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Abstract
Rheumatoid arthritis (RA) is a systemic chronic inflammatory disease that affects synovial joints and has various extra-
articular manifestations, including atherosclerotic cardiovascular disease (CVD). Patients with RA experience a higher 
risk of CVD, leading to increased morbidity and mortality. Inflammation is a common phenomenon in RA and CVD. The 
pathophysiological association between these diseases is still not clear, and, thus, the risk assessment and detection of 
CVD in such patients is of clinical importance. Recently, artificial intelligence (AI) has gained prominence in advancing 
healthcare and, therefore, may further help to investigate the RA-CVD association. There are three aims of this review: (1) 
to summarize the three pathophysiological pathways that link RA to CVD; (2) to identify several traditional and carotid 
ultrasound image-based CVD risk calculators useful for RA patients, and (3) to understand the role of artificial intelligence 
in CVD risk assessment in RA patients. Our search strategy involves extensively searches in PubMed and Web of Science 
databases using search terms associated with CVD risk assessment in RA patients. A total of 120 peer-reviewed articles were 
screened for this review. We conclude that (a) two of the three pathways directly affect the atherosclerotic process, leading to 
heart injury, (b) carotid ultrasound image-based calculators have shown superior performance compared with conventional 
calculators, and (c) AI-based technologies in CVD risk assessment in RA patients are aggressively being adapted for routine 
practice of RA patients.

Keywords Arthritis · Rheumatoid · Atherosclerosis · Cardiovascular disease · Inflammation · Carotid artery diseases · 
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Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory dis-
ease that not affects only synovial joints but also has sev-
eral extra-articular involvements, including those related 
to the skin, eyes, heart, lungs, kidneys, and other organs [1, 
2]. It affects ~ 1% of the global population, with a higher 
prevalence in females when compared with males [3, 4]. 
Cardiovascular disease (CVD) is a common manifestation 
in RA patients with a two- to three-fold higher risk of car-
diovascular events and mortality compared with a normal 
population [5]. However, this increased risk is not entirely 

explained by conventional risk factors [6]. Current statisti-
cally derived CVD risk calculators use conventional risk 
factors alone [7–9], are not suitable for RA patients, and 
they either underestimate or overestimate the risk [10–12]. 
This may be because of the paradoxical behavior of some 
of the conventional risk factors such as body mass index, 
low-density lipoprotein, high-density lipoprotein, and total 
cholesterol in RA [13, 14]. Despite this lack of clarity, the 
guidelines by the European League Against Rheumatism 
(EULAR) recommend aggressive control of these conven-
tional risk factors [15, 16]. Recent attempts were made to 
improve the CVD risk assessment in the RA population, 
including the development of “RA-specific risk factors” 
in the CVD risk calculators [17–20]. However, such cal-
culators could not provide adequate improvement in risk 
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prediction and reportedly still underestimated or overesti-
mated CVD risk in RA patients [21, 22].

To provide a better CVD risk assessment in RA, a 
pathophysiological association between these diseases 
should be understood, as this would help in refining CVD 
risk predictors in RA patients [23]. Atherosclerosis, a 
common phenomenon in RA [24, 25], can be adequately 
monitored using imaging modalities such as magnetic 
resonance imaging [26], computed tomography [27], opti-
cal coherence tomography [28], and ultrasound [29]. Each 
of these imaging modalities offers unique information 
about morphological variations in atherosclerotic plaque. 
Ultrasound imaging, specifically in carotid arteries, is a 
comparatively low-cost, non-invasive, radiation-free, and 
easy-to-use imaging modality that is widely adopted in 
preventive cardiovascular and clinical vascular practices 
[29, 30]. The image-based phenotypes of carotid ultra-
sound, such as carotid intima-media thickness (cIMT) 
and carotid plaque, are considered surrogate markers of 
coronary artery disease and have been used for preventive 
CVD risk assessments in several studies [31–34]. These 
image-based phenotypes indicate the morphological vari-
ations in the atherosclerotic plaque and are associated with 
the inflammatory markers of RA [35–38]. Patients with 
RA have elevated cIMT and have more plaque area (PA) 
when compared with non-RA patients [39–41]. Thus, the 
inclusion of these image-based phenotypes in risk predic-
tion models may improve the CVD risk assessments of 
RA patients. Recent studies have combined the effect of 
these image-based phenotypes with conventional risk fac-
tors, including pro-inflammatory markers like erythrocyte 
sedimentation rate (ESR), to perform CVD risk assess-
ment [42–44]. Such integrated risk calculators have dem-
onstrated better CVD risk stratification when compared to 
traditional CVD risk calculators in non-RA patients [42, 
43, 45].

Besides these statistically derived CVD risk calcula-
tors, artificial intelligence (AI)-based techniques are also 
penetrating several medical imaging and risk assess-
ment applications [46–54]. AI-based algorithms such as 
machine learning (ML) methods provide a better CVD 
risk assessment when compared with statistically derived 
conventional risk calculators [51, 55, 56]. So far, AI algo-
rithms have been used for CVD risk assessment in the 
non-RA population, and their potential still needs to be 
evaluated in RA cohorts. However, AI is well adapted for 
RA screening and diagnosis [57–60]. This review provides 
an insight into how the AI-based algorithms can be used 
for CVD risk assessment in RA patients. There are three 
aims of this review: (1) to summarize the pathophysiologi-
cal pathways that link RA with CVD; (2) to identify sev-
eral traditional and carotid ultrasound image-based CVD 
risk calculators for RA patients, and (3) to provide an 

understanding of the role of artificial intelligence in CVD 
risk assessment in RA patients.

Search strategy

Figure 1 shows a flow diagram indicating the search strategy 
for this narrative review. To write a comprehensive narrative 
review, it is essential to select at least two credible databases 
that provide high-quality peer-reviewed articles [61]. This 
review is the outcome of several searches in the PubMed 
and Web of Science databases using keywords such as “car-
diovascular diseases” AND “risk assessment” AND “rheu-
matoid arthritis,” “carotid atherosclerosis” AND “rheuma-
toid arthritis,” “non-invasive imaging” AND “rheumatoid 
arthritis,” “carotid ultrasound” AND “rheumatoid arthri-
tis,” “carotid intima-media thickness” OR “carotid plaque” 
AND “inflammatory markers,” “carotid atherosclerosis” 
AND “erythrocyte sedimentation rate” OR “C reactive pro-
tein,” “machine learning” AND “rheumatoid arthritis,” and 
“machine learning” AND “cardiovascular risk assessment” 
AND “rheumatoid arthritis.” The availability of all these 
keywords in the abstract and the full text was investigated to 
select the relevant articles. Peer-reviewed articles published 
in the last 10 years were then given priority. Citations from 
the published articles were also shortlisted for this review. 
All these articles were subsequently filtered by the expert 
co-authors to select only those that met the objectives of this 
review, leading to 120 articles.

Pathophysiology of RA leading to CVD

The pathophysiological association between RA and CVD 
can be explained in two stages: (1) the role of traditional risk 
factors, and (2) direct vascular damage. Inflammation plays 
a pivotal role in both of these stages [24].

The role of traditional risk factors 
in the pathophysiology of RA‑driven atherosclerotic 
CVD

The right-hand panel of Fig. 2 explains the pathophysi-
ological association between RA and CVD via four path-
ways [I(a)–I(d)] governed by traditional risk factors such as 
hypertension, proatherogenic dyslipidemia, insulin resist-
ance, and obesity. Patients with RA are generally found with 
pro-inflammatory cytokines such as interleukin (IL) 1, IL-6, 
and tumor necrosis factor α (TNF-α) [62]. These pro-inflam-
matory cytokines are found in the synovium, which triggers 
a systemic inflammatory response, and may result in dam-
age to the vascular endothelial cells [62]. Nitric oxide (NO) 
and cyclooxygenase-1 are two essential components required 
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to maintain the healthy endothelium, which is inhibited by 
TNF-α and IL-6, thereby resulting in endothelial cell damage 
[23, 62]. Inhibiting endothelial NO leads to arterial stiffness 
[63] and is further associated with an increase in peripheral 
vascular resistance (PVR) [64], thus leading to hyperten-
sion in RA patients. Additionally, several medications used 
to treat RA, such as disease-modifying antirheumatic drugs 
(DMARDs) leflunomide and cyclosporine, glucocorticoids, 
nonsteroidal anti-inflammatory drugs (NSAIDs), and cyclo-
oxygenase II inhibitors (Cox IBs) may also be involved in 
the development of hypertension in RA patients [65, 66].

Another pathophysiological link between RA and CVD 
is proatherogenic dyslipidemia [67]. Nearly 55%–65% of 
RA patients have proatherogenic dyslipidemia [68]. In 
non-RA patients, increased CVD risk is associated with 
elevated levels of low-density cholesterol (LDL-c), total 
cholesterol, and reduced high-density lipoprotein choles-
terol (HDL-c). However, in RA patients, low levels of total 
cholesterol (TC), low levels of LDL-c, and suppressed lev-
els of HDL-c have been reported. This condition is known 
as “the lipid paradox” [14]. Highly suppressed HDL levels 
in RA patients are “proatherogenic” [14]. Furthermore, 
RA patients show high atherogenic index levels despite 
low lipid levels. The atherogenic index is calculated as 
a ratio of TC: HDL-c, and it may vary according to their 

levels [14]. Apolipoprotein B (Apo B) is a major apoli-
poprotein in LDL, and several studies have indicated 
an increase in the ratio of Apo B: Apo A in RA patients 
[14]. A combination of low TC, LDL-c, and suppressed 
HDL-c levels with a high atherogenic index and a high 
ApoB:ApoA ratio behaves as proatherogenic dyslipidemia 
[14, 69]. Long-standing proatherogenic dyslipidemia 
causes atherosclerosis and, eventually, CVD.

Rheumatoid cachexia is another important RA-specific 
characteristic that increases CVD risk [70]. It is charac-
terized by significantly increased adiposity and reduced 
muscle mass while one maintains their bodyweight [71]. 
The pathophysiology [shown in “pathway-I (c)”] behind R. 
cachexia can be explained in two ways: (1) It is character-
ized by the reduction of muscle mass that is largely due 
to increased inflammatory cytokines (particularly TNF-α) 
by activating the transcriptional nuclear factor-kappa B 
cells (NF-kB) pathway and promoting the ubiquitin path-
way, which causes catabolism/proteolysis (muscle pro-
tein breakdown) [72, 73]. (2) Central obesity or abdomi-
nal obesity is present in 20–57% of women and 80–90% 
of men. This causes visceral adiposity in RA, which has 
an additional adverse impact on CVD [74]. On the other 
hand, increased adiposity also induces the production of 
inflammatory cytokines in RA, which further worsens this 

Fig. 1  Flow diagram for the search strategy
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scenario [75]. This syndrome may be explained in the triad 
of increased adiposity reduced muscle mass and low body 
mass index (BMI).

Epidemiological studies have suggested a strong associ-
ation between insulin resistance (IR), metabolic syndrome, 
and RA [76, 77] [shown in “pathway-I (d)” in the dark 
green-dotted box]. Inflammation plays a crucial role in 
these three conditions [78]. In patients with RA, IR serves 
as an independent prognostic risk factor that signifies the 
presence of subclinical atherosclerosis; it is determined 
by carotid intimal thickness (cIMT) and is measured by 
carotid ultrasonography [79]. Longstanding inflammation 
due to RA promotes oxidative stress, endothelial dysfunc-
tion, and atherosclerosis in this population [24].

Progression of atherosclerosis and direct vessel 
damage in RA

In RA, the activation of T-cells and mast cells increases 
the production of pro-inflammatory cytokines such as IL-1, 
IL-6, and TNF-α. These pro-inflammatory cytokines stimu-
late endothelial cells (ECs) and smooth muscle cells (SMCs) 
in subendothelium [80] (1) by expressing cell adhesion mol-
ecules such as vascular cell adhesion molecule 1 (VCAM) 
and the “intercellular adhesion molecule” (ICAM) [80] and 
(2) by producing chemokines, including monocyte chemoat-
tractant protein (MCP) and macrophage colony-stimulating 
factor (M-CSF). The activation of endothelial cells allows 
the migration of LDL-c into the sub-endothelial layer, where 

Fig. 2  Pathophysiological association between rheumatoid arthri-
tis and cardiovascular disease. IL1 interleukin 1, IL6 interleukin 6, 
TNF-α tumor necrosis factor α, EC endothelial cells, SMC smooth 
muscle cells, MCP-1 monocyte chemoattractant protein 1, M-CSF 
macrophage colony-stimulating factor, V-CAM vascular cell adhesion 
molecule, I-CAM intercellular adhesion molecule, NSAIDs nonsteroi-

dal anti-inflammatory drugs, Cox-IBs cyclo-oxygenase inhibitors, 
HTN hypertension, PVR peripheral vascular resistance, TC total cho-
lesterol, HDL high-density lipoprotein, LDL low-density lipoprotein, 
APOB apolipoprotein B, APOA apolipoprotein A, NF-kB nuclear fac-
tor-kappa B cells
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it becomes oxidized and triggers the inflammatory response 
for the recruitment of immune cells such as T lymphocytes 
and monocytes in the intimal layer. Once they enter the inti-
mal layer, monocytes are transformed into macrophages, and 
they then take up the oxidized LDL-c to become foam cells. 
The completion of this complex process then leads to the 
formation of atherosclerotic plaque. Macrophages also trig-
ger the migration of smooth muscle cells from tunica media 
to tunica intima and initiate their proliferation. The SMCs 
form a thin fibrous cap to prevent the encroachment of ath-
erosclerotic plaque towards the lumen. However, over time, 
pro-inflammatory cytokines, enzymes, and free radicals 
cause fibrous cap erosion and make the plaque vulnerable 
for rupture. The amplification of the inflammatory response 
results in the acceleration of plaque formation, eventually 
leading to plaque rupture and thrombotic events, which dam-
age the blood vessels. Pathway II of Fig. 2 represents this 
process.

Current conventional CVD risk prediction 
models for RA

Over the last decade, several CVD risk assessment calcula-
tors have been developed, very few of which are recom-
mended by the cardiovascular risk management guidelines 
[9, 81, 82]. Some standard cardiovascular risk prediction 
algorithms are the Framingham risk score (FRS) [7], Sys-
tematic Coronary Risk Evaluation (SCORE) [8], American 
College of Cardiology/American Heart Association (ACC/
AHA) risk score [9], World Health Organization (WHO) 
risk charts [83], and Reynolds’s risk score (RRS) [17]. These 
risk calculators use traditional risk factors such as patient 
demographics (age, gender, ethnicity), blood biomarkers 
(low-density lipoprotein cholesterol, high-density lipopro-
tein cholesterol, and total cholesterol), behavioral markers 
(smoking and alcohol consumption), and physiological 
markers (height, weight, body mass index). All these risk 
calculators were initially developed for non-RA populations; 
therefore, when used in RA cohorts, CVD risk is substan-
tially underestimated [10–12]. The use of traditional risk 
factors alone (while not considering RA-specific inflamma-
tory markers) could be another reason for such underestima-
tion. However, RRS included an RA-specific inflammatory 
marker called “high sensitivity C-reactive protein” (hs-CRP) 
[84] for CVD risk prediction but did not report any signifi-
cant improvement in the CVD risk assessment [11]. Rajago-
palan et al. [85] also reported a small improvement in area 
under the curve (+ 0.006 in females and + 0.004 in males) 
when C reactive protein (CRP) or erythrocyte sedimentation 
rate (ESR) was added to the FRS.

Over the past few years, several efforts have been made to 
improve the cardiovascular risk assessment in RA patients. 

The EULAR guidelines recommended the use of a modified 
SCORE (mSCORE) in RA patients positive with rheumatoid 
factor (RF) or anticitrullinated protein antibodies (ACPA) 
and RA duration of more than 10 years [16, 86]. Cox et al. 
[19, 20] developed the QRISK2 and QRISK3 algorithms, 
which use the presence of RA as a CVD risk predictor (haz-
ard ratio = 1.23, 95% confidence interval 1.19–1.28). Solo-
mon et al. [18] also developed an RA-specific CVD risk 
calculator (called expanded risk score or ERS) by including 
RA-specific biomarkers [such as disease activity, disease 
duration, a modified health assessment questionnaire (HAQ) 
disability index, and daily prednisone use] with the tradi-
tional biomarkers used in the Cox-based model. The authors 
reported an improvement of ~ 4.8% in c-index when validat-
ing the risk score on the reserved dataset. Recently, Curtis 
et al. [87] also proposed a CVD risk prediction tool for RA 
patients by combining conventional and RA-specific risk 
factors. The authors predicted the risk of composite CVD 
events such as MI, stroke, and death during the follow-up 
period of 3 years. The area under the curve (AUC) for car-
diovascular risk stratification for this model was 0.70.

All these RA-specific CVD risk scores reported a better 
risk assessment on the proprietary databases. Still, when 
compared with other risk calculators in different RA cohorts, 
these calculators have demonstrated mixed results [10–12]. 
Crowson et al. [11] reported an underestimation of CVD 
risk by FRS and RRS in 525 RA patients. The observed risk 
was twice the predicted risk. Furthermore, the authors did 
not report any improvement in cardiovascular risk predic-
tion when CRP was added to their model. Arts et al. [10] 
investigated the roles of SCORE, FRS, RRS, and QRISK2 in 
1050 RA patients. Out of these four models, SCORE, FRS, 
and RRS underestimated CVD risk in RA patients, whereas, 
the QRISK2 reported an overestimation. The AUC ranged 
between 0.78 and 0.80 for the four risk models. A similar 
study by Arts et al. [12] investigated the performance of 
the original, recalibrated, and improved version of SCORE 
calculators to predict the CVD risk in 1016 RA patients. The 
AUC values for these scores were 0.78 (95% CI 0.74–0.82), 
0.78 (0.74–0.83), and 0.80 (0.75–0.84). All these three 
scores underestimated the CVD risk in RA patients. In short, 
even after the SCORE was redesigned using the RA-based 
risk factors, it did not result in an adequate CVD risk assess-
ment. In another study by Crowson et al. [21] of 5638 RA 
patients, a CVD-risk prediction model was developed that 
reported better performance (AUC = 0.71) compared with 
conventional risk calculators such as FRS (AUC = 0.71), 
ACC/AHA (AUC = 0.72), SCORE (AUC = 0.70), and 
QRISK2 (AUC = 0.72). Furthermore, conventional risk cal-
culators either overestimated or underestimated CVD risk in 
RA patients. Wahlin et al. [88] compared the expanded risk 
score, ACC/AHA risk score, and a modified version of ACC/
AHA with a multiplier of 1.5 for a CVD risk assessment of 
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665 RA patients. The authors also reported an underestima-
tion of CVD risk by all calculators. However, the discrimi-
nation ability was slightly better, since AUC for ERS-RA 
risk was 0.78 compared to AUC of 0.98 for two variants of 
ACC/AHA.

The overall trend of all these risk prediction algorithms, 
developed for general and RA cohorts, indicates a “poor 
CVD risk assessment” in patients with RA. One possi-
ble reason for such poor performance is the paradoxical 
behavior of some of the risk factors such as lipids and body 
mass index. Another potential reason for this outcome is 
the inclusion of risk factors that do not provide complete 
information about the CVD risk profile in RA patients [89]. 
Corrales et al. [89] indicated a high prevalence of carotid 
atherosclerosis plaque in patients with low-CVD risk. This 
observation demonstrated the limited ability of conven-
tional risk factor-based algorithms to improve the CVD risk 
assessment process, which may be improved using imaging 
modalities. Therefore, there is still room to develop more 
accurate, automated, and reliable risk calculators for RA 
patients by exploring and including nontraditional risk fac-
tors such as genetic biomarkers, inflammatory biomarkers, 
or image-based atherosclerotic plaque phenotypes in the risk 
prediction algorithm.

Carotid ultrasound atherosclerosis imaging 
for CVD risk assessment in RA patients

Imaging modalities are becoming essential for the visualiza-
tion of atherosclerotic plaque and CVD risk assessment in 
RA patients [90]. Non-invasive imaging modalities such as 
computed tomography, magnetic resonance imaging, ultra-
sound, and positron emission tomography are currently used 
to assess carotid atherosclerosis in RA patients [26]. MRI 
is used to measure the plaque composition, including calci-
fication, lipid-rich necrotic core, and fibrous cap thickness 
[26]. Computed tomography is generally used to determine 
carotid artery stenosis [27]. F-fludeoxyglucose–positron 
emission tomography (FDG-PET) is a nuclear imaging 
modality that quantifies the inflammation in carotid athero-
sclerotic plaque [91]. Non-invasive carotid ultrasound is a 
commonly adopted imaging modality that can capture mor-
phological variations in the atherosclerotic plaque quantified 
using (1) carotid intima-media thickness (cIMT), (2) carotid 
intima-media thickness variability (IMTV), and (3) plaque 
area [30]. When compared with other non-invasive coun-
terparts, carotid ultrasound is less expensive and easier to 
use [30, 92]. Therefore, the scope of this review is restricted 
to the use of carotid ultrasound for CVD risk assessment 
in RA patients. The automated cIMT and carotid PA are 
considered surrogate markers of coronary artery disease and 
widely used for CVD/stroke risk assessment [31–34].

Several studies have shown a high prevalence of increased 
cIMT and carotid plaque in RA patients [39–41]. Studies 
have also demonstrated the significant association between 
these carotid atherosclerosis biomarkers and RA-specific 
markers of inflammation, such as ESR, CRP, and IL-6 
[35–38]. Table 1 provides some of such studies that link 
both carotid atherosclerosis and RA, using two sets of bio-
markers (i.e., image-based phenotypes and inflammatory 
biomarkers). One common observation from these studies 
is that patients with RA show an elevated cIMT and carotid 
plaque area compared with non-RA cohorts (row R2–R4 
of Table 1) [39, 40, 93]. This association between carotid 
atherosclerosis and RA also seems independent of the three 
carotid artery segments (common carotid artery, carotid 
bulb, and internal carotid artery) from where the cIMT or 
plaque was measured [40, 93]. However, several studies have 
reported more aggressive atherosclerotic plaque formation 
in the carotid bulb segment when compared to other arterial 
segments [94]. The higher plaque prevalence in the carotid 
bulb is a consequence of turbulent blood flow and reduced 
shear stress, which leads to endothelial dysfunction [95, 
96]. This observation of higher plaque in a bulb has also 
been confirmed in RA patients [40]. Figure 3 shows carotid 
ultrasound scans for RA (Fig. 3a, b) and non-RA patients 
(Fig. 3c, d). The left-hand side panel of Fig. 3a, c shows 
the raw carotid ultrasound scans measured using a B-mode 
ultrasound scanner. 

Similarly, the right-hand side panels of Fig. 3b, d show 
the processed scans tracking morphological variations in the 
carotid atherosclerotic plaque for the quantification of cIMT 
and plaque area. The cIMT and plaque area are both greater 
in RA patients than in non-RA patients.

Another important observation from Table 1 is the signifi-
cant association between carotid atherosclerotic biomarkers 
and RA-specific inflammatory markers, such as ESR, CRP, 
and IL-6 [37, 97]. ESR is a relatively inexpensive measure 
of inflammation in RA patients—therefore, several studies 
have used ESR for CVD risk assessment [98–100]. Some of 
such studies are listed in Table 2. All these studies indicated 
a substantially higher CVD event rate in patients with ele-
vated ESR levels. Besides ESR, studies have also suggested 
the use of other popular RA-specific inflammatory markers 
such as CRP, or hsCRP, and IL-6 for the improvement in the 
CVD risk assessment [37, 85, 101, 102]. Furthermore, these 
RA-specific inflammatory markers are also associated with 
the annual progression of cIMT [38, 97, 103–105], which is 
a prominent surrogate marker of cardiovascular events. In a 
study with 30 RA patients, Kaseem et al. [37] demonstrated 
the association of ESR, CRP, and IL-6 with carotid ath-
erosclerosis, with significant odds ratios (p < 0.05) of 1.50, 
1.90, and 1.80, respectively.

The broad usage of carotid ultrasound-based pheno-
types and their significant association with RA-specific 
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inflammatory markers has also enabled their inclusion 
in the CVD risk prediction calculators [42, 43, 54, 106]. 
Recently, several CVD/stroke risk prediction models have 
been developed that have combined the effect of conven-
tional risk factors and the automated carotid atherosclerosis 
biomarkers [42, 43]. These risk prediction models reported 
a better performance in identifying high CVD risk patients 
compared with current standard-of-care risk calculators. 
However, such so-called integrated risk prediction models 
were developed for the general population. They were based 
on the annual progression rates of carotid atherosclerotic 
biomarkers and conventional risk factors [42–44]. Therefore, 
given the progression rates of cIMT and PA due to the RA-
specific inflammatory markers, such models can be updated 
and might be useful for CVD risk assessment in RA patients.

Artificial intelligence in CVD/stroke risk 
assessment

Artificial intelligence (AI) is expeditiously changing 
the landscape of the global healthcare system and assist-
ing the healthcare workforce in clinical decision-making 
[107]. Machine learning (ML) and deep learning (DL) are 
the two common branches of AI that have broad ranges of 
applications in almost every medical imaging sector (e.g., 
classification and plaque characterization for stroke risk 
assessment [47], thyroid cancer characterization [48], liver 
cancer diagnosis [49], prostate cancer diagnosis, ovarian 
cancer diagnosis [53], lung cancer detection [108], brain 
tumor classification [50], and heart disease prediction and 
disease classification [51, 52, 54]). During the recent global 
pandemic of coronavirus diseases 2019, AI is providing 
promising results in the diagnosis of patients with the help 
of several imaging techniques such as computed tomography 
[109] and X-rays [110].

Since this review is on CVD/stroke risk assessment, we 
have summarized several studies that have used ML-based 
algorithms for CVD/stroke risk assessment (Table 3). All of 
these studies follow a supervised learning approach in which 
the ML-based classifier is trained to identify the correct out-
put labels using input risk factors or features and predefined 
gold standards or labels. Figure 4 shows the generalized 
framework of supervised ML-based CVD risk assessment. 
In the case of CVD risk assessment, the gold standard can 
be (1) the primary endpoints such as presence or absence 
of cardiovascular events, or (2) surrogate endpoints such 
as cIMT, PA, and CAC score, or a combination of these 
risk factors [51, 52, 54]. Several types of input features can 
be used to train the AI-based algorithms. They can be tra-
ditional risk factors, image-based phenotypes, grayscale 
image features, or statistically derived features. Once the 
offline ML classifier is trained using these features and gold SN
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standard, its coefficients are then used in the online ML sys-
tem to predict the out risk labels. Online ML systems do not 
require a gold standard to make the final risk classification. 
All the studies provided in Table 3 used this approach for 
CVD risk assessment. Unlike ML-based algorithms, DL-
based models, such as convolutional neural networks, do not 
require input features beforehand. Instead, such algorithms 
automatically learn their offline coefficients from the input 
image datasets [111]. 

Currently, AI-based techniques are used in the diagnosis 
of RA [57], the identification of RA disease severity [58], 
the classification of several RA synovial tissues [59], and 
mortality prediction due to RA [60]. Although ML-based 
algorithms are used in the RA field, no efforts have been 
made to assess the CVD risk in RA patients using such auto-
mated intelligence-based paradigms. ML-based algorithms 
have been used to perform CVD risk assessments in non-RA 
populations and reported a better performance in identifying 
high-risk CVD patients when compared with the current 
standard of care conventional risk calculators [51, 55, 56]. 
Patients with RA experience more atherosclerotic plaque in 
the carotid artery, which might lead to cardiovascular events 
[39–41]. In recent years several studies have demonstrated 
a better stroke risk assessment using ML-based strategies 
[29] and DL-based strategies [112]. Besides all these stud-
ies, attempts can be made to develop more accurate CVD 
risk prediction tools for RA patients using AI techniques. 
Figure 5 conceptualizes several components required for 
CVD risk assessment in RA patients. The AI-based CVD 
risk assessment for RA patients can be made possible by 
combining several types of risk factors, such as patients’ 
demographics, physiological parameters, behavioral risk 
factors, image-based phenotypes, and (most importantly) 
RA-specific inflammatory markers. This combined set of 
features can be used as inputs along with the gold standard 

to identify what CVD risk category RA patients belong to. 
As such, both ML and DL-based systems can be employed 
to performed CVD risk assessment in patients. Because of 
the significant association between carotid atherosclerosis 
and RA, researchers can conduct a pilot study with cIMT 
and plaque areas as the surrogate markers for CVD risk 
assessment.

Summary

In this review, we provided several pathophysiological path-
ways that highlight the role of cardiovascular and inflamma-
tory risk factors in the progression of atherosclerosis and 
heart injury in RA patients. Furthermore, we also indicated 
an unmet need to look for new biomarkers to achieve a more 
accurate cardiovascular risk assessment in RA patients. Spe-
cifically, carotid ultrasound is a non-invasive and economical 
technique for preventive screening applications. The carotid 
atherosclerotic image-based biomarkers such as cIMT and 
plaque have a significant association with RA-specific 
inflammatory markers. Most of the current statistically 
derived cardiovascular risk calculators, developed for both 
RA and non-RA cohorts, either underestimate or overesti-
mate the CVD risk in RA patients. Even after the inclusion 
of RA-specific inflammatory markers such as CRP, risk cal-
culators reported little improvement in risk prediction. The 
accuracy of risk assessment can be improved using AI tech-
niques. AI techniques are currently used for RA screening 
and not for CVD risk assessment in RA patients. However, 
they reported promising results of CVD risk assessment in 
non-RA cohorts. Thus, we believe that the development of 
AI-driven risk prediction models by combining traditional, 
image-based, and inflammatory risk factors is warranted to 
improve the CVD risk assessment in RA patients.

Fig. 3  Carotid ultrasound image 
of the common carotid artery 
for control patients
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Fig. 4  The generalized framework of supervised ML-based CVD risk assessment system. CVD cardiovascular disease, ML machine learning, 
AUC  area under the curve
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