of biology. It is the most important contributor to the
cellular transformations that cause cancer and other diseases and is the primary source of
variation acted on by evolution [1–3]. Point mutations caused by base pair substitutions,
insertions, or deletions are common in human cancers and many other diseases [4]. Base
pair substitutions alter the sequence of 64 different codons that code for the 20 amino acids.
Point mutations can be silent (no amino acid change), missense (one amino acid is changed
to another), nonsense (one amino acid is changed to a stop codon), or frameshifts (insertion
or deletion of one or two base pairs).
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Of the twenty amino acids, arginine appears to have a central role in gene expression,
protein structure and function, and genome evolution. For example, arginine codons play
a major role in determining the rate of protein translation [5–7], and the positive charge
of the arginine side chain is critical for stabilizing protein tertiary structure [8,9]. Further,
arginine is subject to a number of post-translational modifications including methylation,
acetylation, ubiquitylation, citrullination, and mono-ADP-ribosylation, that impact a wide
range of cellular processes such as epigenetics, signal transduction, and DNA damage
response [10–15]. At the evolutionary level, differences in usage of the six arginine codons
can be used as a species classification tool across the three domains of life [16]. Finally,
in human cancers, the CGA arginine codon is most frequently mutated to a stop codon
(nonsense) [17]. Thus, arginine is arguably one of the most important amino acids in biology.

In the last 10–15 years, numerous analyzed cancer genomes have been made available
to the public. These include projects such as The Cancer Genome Atlas (TCGA), The
Sanger Cancer Genome Project, and The Cell Lines Project. Genomes have also been
made available through various user-friendly databases and collaborations such as the
Catalogue of Somatic Mutations in Cancer (COSMIC) and the International Cancer Genome
Consortium (ICGC), which compile these data and link them to independent studies from
the literature [18–20]. This has allowed a largely unbiased analysis of mutation patterns in
cancer cells. One observation is that arginine is the most frequently mutated amino acid
in human cancers, with a tendency towards arginine loss [21]. In this paper, we review
key findings in the literature and provide independent validation and additional data
supporting some of these observations.

2. Materials and Methods
Data Processing

A file with arginine mutations in all cancer tissues was downloaded as an excel
file (.csv) from the COSMIC database (https://cancer.sanger.ac.uk/cosmic accessed on:
1 May 2021, version 94, hg38). For this analysis, only point mutations such as missense,
nonsense, and silent mutations were studied and included in the working dataset. COSMIC
provides data fields such as chromosome number, genomic position, mutated amino acid
residue, and the specific nucleotide change. However, the arginine codon that was mutated,
and the codon of the resulting mutated amino acid residue are not provided in COSMIC.
Codon information for each point mutation was retrieved from Ensembl using the Newman
application program interface (API) requesting program. The code for this program is
included in Figure S1, and can be accessed through GitHub repository with additional
documentation (https://github.com/devinelakurti/Newman-API-Requesting-Program/
tree/main deposited on: 2 November 2021).

Figure S2 illustrates the details of the retrieval process of the arginine codon using
the specific data fields given in COSMIC. This schematic illustrates how the data fields
provided in COSMIC (chromosome number and genomic position), and the calculated
position of mutations, were translated into genomic position ranges of codons. For instance,
variable x in the genomic position range represents the genomic position of the point
mutation. Mutation sense determines whether the output codon from the API requires
analysis of the reverse and complement. Genomic position ranges are thus determined
both by whether mutations fall on the Watson or the Crick strand and the position of
the mutation in the arginine triplet codon. Based on the retrieved arginine codon, the
specific nucleotide change, and the mutated amino acid residue, a program was developed
to automate the process of identifying the codon of the resulting mutated amino acid
(Figure S1). The logic of this program is based on possible changes of all arginine codons
(Figure 1A, Table S1). After the retrieval of both the arginine codon and codon of the
resulting mutated amino acid, both sets of information were integrated into the rest of the
COSMIC dataset for further analyses. We also identified genes with a clear skew towards
cysteine, histidine, glutamine, or tryptophan. Genes were called “skewed” if a minimum
of 60% of all arginine substitutions produced one amino acid (e.g., histidine) at the expense

https://cancer.sanger.ac.uk/cosmic
https://github.com/devinelakurti/Newman-API-Requesting-Program/tree/main
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of the others. To minimize statistical aberrations, genes with fewer than 40 independent
tumor samples contributing to this skew were excluded.
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Figure 1. Possible amino acid substitutions from the six arginine codons. (A) Diagram showing base pair changes of
the six arginine codons that can lead to amino acid substitutions and stop codons. Each arrow points to a base pair
change within the six codons and its corresponding amino acid substitution. For simplicity, each base of the six codons
is color-coded to correspond with the arrow. For example, if the first red C base of the CGG codon is changed to a T, it
will produce a TGG codon which substitutes tryptophan for arginine. Note that some substitutions are more likely than
others. Synonymous substitutions are not shown. (B) Arginine codon usage in human cancer and non-cancer cells. The
graph shows all the reported arginine substitutions in cancer cells on COSMIC (765,956 counts in 69,455 unique cancer
samples, blue bars) compared with observed arginine codon usage in human non-cancer cells (orange bars) as reported on
GenScript (https://www.genscript.com/tools/codon-frequency-table, accessed on 5 November 2021). Values are plotted as
a percentage of each codon usage compared with total usage. These data largely agree with [22].

To calculate the control percentages reported in Figure 3, all point mutations reported
in COSMIC Mutation were compiled in a dataset called coding control. All silent mutations
were filtered out to create a separate dataset called silent coding control. Coding control
percentage for each amino acid was calculated with the numerator being the number of
point mutations that resulted in that particular amino acid and the denominator is all the
coding point mutations reported in the coding control dataset. Similarly, silent coding
percentage for each amino acid was calculated with the numerator being the number of
silent mutations that code for a particular amino acid and the denominator is all the silent
mutations reported in the silent coding control dataset. Additionally, another dataset called
“non-coding control” was compiled with all point mutations from the “noncoding variants”
data in COSMIC. With this noncoding control dataset, control percentages were calculated
for each nucleotide change. The numerator is the number of point mutations with the
specific nucleotide change of interest and the denominator is the total number of noncoding
point mutations in the dataset. All data were analyzed in IBM SPSS, v27.

https://www.genscript.com/tools/codon-frequency-table
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3. Results
3.1. Non-Synonymous Substitution Bias of Arginine Codons

Six synonymous codons are used for arginine (Figure 1A), and base pair substitutions
in these codons can generate twelve different amino acids (not including synonymous
changes) and a stop codon. In addition, arginine is one of only two amino acids for which
substitutions in the first codon position can result in synonymous change (the other is
leucine). There are 54 possible substitutions from the six arginine codons. Four codons
(AGA, AGG, CGA and CGG) can produce synonymous substitutions from mutations in
the first position (Table S1). All other synonymous changes result from mutations in the
third position. However, in mutations leading to amino acid substitution, over 75% of
all arginine substitutions occurring in a cancer context are histidine, cysteine, tryptophan,
or glutamine [21]. Interestingly, this skew also resembles evolutionary mutation profiles
for arginine [23], suggesting similar selection biases operating in both cancer and evolu-
tionary (speciation) contexts. These findings point to a non-random pattern of amino acid
substitutions in human cancers [24].

Organisms commonly display preferences for certain synonymous codons over oth-
ers [25–27] (Figure 1B). This codon usage bias has a major role in gene expression, regulating
translation speed and protein folding [28–30], as well as mRNA structure, processing, and
stability [31–34]. Additionally, in cancer cells, codon usage is optimized to accommodate
high translation of cell cycle regulatory genes [35]. Codon usage bias is species-specific [36]
with biases in arginine usage correlating with speciation [16]. In humans, four codons
(AGA, AGG, CGG, CGC) are each used approximately 20% of the time whereas two (CGA
and CGT) are used only ~10% of the time (Figure 1B). In vertebrates, an increased prefer-
ence for G/C-ending codons (base at third position) correlates with an increase in G/C bias
across the genome [37,38]. With the exception of AGA, arginine codons generally follow
this pattern. For instance, mutations in the CGC, CGG, and CGT codons are most likely
to substitute arginine for another non-synonymous amino acid and previous analyses of
COSMIC v78 (~18,000 cancer samples) show these three codons (CGC, CGG, CGT) and a
fourth (CGA) account for most arginine substitution biases [22]. Our present analyses of
COSMIC v94, which contains over 68,000 samples, came to a similar conclusion (Figure 1B),
supporting the idea that this observation reflects a biological rather than a technical bias.
Remarkably, we also find that CGC, CGG, and CGT are three of the four most likely codons
to generate synonymous arginine substitutions (the other is CGA) (Table S1).

Molecular evolution of genomes was initially proposed to occur through a combination
of neutral evolution and genetic drift [39–41]. This theory postulates that most deleterious
mutations are eliminated by natural selection whereas genetic drift fixes mainly neutral
mutations that do not drastically change the phenotype. Conversely, fixation of mutations
that greatly change the phenotype is very rare. Other models have argued that substitution
is subject to a combination of purifying (or negative) selection which eliminates deleterious
mutations and positive selection which promotes fixation of beneficial mutations. Page
and Holmes argue that these two models are distinct, as evolution would occur by chance
with neutral selection and by necessity with purifying selection [42]. The substitution bias
of arginine amino acids in both cancers and evolution support a model in which purifying
selection drives the evolution of human cancer genomes. In practice, this would mean
that certain amino acids are not tolerated when substituted in the wild-type position of
arginine [43], and are subsequently “purified” or eliminated. Thus, the only observable
mutations in the population would be ones which replaced arginine with a tolerated
amino acid.

This analysis, in conjunction with the fact that four of the six arginine codons account
for most mutations, indicates that the increased frequency of non-synonymous amino
acid substitutions of arginine in human cancers is not merely a statistical consequence
of usage bias or the mutation possibility of its six codons. Instead, it suggests that it is
an outcome of selection on specific amino acid substitutions in key codons that promote
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cellular transformation and cancer progression. Arginine substitutions in human cancers
thus appear to be driven by purifying selection rather than neutral selection.

3.2. Arginine Substitutions in Human Cancers Are Driven Mainly by C/G > T/A Transitions

Base pair changes fall into two general categories: transitions (purine-to-purine
or pyrimidine-to-pyrimidine) and transversions (purine-to-pyrimidine or pyrimidine-
to-purine) [44]. Despite twice as many possible transversions, most mutations that drive
evolution are transitions [45–47]. A statistical study also showed that transitions outnum-
bered transversions in human evolution, at least since the divergence from rodents [23].
This parallels mutation signatures in cancers [48] and even quiescent cells [49] which have
a higher burden of transitions than transversions. Further, mutation may accumulate
independently of DNA replication, suggesting errors during cell division are not the only
determinant of mutation [50]. Our analysis of COSMIC v94 shows that most base pair
substitutions in cancer genomes are C > T and G > A (Figure 2A) and there is no strand bias
for either C > T or G > A mutations (Figure 2B) which agrees with previous analyses [22].
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Figure 2. C/G > T/A transitions are responsible for over 75% of all arginine substitutions. (A) Percent of each base pair
change in the COSMIC V94 (our analysis). For this analysis, the six COSMIC signatures were split into 12 to show opposite
strand mutations. (B) Strand specific frequencies of C > T and G > A changes. (C) Four arginine codons may be responsible
for most arginine substitutions. Note that if we consider G > A to be the same as C > T, it is possible to envision how most
arginine substitutions could be generated by a C > T transition. In this model, the G > A would become C > T within one
round of DNA replication; therefore, the two would look like the same mutation.

Base pair substitution frequencies of the six arginine codons immediately reveal a
selection preference for C > T and G > A [22]. The C > T substitution, in particular, is
indicative of a selection bias, as C occurs in the first position of four of the codons (CGA,
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CGG, CGT, CGC; Figure 1A). Substitution of C for T in this first position produces stop
(CGA to TGA), tryptophan (CGG to TGG), or cysteine (CGT to TGT; CGC to TGC). Note
that a third position C > T mutation in CGC (to CGT) is silent (Figure 1A), which may
explain why CGC is the most frequently mutated codon. However, the high frequency of
CGG to TGG and CGT to TGT indicates a clear selection bias for tryptophan and cysteine,
respectively, whereas the CGA to TGA mutation occurs very rarely because it introduces the
stop codon [17]. G > A mutations can produce substitutions in all six codons. Remarkably,
a high percentage of mutations convert the CGA codon to CAA (arginine to glutamine).
The second most mutated codon is AGG which can be converted to lysine (AAG) or is
silent (AGA). Mutations in the other codons produce histidine (CGC to CAC; CGT to CAT),
glutamine (CGG to CAG), silent (CGG to CGA), or lysine (AGA to AAA) (Supplementary
Table S1). G > A mutations are also most frequent for the AGA codon which results in
isoleucine (AGA to ATA) or the AGG codon which results in methionine (AGG to ATG) or
serine (AGG to AGT).

These analyses uncover a strong codon substitution bias, in which 75% of arginine sub-
stitutions are driven by C/G > T/A transitions in cancer genomes (Figure 2A and [22]). Re-
markably, only four of the six arginine codons contribute to these substitutions (Figure 2C).
These C/G rich codons permit C/G > T/A transitions that substitute arginine for four
different amino acids (cysteine, glutamine, histidine and tryptophan). COSMIC lists six
signatures rather than 12 [19,48,51] as the other half can be generated by mutations on the
other strand. In other words, a C > T transition on one strand yields a G > A transition on
the other strand, and when coupled with replication, both transitions generate the same
mutation [52]. Certain cancers seem to show a bias for coding vs. non-coding strands, as
suggested by other studies [49]. However, as our analyses compile data across all cancers,
this bias is not obvious.

Instead, our analyses indicate a bias for both C > T and G > A transitions in coding
regions (Table S2). Specifically, we find approximately twice as many transitions in coding
regions (30.88% for C > T and 44.44% for G > A) over non-coding regions (16.73% for
C > T and 17.02% for G > A). In addition, these transitions are more likely to occur within
arginine codons than other codons (30.88% arginine vs. 25.18% total for C > T; 44.44%
arginine vs. 26.49% total for G > A).

C > T transitions can be produced by deamination of CpG sites [53]. Indeed, muta-
tional signatures due to deamination have been identified in cancer cells [48]. “Clock-like”
mutational signatures (i.e., mutations that occur during the lifetime of a cell irrespective of
its identity) appear to be a major producer of C > T transitions in cancer cells [51]. However,
a study in yeast found that decreased processivity of polymerase delta resulted in primarily
C > T transitions, suggesting several mutation processes may be at work [54]. G > A
transitions, on the other hand, can be produced by guanine oxidation [22,52]. Regardless
of mechanism, we do not find a strand bias for either C > T or G > A when compiling data
for all cancers (Figure 2B), which largely agrees with previous findings [22].

3.3. Purifying Selection at the Amino Acid Level May Be Strongly Biased by Selection at the
Nucleotide Level

It has been observed that amino acid substitutions in cancer cells are not com-
pletely random [21,22,43,55,56]. These analyses revealed that arginine mutations in cancer
genomes are strongly biased towards cysteine, glutamine, histidine, and tryptophan.
Given that 33% of base pair substitutions in arginine are synonymous (Table S1), a silent
mutation should have been the most frequently observed change. Instead, arginine syn-
onymous substitutions are found with approximately three-fold lower frequency than
predicted [22]. One argument for the bias in arginine mutations, particularly the most
prominent Arg > His mutation, is that these mutations are adapted to the elevated pH in
cancer cells [57].

However, an analysis of the arginine codons responsible for this amino acid bias
reveals that they are CGC and CGT (cysteine), CGC and CGT (histidine), CGA and CGG
(glutamine), and CGG (tryptophan) (Figure 3). Arginine substitutions to each of these
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amino acids are possible from two different codons (Table S1), and cysteine and histidine
have a roughly equal chance of being generated from either codon. Interestingly, this is
not the case for glutamine and tryptophan. Our reanalysis, which takes into consideration
individual codons, found that for glutamine, substitutions from the CGG codon occur at
less than half the frequency of the CGA codon (Figure 3). This reveals strong selection for
CGA-driven glutamine substitutions, especially considering the genome usage bias of the
CGA codon is half that of the CGG codon (Figure 1B). Similarly for tryptophan, only ~10%
of the substitutions are due to mutations of the AGG codon despite virtually no difference
in genome usage biases of AGG vs. CGG. Taken together, these data indicate that mutation
bias occurs first at the base pair level (i.e., nucleic acid and codon) followed by potential
purifying selection at the amino acid level.
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3.4. Cancer or Gene Specific Arginine Mutation Bias

Arginine depletion is common to all cancers and is a hallmark of multiple tumor
suppressors [22]. However, cancer types can be characterized by different mutational
signatures [48,58], with some showing strong and specific biases towards certain amino
acid substitutions. For instance, many cancer types show a clear arginine to histidine
bias [55], occurring in both tumor suppressor and non-tumor suppressor proteins. One
excellent example of this is gliomas, which show a strong preference for the R132H mutation
of isocitrate dehydrogenase (IDH1; [56]). This particular substitution produces a metabolic
byproduct that appears to increase the oncogenic potential of gliomas by interfering
with histone demethylases and increasing oxidative species-related DNA damage [59].
Perhaps counterintuitively, the presence of this mutation is associated with better prognoses
compared with glioma patients with a wildtype IDH1 [60–63]. This appears to be related to
the low NADPH production levels in IDH1 mutant cells which renders patients sensitive
to therapy [64].

We generated a complete list of genes showing skews in arginine substitution biases
for histidine, cysteine, glutamine, and tryptophan (Table 1 and Table S3; see Materials and
Methods for criteria). We classified genes as driver and non-driver based on a recently
published characterization [65]. Under this classification, IDH1 is a driver gene. How can
this be reconciled with the fact that IDH1 mutations are associated with favorable prog-
nosis? It appears that if IDH1 mutations occur early, they have an adverse effect on DNA
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damage repair [66], as well as other cellular transformation processes [59], including TERT
reactivation [67] and chromatin remodeling [68]. Our analysis also identified four other
driver genes (FGFR3, PPP6C, MAX, GNAQ; Table 1). Fibroblast growth factor receptor 3
(FGFR3) is a well-established cancer driver gene in several cancers, and single molecule
inhibitors of this gene are used as therapeutic agents [69]. Protein phosphatase 6 (PP6 en-
coded by PPP6C) encodes the catalytic subunit of a PP2A like phosphatase [70], a molecular
regulator of RAS and other RAS associated pathways (e.g., BRAF/MEK/ERK) involved in
cell proliferation [71]. PP6 participates in many processes including DNA damage repair,
inflammation, and the immune response, and PP6 mutations are associated with tumor
progression [72]. MAX is a cofactor of MYC and other MYC-related transcription factors
involved in cell proliferation [73,74]. MAX has tumor-suppressive functions [75]. GNAQ
encodes the alpha subunit of a heterotrimeric G-protein and mutations are associated with
certain melanoma cancers [76].

Table 1. Substitution bias of selected genes 1.

2 Gene Most Frequent Substituted Residue Most Frequent Substituted Nucleotide 3 Driver Gene

Cysteine Glutamine Histidine Tryptophan C > T G > A Yes/No
IDH1 76% 76.36% YES

TCP10L2 61% 68.97% NO
NEK9 74% 86.90% NO
TXK 60% 83.13% NO

CYP2D6 69% 68.66% NO
NCF1 76% 76.47% NO

OR4C3 70% 76.60% NO
KRTAP4-8 85% 86.96% NO

BMP8A 78% 77.78% NO
FGFR3 80% 88.59% YES
RFPL3 66% 71.26% NO
PPP6C 63% 66.67% YES

HASPIN 73% 76.54% NO
DTX2 63% 66.10% NO
PRSS1 77% 79.25% NO

POTEB2 73% 73.08% NO
CAMKK2 64% 74.00% NO

PARN 69% 73.81% NO
OR9G1 73% 73.17% NO
NPIPA5 80% 80.00% NO

PRB2 94% 94.94% NO
BUB1B 70% 77.05% NO

AC004223.3 88% 92.56% NO
RAD51D 89% 93.04% NO

GNL3 93% 93.58% NO
RNASEL 69% 79.31% NO

MAX 68% 75.86% YES
GNAQ 64% 76.47% YES

IRF5 62% 82.72% NO
CS 80% 81.36% NO

PRB1 91% 93.48% NO
FAM120B 70% 76.74% NO
CLEC4M 76% 87.80% NO

OR1L6 68% 75.00% NO
IST1 75% 82.50% NO

PDCL3 61% 71.74% NO
SPAG11B 71% 76.19% NO

1 The table colors correspond to arginine substitution biases towards the four amino acids (cysteine, histidine, glutamine and tryptophan).
2 Only genes with a substitution bias over 60% are shown. Please see Supplementary Table S3 for further details. 3 Genes in bold are
characterized as driver by Martinez-Jimenez et al. [65].

Skewed genes include a number of additional factors with established roles in can-
cer (e.g., BMP8A and BUB1 [77,78]), as well as others (Tables 1 and S3). The candidates
identified in this study did not show any obvious protein class preferences (e.g., kinases
versus transcription factors). Indeed, skewed genes impact a wide range of cellular pro-
cesses such as intracellular signaling, cytoskeletal architecture, metabolism, and mitosis
(Tables 1 and S3). Arginine depletion in cancers thus appears to target genes that are likely
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to increase the transformation and proliferative potential of cells. In addition, our analyses
identify a number of other poorly characterized genes (e.g., OR1L6 or OR4CC3) which may be
high-confidence candidates to modulate tumor progression, proliferation, and/or metastasis.

4. Conclusions and Perspectives

The combination of thousands of publicly available cancer genomes and advanced
computational techniques has enabled unprecedented insight into common and distinct
features of cancers. These include mutational signatures at the nucleotide level and skews
or biases at the amino acid level. For instance, multiple studies, including this one, identify
C > T transitions as the dominant mutational signature underlying the dramatic overrep-
resentation of arginine substitutions in cancers. We propose that these two features are
linked. Specifically, an underlying C > T mutational signature canalizes possible arginine
substitution outcomes, creating an initial asymmetry in favor of histidine, cysteine, glu-
tamine, and tryptophan. Purifying selection acting at the amino acid level then reinforces
this asymmetry, which can occur in a protein- or tissue-dependent manner. For example,
stomach cancers show a pronounced Arg > His bias, whereas skin cancers have a strong
Arg > Cys bias [35]. Determining why such context-dependent behaviors happen, and
whether this model of “sequential selection” extends to other signatures, are important
next steps for the field.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13246274/s1. Figure S1: Newman API requesting program, Figure S2: Arginine codon
retrieval process, Table S1: Potential amino acid substitutions from mutations in the first, second
and third position in any of the six arginine codons, Table S2: Base pair substitution bias in the six
arginine codons. Table S3: Genes showing clear biases in arginine substitution towards histidine,
cysteine, glutamine, or tryptophan.
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