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Abstract

Background: Down syndrome, caused by trisomic chromosome 21, is the leading genetic cause
of mental retardation. Recent studies demonstrated that dosage-dependent increases in
chromosome 21 gene expression occur in trisomy 21. However, it is unclear whether the entire
transcriptome is disrupted, or whether there is a more restricted increase in the expression of
those genes assigned to chromosome 21. Also, the statistical significance of differentially expressed
genes in human Down syndrome tissues has not been reported.

Results: We measured levels of transcripts in human fetal cerebellum and heart tissues using DNA
microarrays and demonstrated a dosage-dependent increase in transcription across different
tissue/cell types as a result of trisomy 21. Moreover, by having a larger sample size, combining the
data from four different tissue and cell types, and using an ANOVA approach, we identified
individual genes with significantly altered expression in trisomy 21, some of which showed this
dysregulation in a tissue-specific manner. We validated our microarray data by over 5,600
quantitative real-time PCRs on 28 genes assigned to chromosome 21| and other chromosomes.
Gene expression values from chromosome 21, but not from other chromosomes, accurately
classified trisomy 21 from euploid samples. Our data also indicated functional groups that might be
perturbed in trisomy 21.

Conclusions: In Down syndrome, there is a primary transcriptional effect of disruption of
chromosome 21 gene expression, without a pervasive secondary effect on the remaining
transcriptome. The identification of dysregulated genes and pathways suggests molecular changes
that may underlie the Down syndrome phenotypes.
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Background

Human autosomal abnormality is the leading cause of early
pregnancy loss, neonatal death, and multiple congenital mal-
formations [1,2]. Among all the autosomal aneuploidies,
Down syndrome (DS), with an incidence of 1 in approximately
800 live births, is most frequently compatible with postnatal
survival. It is characterized by mental retardation, hypotonia,
short stature, and several dozen other anomalies [3-5].

It has been known since 1959 that DS is caused by the tripli-
cation of a G group chromosome, now known to be human
chromosome 21 [6,7]. As for all aneuploidies, the phenotype
of DS is thought to result from the dosage imbalance of mul-
tiple genes. By the 1980s, a primary effect of increased gene
products, proportional to gene dosage, was established for
dozens of enzymes in studies of various aneuploidies [5].
More recently, microarrays and other high-throughput tech-
nologies have allowed the measurement of steady-state RNA
levels for thousands of transcripts in human DS cells [8-10]
and in tissues obtained from mouse models of DS [11-15].
Most of these studies have confirmed a primary gene dosage
effect. We previously measured RNA transcript levels in fetal
trisomic and euploid cerebrum samples, and in astrocyte cell
lines derived from cerebrum [16]. We observed a dramatic,
statistically significant increase in the expression of trisomic
genes assigned to chromosome 21.

The secondary, downstream consequences of aneuploidy are
complex. A major unanswered question is the extent to which
secondary changes occur in DS as a consequence of the aneu-
ploid state. On chromosome 21, gene expression may be reg-
ulated by dosage compensation or other mechanisms such
that only a subset of those genes is expressed at the expected
50% increased levels. For genes assigned to chromosomes
other than 21, the effect of trisomy 21 (TS21) could be rela-
tively subtle or massively disruptive. It has been hypothesized
that gene expression changes in chromosome 21 are likely to
affect the expression of genes on other chromosomes through
the modulation of transcription factors, chromatin remode-
ling proteins, or related molecules [5,17,18]. Recent studies in
human and in mouse provide conflicting evidence, with some
studies suggesting only limited effects of trisomy on the
expression of disomic genes, whereas other studies indicate
pervasive effects (see Discussion).

In the present study, we assessed five specific hypotheses
relating to primary and secondary transcriptional changes in
DS. First, which, if any, chromosomes exhibited overall dif-
ferential expression between TS21 and controls? Our previ-
ous study in human tissue [8,16] suggested the occurrence of
dosage-dependent transcription for chromosome 21 genes,
but not for genes assigned to other chromosomes. The
present report addressed whether this phenomenon applies
to multiple tissues in DS.
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Second, which, if any, genes assigned to chromosome 21
exhibited differential expression between TS21 and controls?
Third, which, if any, genes on chromosomes other than chro-
mosome 21 exhibited differential expression between TS21
and controls? Previous studies by other groups [8,9,19,20]
and by us [16] lacked sufficient statistical power to identify
significantly regulated genes in DS. The present study identi-
fied such genes by using a larger sample size, by combining
previous data from cerebrum and astrocytes [16] with gene
expression data from additional tissue types (cerebellum and
heart), and by using analysis of variance (ANOVA).

Fourth, can we classify tissue samples as TS21 or controls
using genes on chromosome 21 or genes on chromosomes
other than 21? Classification is a supervised learning tech-
nique that provides a powerful statistical approach to address
the question whether only chromosome 21 or the entire tran-
scriptome is involved in DS. Fifth, which, if any, functional
groups of genes exhibited overall differential expression
between TS21 and controls? Such analysis may reveal biolog-
ical processes that are perturbed in DS.

In this study we measured gene expression in heart and cere-
bellum, two regions that are pathologically affected in DS.
Total brain volume is consistently reduced in DS, with a dis-
proportionately greater reduction in the cerebellum [21,22].
Furthermore, a significant reduction in granule cell density in
the DS cerebellum has been reported for both human and the
Ts65Dn mouse model of DS [23]. Another prominent pheno-
type of DS is congenital heart defects. TS21 has the highest
association with major heart abnormalities among all chro-
mosomal defects, and 40% to 50% of TS21 children have
heart defects [24,25]. Of those children with heart abnormal-
ities, 44% to 48% are specifically affected with atrial ventricu-
lar septal defects (AVSDs) [26]. Other commonly affected
tissues in the DS heart include the valve regions, such as pul-
monary and mitral valves [27,28]. Barlow et al. [29] assessed
congenital heart disease in DS patients with partial duplica-
tions of chromosome 21, and established a critical region of
over 50 genes. The expression levels of these genes in fetal
TS21 heart samples have not yet been assessed.

Our data showed consistent, statistically significant overall
dosage-dependent expression of genes assigned to chromo-
some 21. Analysis of these data identified genes with most
consistent dysregulation of expression in different TS21 fetal
tissue and cell types, most of which were independently con-
firmed by quantitative real-time PCR. We successfully classi-
fied tissue samples using expression data from chromosome
21 genes, but not with the data on non-chromosome 21 genes.
Statistical analyses on our microarray data also indicated tis-
sue-specific, regulated functional groups of genes, which may
provide initial clues to perturbed biological pathways in TS21.
Overall, the data support a model in which the aneuploid state
increases the expression of chromosome 21 genes, with
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Figure | (see previous page)

PCA was used to visually assess the major sources of variation in the expression data. For each of the four panels, each data point represents a sample;
there are 25 samples total. (a) PCA applied to chromosome 21| genes. The x-axis represents the first PC (accounting for 41% of the variance) and the y-
axis represents the second PC (accounting for 21.2%). The graph is based on expression values for all 253 probe sets assigned to chromosome 21. This
showed that the largest source of variability was due to tissue/cell type, accounting for 62.2% of the variance in the data. (b) PCA applied to chromosome
2| genes. The x-axis corresponds to the third PC, and the y-axis corresponds to the second PC. The third PC showed a separation of trisomic from
euploid samples based on gene expression, accounting for 17.2% of the variance in the data. (c) PCA applied to non-chromosome 21 genes. The first two
PCs (x- and y-axis) using expression values for genes assigned to all other chromosomes also showed that the largest source of variance was due to tissue
(77.4% of total variance). These observations are similar to the results in panel a. (d) PCA applied to non-chromosome 21 genes. The x- and y-axis
correspond to the third and second PCs, respectively. In contrast to the results of panel b, the third PC failed to show separation of trisomic from euploid
samples (6.9% of total variance). The ellipsoids represent three standard deviations beyond the centroid of each tissue group. Data points correspond to
samples (red, Down syndrome; blue, euploid) within a group (cerebrum, diamond symbols on data points, and green ellipsoid; cerebellum, square symbols
on data points and blue ellipsoid; astrocyte, triangle symbols on data points and red ellipsoid; heart, hexagon symbols on data points and orange ellipsoid).

complex but limited secondary effects on transcript levels of
genes on other chromosomes.

Results

Exploratory analyses of gene expression

We measured the expression levels of up to 18,462 tran-
scripts, representing approximately 15,106 genes, using
Affymetrix GeneChip® human U133A microarrays. These
transcripts corresponded to 20,261 probe sets, excluding
2,023 Affymetrix bacterial and housekeeping control probes
and probes that do not map to any chromosomes. We per-
formed principal components analysis (PCA) to explore the
gene expression profiles from four regions (cerebrum, cere-
bellum, heart, and cerebrum-derived astrocyte cell lines) in
human fetal samples diagnosed with TS21 and matched
euploid controls (see Additional data file 1). PCA allows the
visualization of highly dimensional data along principal com-
ponent (PC) axes. These axes reflect the degree of variance in
the data, allowing the identification of groups of data points
having possible biological relevance. For example, two points
corresponding to tissue samples that are close together in
PCA space are likely to have highly similar overall gene
expression profiles. Figure 1 shows the 25 tissue samples
mapped from high-dimensional space to three dimensions
for exploratory visualization. The first three PCs are displayed
on the x-, y-, and z-axes, respectively. The percentage of total
variance explained by each PC is displayed on the corre-
sponding axis. This analysis was performed on 253 probe sets
(chromosome 21) and 20,008 probe sets (non-chromosome
21) separately. Figure 1 shows that for chromosome 21 and
non-chromosome 21 genes, the samples clustered primarily
by tissue or cell type. Thus, the largest differences in overall
gene expression between the samples exhibited by PCA are
attributable to the different tissues or cells. For genes on
chromosome 21, TS21 is distinguishable from euploid con-
trols on the third PC, which accounts for 17.2% of the total
variation in 253-dimensional data (Figure 1b). In contrast,
PCA mapping of non-chromosome 21 genes (Figure 1c,d)
showed no distinction between TS21 and euploid controls.
Although only the first three PCs are displayed in Figure 1, a
difference between TS21 and euploid controls was not signif-

icant on any of the PCs (based on a t test performed on each
PC; data not shown).

To further explore the relationships between samples based
upon gene expression profiles, we performed hierarchical
clustering using average linkage with Euclidean distance
(Figure 2). Hierarchical clustering and PCA are "unsuper-
vised' methods, which do not consider the known sample
attributes such as tissue type or disease state when organizing
the data. We superimposed the sample information using
color coding. Consistent with PCA, cluster analysis indicated
that the samples clustered primarily by tissue source in both
chromosome 21 genes and non-chromosome 21 genes. The
clustering for the chromosome 21 genes showed a tendency to
cluster by disease type within the tissue clusters (Figure 2a),
whereas no obvious clustering by disease type was evident in
the primary clusters or sub-clusters of genes not on chromo-
some 21 (Figure 2b). Cluster analysis and PCA results are con-
sistent with the hypothesis that TS21 samples are
distinguishable from matched euploid samples based upon
differences in the expression of genes assigned to chromo-
some 21. Additionally, these exploratory analyses revealed no
substantial outliers or other anomalies in the data.

Statistical testing of gene expression

We used a mixed-model ANOVA to test the first three hypoth-
eses stated in the introduction. The hypotheses tested
included multiple tests on chromosomes or individual genes.
Therefore, to protect against false discoveries due to multiple
testing, we used the step-up 'false discovery rate' (FDR) [30].
We set the FDR at 0.05, meaning that the list of significant
genes after applying FDR is expected to contain 5% false
positives.

For the first hypothesis, we assessed whether genes assigned
to each chromosome displayed overall differential gene
expression. Only chromosome 21 showed significant mean
overall differential expression between TS21 and euploid con-
trols (Figure 3). Genes on chromosome 21 were expressed at
1.37 + 0.02 fold (mean + standard error), while the ratio of
TS21/control across the other chromosomes was 1.00 + 0.02
(ranging from 0.96 + 0.03 to 1.02 + 0.03). For this first
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Table |

Most consistently dysregulated chromosome 21 genes based on their p-values from ANOVA and after 5% false discovery rate cut-off

Accession

Gene name b Chromosome p value Cerebrum Cerebellum Astrocyte Heart
number number (ANOVA)

Control ~ TS2I  Control ~ TS2I  Control  TS2lI  Control  TS2I
Pituitary tumor-transforming | interacting NM_004339 21 1.50E-07 582.6 888.1 830.9 11769 23555 3896.0 1153.0 2003.5
protein (PTTGIIP)
ATP synthase, H+ transporting, mitochondrial  NM_001697 21 5.11E-07 1509.0 2553.5 1331.5 2327.1 15529 20863 2375.0 4002.1
Fl complex, O subunit (ATP50)
SH3 domain binding glutamic acid-rich protein  NM_007341 21 7.12E-07 20.5 44.5 21.2 484 382 130.2 606.8 1937.5
(SH3BGR)
ATP synthase, H+ transporting, mitochondrial  NM_001685 21 2.47E-06 624.4 11488  723.1 1013.6 8813 1331.5 9164  2046.7
FO complex, subunit Fé (ATP5))
Down syndrome critical region gene 3 NM_006052 21 1.44E-05 51.7 94.3 49.8 92.6 49.7 169.0 729 71.1
(DSCR3)
Chromosome 21 segment HS21C048, zinc NM_015565 21 3.39E-05 165.7 283.0 161.6 228.9 78.6 127.8 107.5 178.0
finger protein 294 (ZNF294)
Superoxide dismutase | (SOD/) NM_000454 21 5.62E-05 11762 24934 18167 28604 24827 3853.6 1789.7 31108
ATP synthase, H+ transporting, mitochondrial  NM_001697 21 6.94E-05 203.7 3359 219.1 3427 1245 2584 3424 521.4
FI complex, O subunit (ATP50)
Cystatin B (stefin B) (CSTB) NM_0001 21 7.75E-05 412 695.0 584.6 868.9 855.1 10073 7974 1034.7
Phosphofructokinase, liver (PFKL) BC006422 21 1.93E-04 411 476.9 255.8 492.1 2473 397.9 390.0 433.1
Pyridoxal (pyridoxine, vitamin B6) kinase NM_003681 21 2.82E-04 50.3 1374 70.1 149.4 118.4 261.6 96.6 139.3
(PDXK)
Collagen, type VI, alpha | (COL6AI) AA292373 21 5.04E-04 559.4 963.1 1019 1417 573.7 8344 30035 41777
Transmembrane protein | (TMEMI) U61500 21 5.25E-04 68.4 83.6 45.0 90.8 345 88.5 6.6 62.8
Ubiquitin specific protease 16 (USP/6) NM_006447 21 5.33E-04 189.8 3188 223.1 306.5 272.5 5134 180.0 320
SMT3 suppressor of mif two 3 homolog | NM_006936 21 6.27E-04 704.0 11815 8234 1233.1 698.7 10929 4846 676.5
(yeast) (SMT3HI)
SON DNA binding protein (SON) X63071 21 7.28E-04 701.5 975.7 807.4 870.3 781.2 11813 7617 9247
Mitochondrial ribosomal protein L39 NM_017446 21 7.48E-04 195.2 281.5 256.7 266.2 250.6 310.1 274.1 385.9
(MRPL39)
Interferon gamma receptor 2 (IFNGR2) NM_005534 21 8.16E-04 553.5 754.3 507.5 692.0 881.2 13079 6395 8IS
Human homolog of ES| (zebrafish) protein D86062 21 1.02E-03 175.5 260.5 163.5 280.1 190.0 202.1 188.4 374.7
(C2lorf33)
Chaperonin containing TCPI, subunit 8 NM_006585 21 1.45E-03 1098 15204  743.6 956.3 619.0 12008  615.1 1089.8
(theta) (CCT8) -

o

Chromosome 21 open reading frame 108 Al803485 21 1.53E-03 525 101.9 61.9 91.8 60.7 105.4 25.6 71.3 o
(C210rf108) 3
Tryptophan rich basic protein (WRB) NM_004627 21 2.18E-03 759.6 14392 9264 11824 7286 13365 2919 566.5 8
SMT3 suppressor of mif two 3 homolog | BG338532 21 3.15E-03 204.0 274.6 186.6 294.2 252.2 3522 157.3 263.7 é
(yeast) (SMT3HI) g
HMT | hnRNP methyl-transferase-like | NM_001535 21 3.62E-03 670.0 920.5 584.2 843.2 489.1 471.6 363.0 525.2 a
(HRMTILI) =
Human homolog of ES| (zebrafish) protein NM_004649 21 4.00E-03 491.8 8182 589.7 918.9 455.9 665.6 7133 1039.4
(C2lorf33)
Stress 70 protein chaperone, microsome- Al718418 21 4.43E-03 276.2 477.5 289 308.5 4182 738.6 59.0 111.4

associated, 60 kDa (STCH)

The average expression values are for the probe sets corresponding to the genes (from MAS5 software). Two genes (ATP50 and C2lorf33) each
have two probe sets on this list. TS21, trisomy 21.

hypothesis, 23 chromosomes were tested (chromosomes X
and Y were combined), so the FDR is based on n = 23 tests.

For the second hypothesis, we tested whether individual
genes assigned to chromosome 21 were differentially
expressed in TS21 versus euploid samples. A mixed-model
ANOVA (see Materials and methods) identified 26 out of 253
chromosome 21 probe sets (10.2%) with statistically signifi-

cant differential expression at a FDR of 0.05. These most con-
sistently dysregulated genes are listed in Table 1. For 104 gene
expression comparisons listed in Table 1, 103 were increased
in TS21 relative to controls. For this hypothesis, the FDR was
based on n = 253 tests (for the number of probe sets assigned
to chromosome 21).

Genome Biology 2005, 6:R107
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Figure 2

Dendrograms from hierarchical clustering. Dendrograms were based on (a) chromosome 21 genes and (b) non-chromosome 21 genes in the 25 samples,
using Euclidean distance and average linkage. Branch lengths represent dissimilarity. Samples were of two types (TS21, red; euploid, dark blue) and four
sources (astrocyte, green; cerebellum, light blue; cerebrum, gray; heart, brown).

For the third hypothesis, we tested whether individual genes
not assigned to chromosome 21 were differentially expressed
in TS21 relative to euploid samples. The presence of such
genes would indicate whether the condition of TS21 causes
changes in the transcriptome on chromosomes other than 21,
possibly as a secondary consequence of the trisomy. Out of
20,008 non-chromosome 21 probe sets, 14 exhibited statisti-
cally significant differential expression at a FDR of 0.05
(Table 2). Using an alternative approach, we performed FDR
on each chromosome separately with similar results (Addi-
tional data file 2). The same 14 genes passed FDR at the 0.05
level, as well as three additional genes (2,4-dienoyl CoA
reductase 1 (NM_o001359) and cholinergic receptor,
nicotinic, alpha polypeptide 2 (NM_000742), both assigned
to chromosome 8, and small inducible cytokine subfamily A
(Cys-Cys), member 21 (NM_002989), assigned to chromo-
some 9). For chromosome 21 genes, 10.3% passed FDR at
0.05; for all other chromosomes, the greatest number of
genes passing was 0.3% (chromosome 18) (Additional data
file 2).

Based on the mixed-model ANOVA, a large proportion of
chromosome 21 genes (n = 26 probe sets/253) showed signif-
icant altered expression at a FDR of 0.05, while a very small
proportion of non-chromosome 21 genes (n = 14 probe sets/
20,008) were significantly regulated. We further visualized
this phenomenon by plotting a histogram of all the p values
obtained for chromosome 21 genes (n = 253; Figure 4a) and
for non-chromosome 21 genes (n = 20,008; Figure 4b). The
histogram in Figure 4a contains 20 bins, at intervals of 0.05.

If there were no truly differentially regulated genes, each bin
would contain 253 x 0.05 = 12.65 transcripts (horizontal line
on the figure). The figure indicates that there are many more
small p values than expected by chance; there are 62 tran-
scripts with p < 0.05, while only about 13 would be expected
to be less than 0.05 by chance. For non-chromosome 21 genes
(Figure 4b), the expected number of genes having a p value
less than 0.05 by chance was 1000.4 (20,008 x 0.05),
whereas the observed number of genes having p < 0.05 was
1,419. Although there was some tendency for the p values to
be smaller than expected by chance, these two histograms
provide a visual display of the extent to which the expression
of many chromosome 21 genes are significantly different
between TS21 and controls, whereas few genes assigned to
other chromosomes were significantly regulated.

We asked whether there were regional differences among the
significantly regulated genes. For those genes assigned to
chromosome 21 (Table 1), the mean ratio of TS21/euploid
mRNA level was 1.58 + 0.05 (mean + standard error) in the
fetal brain tissues and astrocyte cell lines derived from the
frontal cortex. Similarly, the TS21/euploid expression ratio in
fetal heart was 1.60 + 0.09 (with the exception of TMEM1, for
which the TS21/euploid ratio was 9.58). These results are
consistent for a gene expression dosage effect caused by tri-
somy. However, for significantly regulated genes that were
not assigned to chromosome 21 (Table 2), a large percent
were abundantly expressed and significantly different
between TS21 and euploid samples only in the heart, but not
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Figure 3 (see previous page)

Increased transcript levels of genes assigned to chromosome 21 in TS21 samples compared to controls. The plots show ratio (TS21/euploid) of mean
expression values, calculated using data from samples in each tissue or cell type, for all 23 chromosomes. (X and Y chromosome data were pooled.) The
expression values were obtained with Affymetrix MAS5 software. The error bars represent standard errors (obtained by performing 1,000 iterations of a
bootstrap resampling of the tissues). (a) The ratio of TS2I to euploid mean expression values for each chromosome in fetal cerebrum samples. (b) The
ratio of TS2| to euploid mean expression values in fetal cerebellum samples. (c) The ratio of TS2| to euploid mean expression values in cultured astrocyte
cell lines derived from fetal cerebrum tissues. (d) The ratio of TS2| to euploid mean expression values in fetal heart samples. (e) The ratio of TS21 to
euploid mean expression values using data from all the above tissue and cell types.

in the brain. These genes included myomesin 1, myoglobin,
calsequestrin 2, cardiac troponin I and T2, and alpha 1 actin.

Classification of TS21 and euploid samples

To more completely assess differential gene expression, we
investigated the ability to classify tissue samples as TS21 or
euploid controls using genes on chromosome 21 and genes on
chromosomes other than 21. The accuracy estimate for classi-
fication using chromosome 21 genes was 99.91% correct,
whereas the estimate for classification using non-chromo-
some 21 genes was only 48.63% correct. Tables 3 and 4 show
the classification results for the nested cross-validation using
chromosome 21 genes and those using non-chromosome 21
genes (see Materials and methods and Additional data file 3).
As expected, we were able to classify the tissue samples with
very high accuracy using chromosome 21 genes (Table 3). The
classification accuracy when using non-chromosome 21 genes
was, however, approximately equal to the accuracy expected
by chance (Table 4).

Functional group analysis

Based upon Gene Ontology (GO) annotations [31-33], each of
the probe sets represented on the Affymetrix GeneChip®
human U133A microarray, having a signal intensity above a
background cutoff level, was either assigned to a GO func-
tional group, or else defined as a member of a set excluding
that functional group (‘'non-group members') (see Materials
and methods). We asked whether our microarray data might
indicate any particular functional groups of genes that were
dysregulated in the TS21 samples compared to euploid con-
trols. To address this question, we first performed permuta-
tion tests to establish the presence of a signal in the data. Due
to the acyclic tree structure of the GO database, with multi-
level interconnecting nodes, it is unclear which further per-
mutation test might be performed to optimally define
regulated groups. We therefore next applied a t test (or Wil-
coxon's rank test for groups with only one or two members) to
the gene expression data for two groups of probe sets: each
given functional group, and the non-group members. This
process was then repeated for all the functional groups. We
found 1,141 functional groups for the cerebrum, 1,179 func-
tional groups for the cerebellum, 1,126 functional groups for
the astrocyte cell lines, and 1,180 functional groups for the
heart.

The first 15 functional groups with the smallest p values for
each tissue/cell type are listed in Tables 5, 6, 7, 8. In particu-

lar, the mitochondrion group (n = 417 probe sets) in the fetal
cerebrum and heart tissues had the smallest p values from our
functional group statistical analyses (Tables 5 and 8). Several
other groups related to metabolic pathways, such as oxidore-
ductase activity (n = 299, in the cerebrum), NADH dehydro-
genase activity (n = 31, in the cerebrum and heart), and
mitochondrial inner membrane (n = 74, in the heart) were
also among the most statistically significantly regulated func-
tional groups (Tables 5 and 8).

To establish that there is signal in the data, we also performed
permutation tests. For each functional group, a two sample ¢
test was carried out, testing for a difference in expression for
genes associated with this functional group compared to all
other observed gene expression levels. If there were no signal
in the data, a random assignment of the expression levels
(obtained for example by randomly shuffling the observed
expression levels) would yield comparable results. However,
the distribution of p values obtained from 100 permutation
tests (indicated by 100 black lines in the plots) are vastly dif-
ferent from those observed in the original data, indicating
that the assumption of no signal in the data was wrong (Addi-
tional data files 4 and 5).

For GO functional groups having only one or two genes we
applied a Wilcoxon rank test. In each tissue the lowest p value
ranged from 0.0006 to 0.0726 for the top 20 GO functional
groups having only one member, and 0.0001 to 0.1394 for
groups having only two members. After correction for multi-
ple comparisons, none of these values is significant (Addi-
tional data file 6), suggesting that none of the GO groups
comprising one or two members was significantly regulated
in TS21 samples from any tissue.

Confirmation of microarray results

To confirm the altered expression levels of genes detected by
microarrays, we performed over 5,600 quantitative real-time
PCRs of ¢cDNA derived from total RNA of the fetal samples.
We selected a total of 28 genes from those that had shown the
most consistent regulation by ANOVA (Tables 1 and 2),
including 18 chromosome 21 genes and 10 non-chromosome
21 genes, based upon their abundance, fold regulation, and p
values. We measured their mRNA levels by quantitative real-
time PCR in four tissue/cell types, and compared these levels
between TS21 and euploid samples. The hypoxanthine phos-
phoribosyltransferase (HPRT) housekeeping gene was used
as a control gene for normalization between samples. Melting
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Table 2

Most consistently dysregulated non-chromosome 21 genes based on their p values from ANOVA and after 5% false discovery rate cut-off

Gene name Accession Chromoso p value Cerebrum
number me number  (ANOVA)

Cerebellum Astrocyte Heart

Control TS2I Control TS2I Control TS21 Control TS21

Hypermethylated in cancer | (HICI) NM_006497 17 2.33E-08 6.5 1.9 4.8 38 4.6 2.0 413 5.8
Myomesin | (skelemin) (185 kDa) (MYOMI) NM 0 18 8.82E-08 378 233 45.0 526 13.6 9.8 930.1 1302.5
Myoglobin (MB) NM_005368 22 1.09E-07 103.5 85.5 90.2 142.8 729 6l.1 73929 12099.8
Calsequestrin 2 (cardiac muscle) (CASQ2) NM_001232 | 1.56E-07 17.7 9.3 14.1 19.5 14.4 143 23415 38687
Ras-related associated with diabetes (RRAD) NM_0041 16 5.06E-06 4.5 42 13.3 9.8 45.8 36.6 1907.1 932.0
Troponin |, cardiac (TNNI3) NM_000363 19 5.90E-06 49.0 44.1 44.6 712 311 252 29424 47572
Insulin-like growth factor binding protein 7 NM_ 001553 4 1.12E-05 223.8 314. 7415 5194 24186 4205 7438 1137.2
(IGFBP7) 7 .6

Actin, alpha |, skeletal muscle (ACTAI) NM_001100 | 1.20E-05 386 385 337 47.6 55.9 I3|8. 553.4 2310.0
Calcineurin-binding protein calsarcin-1 (MYOZ2) NM_016599 4 1.22E-05 4.9 6.3 7.6 20.2 4.7 3.0 1742.3 2592.5
Teratocarcinoma-derived growth factor | NM_003212 3 1.95E-05 10.6 1.8 82 9.9 3.1 20.6 1.3 187.9
(TDGFI)

Tenomodulin protein (TNMD) NM_022144 X 2.24E-05 72 5.4 10.0 6.4 5.8 48 236 103.0
Olfactory receptor, family 7, subfamily E, AA459867 13 2.51E-05 115.4 88.7 149.1 87.6 144.8 I16. 215.1 584
member 12 pseudogene (OR7EI2P) |

Cardiac troponin T2 (TNNT2) X79857 | 2.56E-05 47.4 39.9 47.4 45.7 44.6 326 37103  4965.9
A disintegrin-like and metalloprotease NM_007037 il 3.21E-05 13.0 1.5 14.6 15.5 15.1 1.4 282.8 154.7

(reprolysin type) with thrombospondin type |
motif, 8 (ADAMTSS8)

The average expression values are for the probe sets corresponding to the genes (from MASS software). TS21, trisomy 21.

curves and gel electrophoresis of PCR products confirmed the
identity of the amplification products (data not shown). The
directions of dysregulation and fold changes from real-time
PCR results were generally consistent with our microarray
findings (Tables 9 and 10). Most genes showed increased
transcript levels by both microarray and real-time PCR. Two
non-chromosome 21 genes, RRAD and ADAMTSS8, were
down-regulated in the fetal TS21 heart consistently in micro-
array and PCR experiments. An example of the results from
one real-time PCR experiment for the ZNF 294 gene is shown
in Additional data file 7.

All microarray data have been submitted to Gene Expression
Omnibus (series accession number GSE1397).

Discussion

The mechanisms by which an extra copy of chromosome 21
produces the phenotype of DS are complex. Epstein and
others have postulated that a triplicated chromosome 21
causes a 50% increase in the expression of trisomic genes as a
primary dosage effect [5,34]. This primary effect has been
observed in several recent studies. We previously measured
the expression levels of approximately 15,000 genes in
human fetal cerebrum samples, and in astrocytes derived
from cerebrum [16]. We observed that RNA transcripts
derived from chromosome 21 genes display a dosage-depend-
ent increase in expression. Other groups have reported simi-

lar findings in pooled amniotic fluid cells [8] and in whole
blood containing multiple cell types [10]. A primary gene dos-
age effect has also been observed in several mouse models of
DS. Ts65Dn [35] and Ts1Cje [36] mice display learning
defects and have segmental trisomy of mouse chromosome
16, spanning regions that encode orthologs of about one third
to one half of the human chromosome 21 genes. A dosage-
dependent increase in the expression of trisomic genes was
reported for Ts1Cje [11,12] and Ts65Dn [13,14] mice relative
to euploid controls.

In addition to primary gene dosage effects, secondary (down-
stream) effects on disomic genes are likely to have a major
role in aneuploidies in general and DS in particular
[5,17,37,38]. However, the nature and extent of such effects in
TS21 is controversial [18]. According to one model, trans-act-
ing factors (such as transcription factors) may cause some
gene expression changes on chromosomes other than 21, but
without a pervasive effect on the transcriptome. Several
recent studies support this model. Lyle and colleagues per-
formed quantitative real-time PCR measurements from
various tissues of the Ts65Dn mouse, and found changes in
the transcript levels of most trisomic genes but zero of 20 dis-
omic genes tested [14]. Similar results were obtained in stud-
ies of Ts1Cje mouse brain [11] and cerebellum [12], and in a
group of nine tissues in the Ts65Dn mouse [13].
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Figure 4

Histograms of p values. (a) Distribution of p values for chromosome 21 genes (253 probe sets represented on the microarray). The histogram contains 20
bins, at intervals of 0.05. The expected number of genes in each bin by chance alone is 253 x 0.05 = 12.65 (horizontal line). (b) Distribution of p values for
non-chromosome 21 genes (20,008 probe sets). The expected number of genes having a p value < 0.05 by random chance is 20,008 x 0.05 = 1000.4

(horizontal line).

Table 3

Nested cross-validation results using chromosome 21 genes

Pass Number of samples Best inner C-V score (% correct) Number of tied models Outer C-V score (% correct)
Subject | 3 100.00% (22/22) 16 100.00%
Subject 2 2 100.00% (23/23) 160 100.00%
Subject 3 4 100.00% (21/21) 19 100.00%
Subject 4 4 100.00% (21/21) 142 99.82%
Subject 5 4 100.00% (21/21) 107 100.00%
Subject 6 | 100.00% (24/24) 131 100.00%
Subject 7 4 100.00% (21/21) 247 99.60%
Subject 8 | 100.00% (24/24) 186 100.00%
Subject 9 | 100.00% (24/24) 107 100.00%
Subject 10 | 100.00% (24/24) 212 100.00%

Accuracy estimate 99.91%

The model space parameters are as follows: Gene selection: ANOVA; Number of genes: [, 3,5, ...,

251, 253; Classifier |: K-Nearest Neighbor

(KNN); Number of neighbors (K): |, 3, 5; Similarity measures: Euclidean distance, Pearson's correlation, Absolute value (also known as 'City block');
Classifier 2: Nearest Centroid, Prior probability: Equal; Classifier 3: Discriminant Analysis, Discriminant functions: Linear, Quadratic, Prior

probability: Equal.

According to a second model, trans-acting factors on chromo-
some 21 cause a profound disruption of the entire transcrip-
tome. In human cells, FitzPatrick and colleagues [8] reported
that genes assigned to chromosome 21 displayed increased
transcript levels, but 19 of the 20 most dramatically dysregu-
lated genes did not map to chromosome 21. These results are
interpreted as evidence for a mild disomic gene dysregulation
[18]. (That study [8] was based on a single initial microarray
hybridization. Expression ratios could be measured, but not p

values to assess the likelihood that those changes occurred by
chance.) Tang et al. [10], studying blood cells from DS versus
control cases, reported that 11 of 56 chromosome 21 genes
were expressed at increased levels, but across all chromo-
somes, 191 genes were up-regulated and 433 genes were
down-regulated. In the Ts65Dn mouse, Saran et al. [15]
measured transcript levels in trisomic and euploid
cerebellum, and reported a global destabilization of gene
expression, including 922 probes that were significantly, dif-
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Table 4

Nested cross-validation results using non-chromosome 21 genes

Pass Number of samples Best inner C-V score (% correct) Number of tied models Outer C-V score (% correct)
Subject | 3 68.18% (15/22) 12 13.89%
Subject 2 2 69.57% (16/23) 92 1.63%
Subject 3 4 71.43% (15/21) 3 50.00%
Subject 4 4 66.67% (14/21) 3 75.00%
Subject 5 4 76.19% (16/21) 13 25.00%
Subject 6 | 75.00% (18/24) 18 0.00%
Subject 7 4 57.14% (12/21) 4 68.75%
Subject 8 | 70.83% (17/24) | 100.00%
Subject 9 [ 70.83% (17/24) 24 95.83%
Subject 10 | 66.67% (16/24) | 100.00%
Accuracy estimate 48.63%

The classifier space evaluated was the same as the one used in the chromosome 21 test (Table 3).

Table 5

Most statistically significantly regulated functional groups in the fetal cerebrum tissues based on their p values from t tests

GO group GO identifier Number of probe sets p value Mean of GO group Mean of non-group
members

Mitochondrion GO:0005739 417 |.41E-14 0.03 0

Monovalent inorganic GO:0015077 86 3.72E-09 0.05 0

cation transporter

activity

Nucleobase, GO:0006139 1495 2.00E-07 -0.02 0

nucleoside, nucleotide
and nucleic acid

metabolism

Nucleus GO:0005634 2072 5.50E-07 -0.01 0 3
Nucleic acid binding GO:0003676 485 1.23E-06 -0.02 0 g
Oxidoreductase GO:0016491 299 3.31E-06 0.02 0 e
activity 3
NADH dehydrogenase GO:0003954 31 3.80E-06 0.06 0 §
activity F‘:;_
DNA binding GO:0003677 1071 1.35E-05 -0.02 0

Cytochrome-c oxidase GO:0004129 25 8.51E-05 0.05 0

activity

RNA binding GO:0003723 466 1.48E-04 -0.02 0

Transcription factor GO:0003700 558 2.40E-04 -0.02 0

activity

Amine metabolism G0O:0009308 147 3.47E-04 0.03

RNA metabolism GO:0016070 273 7.76E-04 -0.02

Heterotrimeric G- GO:0000263 8 8.51E-04 0.04 0

protein GTPase, alpha-

subunit

Helicase activity GO:0004386 27 I.15E-03 -0.05 0

The Gene Ontology (GO) database was used to assign a probe set to a functional group. There were 736 functional groups tested for the cerebrum
tissue. The first 12 functional groups with the smallest p values are listed here. The mean of log ratios between trisomy 21 and euploid controls for
each functional group was compared to that for the group of remaining probe sets not assigned to that functional group ('non-group members').
After one type of multiple test comparison correction, the cut-off level for statistical significance was 6.79E-05 (assigned by dividing 0.05 by the
number of functional groups, 736).
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Most statistically significantly regulated functional groups in the fetal cerebellum tissues based on their p values from t tests

GO group GO identifier Number of probe sets p value Mean of GO group Mean of non-group
members

Integral to plasma GO:0005887 933 |.26E-11 0.03 0

membrane

RNA binding GO:0003723 469 6.31E-11 -0.02 0.0l

Structural constituent GO:0003735 212 1.12E-08 -0.03 0.0l

of ribosome

G-protein coupled GO:0004930 212 1.29E-08 0.06 0

receptor activity

Transmission of nerve GO:0019226 170 3.31E-08 0.06 0

impulse

Nucleus GO:0005634 2194 3.55E-08 -0.01 0.0l

Cell surface receptor GO:0007166 592 2.24E-07 0.03 0

linked signal

transduction

Ribosome GO:0005840 147 4.68E-07 -0.03 0.0l

Defense response GO:0006952 430 1.07E-06 0.04 0

Nucleobase, GO:0006139 1596 5.37E-06 -0.01 0.01

nucleoside, nucleotide

and nucleic acid

metabolism

Neurogenesis GO:0007399 337 9.55E-06 0.04 0

Eukaryotic translation GO:0008304 13 2.51E-05 -0.05 0.0l

initiation factor 4

complex

RNA metabolism GO:0016070 286 4.57E-05 -0.02 0.0l

GABA receptor activity GO:0016917 15 6.46E-05 0.1 0.01

DNA binding GO:0003677 1126 7.24E-05 -0.01 0.0l

There were 764 functional groups tested. The first 12 functional groups with the smallest p values are listed here. The mean of log ratios between
TS21 and euploid controls for each functional group was compared to that for the group of remaining probe sets not assigned to that functional
group ("non-group members"). After one type of multiple test comparison correction, the cutoff level for statistical significance was 6.54E-05

(assigned by dividing 0.05 by the number of functional groups, 764).

ferentially expressed. Even after excluding the 1,532 most
regulated probes, they were still able to discriminate trisomic
from euploid samples by clustering the remaining gene
expression values. This suggests that the expression levels of
many thousands of genes are perturbed.

This second model has been supported by other high-
throughput approaches. Chrast et al. [39], using serial analy-
sis of gene expression, reported 330 tag differences between
Ts65Dn and normal mouse brains, about half of which were
significantly over-represented. Only three of the 15 genes for
which tags were found from the triplicated region of mouse
chromosome 16 were overexpressed, so the majority of dys-
regulated genes were disomic. In another study, results of dif-
ferential display PCR analysis on neuronal precursor cells
derived from the cerebral cortex of a human TS21 fetus
showed that SCG10 and other genes regulated by the REST
transcription factor (on chromosome 4) were selectively

repressed [40]. We did not observe changes in REST-depend-
ent genes as listed in that study (data not shown).

The present study was motivated in part by an attempt to test
these models in human tissues, and in particular in tissues
that are pathologically affected in DS (cerebellum and heart).
Our results support the first model. We measured the expres-
sion of thousands of transcripts in cerebellum, cerebrum, and
heart, and combined our analyses with those of a previous
study of cerebrum and astrocytes [16]. We observed a primary
gene dosage effect using both the descriptive statistics
approaches of PCA (Figure 1b) and hierarchical clustering
(Figure 2a) and the inferential statistics approach of ANOVA
(Figures 3 and 4a and Table 1). Using these various
approaches, we were unable to distinguish trisomic from
euploid samples based on the expression levels of genes
assigned to chromosomes other than 21 (Figures 1d, 2b, 3 and
4b). Furthermore, classification using nested cross-validation
distinguished trisomic from euploid samples based on
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Table 7
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The most statistically significantly regulated functional groups in the fetal astrocyte cell lines based on their p values from t tests

GO group GO identifier Number of probe sets p value Mean of GO group Mean of non-group
members

Collagen GO:0005581 15 7.76E-07 0.33 -0.01

Endoplasmic reticulum GO:0005783 307 8.91E-07 0.03 -0.02

Fibrillar collagen GO:0005583 14 5.01E-06 0.29 -0.01

Intracellular non- GO:0043232 122 7.94E-06 -0.06 -0.01

membrane-bound

organelle

G-protein coupled GO:0004930 141 1.26E-05 -0.09 -0.01

receptor activity

Gametogenesis GO0:0007276 66 2.45E-05 -0.08 -0.01

Integral to plasma GO:0005887 734 2.57E-05 -0.04 -0.01

membrane

Intramolecular GO:0016862 I 2.19E-04 0.04 -0.01

oxidoreductase activity,

interconverting keto-

and enol-groups

Carbohydrate GO:0008643 16 2.40E-04 0.1 -0.01

transport

DNA metabolism GO:0006259 309 3.98E-04 -0.04 -0.01

Extracellular matrix GO:0005578 120 6.76E-04 0.09 -0.02

(sensu Metazoa)

Muscle development GO:0007517 82 6.76E-04 0.06 -0.01

Defense response GO:0006952 38l 8.51E-04 -0.04 -0.01

Cell adhesion GO:0007155 227 8.91E-04 0.04 -0.01

MHC class Il receptor GO:0045012 12 9.12E-04 -0.12 -0.01

activity

There were 734 functional groups tested. The first |12 functional groups with the smallest p values are listed here. The mean of log ratios between
trisomy 2| and euploid controls for each functional group was compared to that for the group of remaining probe sets not assigned to that
functional group (‘'non-group members'). After one type of multiple test comparison correction, the cut-off level for statistical significance was 6.8 E-

05 (assigned by dividing 0.05 by the number of functional groups, 734).

chromosome 21 gene expression with extremely high accu-
racy, but using non-chromosome 21 genes the accuracy was
approximately that expected by chance (Tables 3 and 4). As
an approach complementary to microarrays, we carried out a
systematic study of transcript levels for 28 individual genes
by quantitative real-time PCR. These real-time PCR data con-
firmed our microarrays findings, and they also represent
another independent quantitative measurement of RNA tran-
script levels in the fetal TS21 brain and heart relative to
euploid controls.

The two models do not fully reflect the complexity of the tri-
somic condition; other factors include dosage compensation,
the continuum of secondary effects, and tissue specificity.
Dosage compensation is a process by which expression levels
of sex chromosome-linked genes are rendered equal in males
and females of various eukaryotic species [41,42]. Mecha-
nisms include chromosome inactivation, and hypo- as well as
hypertranscription of target genes. Dosage compensation for
autosomes has been reported for aneuploid conditions in

maize and Drosophila, organisms for which trisomy is less
deleterious than in humans [37,38,43,44]. Dosage compensa-
tion also likely occurs in DS, such that some trisomic chromo-
some 21 genes are not expressed at elevated levels [5].

In each of the four tissue/cell types we studied, approximately
one third of all chromosome 21 genes was expressed, and of
these, only a subset of transcripts was expressed at higher lev-
els relative to euploid controls (Figure 4a and Table 1). Our
study included a sufficient sample size to perform ANOVA, as
well as quantitative real-time PCR (Table 9), and thus we
defined several dozen specific chromosome 21 genes that are
dysregulated. Those chromosome 21 genes that were
expressed but not regulated may have been subject to dosage
compensation. A variety of other human studies, including
our previous work [16], lacked sufficient samples and/or
microarray replicates to define significantly regulated genes
based on a t test or ANOVA with a correction for multiple
comparisons [8,9,19,20].
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Most statistically significantly regulated functional groups in the fetal heart tissues based on their p values from t tests

GO group GO identifier Number of probe sets p value Mean of GO group Mean of non-group
members

Mitochondrion GO:0005739 446 6.61E-16 0.04 -0.01

Monovalent inorganic GO:0015077 86 4.27E-10 0.07 -0.01

cation transporter

activity

Defense response GO:0006952 485 2.29E-08 -0.06 -0.01

NADH dehydrogenase GO:0003954 31 5.25E-06 0.07 -0.01

activity

Intracellular transport GO:0046907 428 2.34E-05 0.02 -0.01

Cell-cell signaling GO:0007267 201 1.02E-04 -0.07 -0.01

Mitochondrial inner GO:0005743 74 |.66E-04 0.04 -0.01

membrane

Cell surface receptor GO:0007166 594 1.74E-04 -0.04 -0.01

linked signal

transduction

Integral to plasma GO:0005887 948 1.95E-04 -0.03 -0.01

membrane

Extracellular region GO:0005576 215 2.40E-04 -0.06 -0.01

Membrane fusion GO:0006944 14 4.68E-04 0.06 -0.01

DNA metabolism GO:0006259 322 8.13E-04 0.02 -0.01

Regulation of muscle GO:0006937 28 9.33E-04 0.08 -0.01

contraction

Single-stranded DNA GO:0003697 45 1.38E-03 0.06 -0.01

binding

Electron carrier activity GO:0009055 12 1.41E-03 0.08 -0.01

There were 769 functional groups tested. The first 12 functional groups with the smallest p values are listed here. The mean of log ratios between
trisomy 2| and euploid controls for each functional group was compared to that for the group of remaining probe sets not assigned to that
functional group ('non-group members'). After one type of multiple test comparison correction, the cut-off level for statistical significance was 6.50E-

05 (assigned by dividing 0.05 by the number of functional groups, 769).

The secondary effects of TS21 may include either limited or
extensive changes to non-chromosome 21 genes, but these
alternatives represent extremes of a continuum. Most auto-
somal aneuploidies are not compatible with life, and each of
the most common syndromes (trisomies 13, 18, and 21) likely
causes distinct secondary effects based on the particular tran-
scription factors, modifiers of chromatin, or other gene
products at dosage imbalance. We identified the significant
regulation of at least one transcription factor (ZNF294; Table
1). The varying results for secondary transcriptional effects
reported for human TS21 versus mouse Ts65Dn and Ts1Cje
models could, to some extent, reflect differences in the
particular transcriptional regulators that are present at dos-
age imbalance in each system, as well as other factors such as
differences in dosage compensation. Another variable is the
particular developmental stage being studied, which could
have a dramatic effect on both primary and secondary tran-
scriptional effects of trisomy.

The tissue specificity of gene expression in the aneuploid state
represents an additional level of complexity. For the four tis-

sue and cell types we studied, RNA transcripts from chromo-
some 21 genes were significantly elevated. However, both of
the ANOVA results (Table 2) and real-time PCR assays (Table
10) indicated that there were tissue-specific changes in tran-
script levels for individual genes on other chromosomes.
These include those genes predominantly expressed in the
heart but not in the brain, even though the primary genetic
insults in all these different tissue or cell types were all an
extra copy of chromosome 21. Our analyses on groups of
genes that are functionally related also suggested similar
region-specific differences in transcription across multiple
tissue and cell types (Tables 5, 6, 7, 8). This tissue specificity
was also noted in recent mouse models of DS [13,14]. Our
study has further significance because we have identified sig-
nificantly regulated transcripts in affected human tissues.
Thus, while template availability results in increased produc-
tion of RNA transcripts, factors that regulate tissue-specific
gene expression have a major role in controlling which spe-
cific transcripts are expressed at dosage imbalance.
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Table 9

Quantitative real-time PCR results for selected chromosome 21 genes in Table |

Gene name Chromosome  p value Cerebrum Cerebellum Astrocyte Heart
Microarray qPCR Microarray qPCR Microarray qPCR Microarray qPCR

Pituitary tumor-transforming | 21 1.50E-07 1.52 3.85+0.38 1.42 1.46 + 0.62 1.65 242 1.16 1.74 141 £0.16

interacting protein (PTTG!IP)

ATP synthase, H+ transporting, 21 5.11E-07 1.69 1.52 £ 0.20 1.75 091 £0.16 1.34 1.48 £ 0.72 1.69 352+ 1.22

mitochondrial FI complex, O

subunit (ATP50)

ATP synthase, H+ transporting, 21 2.47E-06 1.84 125+0.14 1.40 1.19£0.12 1.51 1.73 £0.78 223 5.19 % 1.60

mitochondrial FO complex,

subunit Fé (ATP5])

Down syndrome critical region 21 1.44E-05 1.82 2.76 + 0.44 1.86 0.79 £ 0.38 3.40 2.50 £ 0.62 0.98 2.06 + 0.06

gene 3 (DSCR3)

Chromosome 21| segment 21 3.39E-05 1.71 2.58 +0.24 1.42 1.30 + 0.42 1.63 1.60 + 0.24 1.66 1.51 £0.14

HS21C048, zinc finger protein

294 (ZNF294)

Superoxide dismutase | (SOD/) 21 5.62E-05 2.12 1.72 £ 0.24 1.57 1.44 £ 0.12 1.55 275+ 1.37 1.74 2.86 + 1.52

Cystatin B (stefin B) (CSTB) 21 7.75E-05 1.69 121 £0.13 1.49 121 £0.14 1.18 1.92 £ 0.56 1.30 1.88 + 0.07

Phosphofructokinase, liver (PFKL) 21 1.93E-04 1.16 2,17 £0.14 1.92 1.35 £ 0.08 1.6l 2.07 £ 0.44 .11 223 +0.55

Pyridoxal (pyridoxine, vitamin 21 2.82E-04 2.73 2.99 + 0.40 2.13 1.79 £ 0.20 221 2.18 £ 1.01 1.44 1.75 £ 0.09

Bé) kinase (PDXK)

Collagen, type VI, alpha | 21 5.04E-04 1.72 3.16 +0.24 1.39 0.75 £ 0.06 1.45 257 £1.28 1.39 1.97 £ 0.76

(COL6AI)

Ubiquitin specific protease 16 21 5.33E-04 1.80 2.75+048 1.30 1.33£0.36 1.67 1.70 £ 0.50 1.67 340 + 1.54

(USP16)

SMT3 suppressor of mif two 3 21 6.27E-04 1.68 1.66 £ 0.42 1.50 0.93 + 0.08 1.56 2.56 + 1.26 1.40 4.07 £2.71

homolog | (yeast) (SMT3HI)

Mitochondrial ribosomal protein 21 7.48E-04 1.44 1.25 £ 0.08 1.04 1.40 + 0.27 1.24 241 £ 1.14 1.41 1.91 £0.29

L39 (MRPL39)

Interferon gamma receptor 2 21 8.16E-04 1.36 221 £0.29 1.36 1.78 £ 0.12 1.48 1.82 £ 0.44 127 127 + 0.41

(IFNGR2)

Human homolog of ESI 21 1.02E-03 1.48 544 +2.14 1.71 1.85 + 0.40 1.06 1.21 £0.24 1.99 1.38+0.16

(zebrafish) protein (C2lorf33)

Chaperonin containing TCPI, 21 1.45E-03 1.38 251 +0.44 129 3.64+0.92 1.94 1.09 £+ 0.07 1.77 0.75 + 0.04

subunit 8 (theta) (CCT8)

Tryptophan rich basic protein 21 2.18E-03 1.89 521 +2.08 128 1.94 + 0.39 1.83 2.87 223 1.94 1.78 £ 0.44

(WRB)

HMT | hnRNP methyl- 21 3.62E-03 1.37 1.50 + 0.54 1.44 1.93 £ 0.36 0.96 1.46 £ 0.50 1.45 1.65 £ 0.05

transferase-like | (HRMTILI)

Data were normalized to the HPRT housekeeping gene. P values were derived from ANOVA of microarray data. Values for microarray data are fold-
regulation. For each quantitative PCR (qPCR) experiment, values were determined by measuring samples in duplicate at multiple concentrations
(mean * standard error). Each experiment was performed independently at least three times.
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Among the significantly regulated genes from ANOVA
(Tables 1 and 2), several encode proteins that have roles in
mitochondrial function: ATP50 and ATP5J (two genes
encoding subunits of ATP synthase), and mitochondrial
ribosomal protein L39 (MRPL39). Their expression levels
were increased based on our microarray experiments (Table
1) and subsequent real-time PCR (Table 9). Additionally, var-
ious mitochondrion-related functional groups were signifi-
cantly regulated (see Results and Tables 5 and 8). Abnormal
regulation of these transcripts and functional groups could
contribute to the impaired mitochondrial function that has
been observed in DS [45].

The type VI collagen genes on chromosome 21 have been
thought to be involved in the congenital heart defect pheno-
type in DS [46,47]. Consistent with this finding, our microar-

ray study indicated that the type VI collagen alpha 1 gene
(COL6A1) was one of the most regulated genes (Table 1). Fur-
thermore, six of the non-chromosome 21 genes are associated
with cardiac muscle, such as myomesin, myoglobin, and
calsequestrin 2 (Table 2). They are all up-regulated (1.34 to
4.17-fold increase) in TS21 fetal heart tissues that consisted of
primarily the pulmonary, tricuspid, aortic and mitral valves,
ventricular septum, atrial septum, atrioventricular valve, and
some surrounding tissues, which are regions in the heart
most commonly affected in DS. Among all AVSD cases, 43%
are associated with DS [26]. In particular, the ventricular
inlet septum has been reported to be underdeveloped at all
stages between 5 and 16 gestational weeks, among other
developmental abnormalities [48]. We postulate that the up-
regulation of genes related to cardiac muscle may be a
compensatory response for developmental defects due to tri-
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somy in the DS hearts. For example, in complete AVSD, defi-
ciency of the atrial septum, ventricular septum, and
atrioventricular valve result in abnormal communication
between the four cardiac chambers, allowing oxygen-rich
blood to regurgitate or leak backwards from the left ventricle
into the left or right atrium, and back to the lungs again. This
causes more work for the heart. With AVSDs, the heart can
hypertrophy, as we observed in the TS21 fetal hearts (data not
shown). It is possible that the TS21 heart up-regulates mus-
cle-related genes as a secondary effect of the triplication of the
entire chromosome 21 or of individual genes. Of 79 genes
defined by Barlow et al. [29] as forming a critical region on
chromosome 21 for congenital heart disease, seven had
increased expression in our study (SH3BGR, CSTB, PFKL,
PDXK, TMEM1, C210rf33, WRB) (Tables 1 and 9). Although
during our dissection we discarded the surrounding muscle
tissue wherever it was possible, we cannot eliminate the pos-
sibility that our dissection of fetal heart tissue containing pre-
dominantly valve and canal regions might have included
more muscle tissue in the TS21 cases than in the controls.

Conclusion

In the present study we report dosage-dependent transcrip-
tion in human fetal tissues that are pathologically affected in
DS. We also identified individual differentially expressed
genes based on criteria of statistical significance. For 28 of
these genes, we confirmed the regulation by quantitative real-
time PCR. The data indicate a primary gene dosage effect in
which, in each tissue tested, a group of genes assigned to
chromosome 21 were expressed at higher levels relative to
euploid controls. Furthermore, while we observed changes in
some transcripts derived from non-chromosome 21 genes,
our data do not support a model in which there is large-scale
disruption of the transcriptome.

Our data indicated that there were tissue- and cell-specific
changes of gene expression in TS21 during fetal development.
The functional groups indicated by statistical analyses on our
microarray data provided initial indications of possible bio-
logical pathways affected by TS21. However, the relationship
between levels of RNA and the corresponding protein prod-
ucts is at present unknown. As a next step to understand how
the changes at the transcript levels lead to DS phenotypes, it
is important to analyze the translational machinery by char-
acterization of TS21 protein profiles.

Materials and methods

Microarray sample dissection and RNA isolation

All human tissues were obtained from the Brain and Tissue
Bank for Developmental Disorders at the University of Mary-
land with informed consent using Institutional Review
Board-approved protocols. Diagnoses, gender, race, and
other information is provided in Additional data file 1. Three
TS21 and three age- and gender-matched control cerebella
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were dissected from frozen fetal brains. For the two TS21 and
two matched control frozen fetal heart tissues, the regions
that contain primarily the pulmonary, tricuspid, aortic and
mitral valves, ventricular septum, atrial septum, atrioven-
tricular valve, and some surrounding tissues were dissected.
Wherever possible, the peripheral heart muscle tissue was
removed to minimize the amount of RNA from muscle tissue.
Total RNA was extracted from frozen tissues using RNeasy®
Midi Kit (Qiagen, Valencia, CA, USA) according to the manu-
facturer's instructions. The quantity and purity of RNA were
confirmed by spectrophotometry and agarose gel
electrophoresis.

Gene expression data acquisition and pre-processing
Gene expression data were obtained using Affymetrix U133A
GeneChip® with standard protocols [49] at the Johns Hop-
kins Microarray Core Facility. Raw data from U133A Gene-
Chips were processed using both Affymetrix Microarray Suite
version 5.0 (MAS5) software and robust multi-chip analysis
(RMA) normalization (R version 1.7.1) from BioConductor
[50]. The results using either MAS5 (described below) or
RMA (data not shown) were very similar, and we did not have
a compelling reason to favor one method over the other for
this study. In Affymetrix MAS5, signal is calculated using the
One-Step Tukey's Biweight Estimate which yields a robust
weighted mean. The U133A GeneChip contains a total of
22,284 probes. We removed 2,023 Affymetrix bacterial and
housekeeping control probes and probes that do not map to a
known chromosomal location. This resulted in 20,261 probes.
The data were further subdivided into probes that code for
genes assigned to chromosome 21 (n = 253) and probes that
code for genes assigned to all other chromosomes (n =
20,008) or for each chromosome (Additional data file 2). The
Present/Absent description of probes by MAS5 software was
not used in our analyses. Data from astrocytes and cerebrum
were previously published [16] and were reanalyzed in this
study.

Expression data analysis: exploratory analyses
Exploratory analyses using PCA [51] and hierarchical cluster-
ing were performed using Partek® software [52]. All probes (n
= 253 from chromosome 21 and n = 20,008 from other chro-
mosomes) were used for these analyses. For PCA, we used the
covariance dispersion matrix option. The ellipses were drawn
at three standard deviations around the centroid of the sam-
ples for each of the four tissues (Figure 1). Hierarchical clus-
tering was performed on the 25 tissue samples based on
chromosome 21 genes and again based on non-chromosome
21 genes. In each case the Euclidean distance was used,
although similar results were achieved using other measures
of dissimilarity. Cluster merging was performed using aver-
age linkage. The horizontal axes of the dendrograms (Figure
2) correspond to dissimilarity.
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Table 10

Genome Biology 2005,  Volume 6, Issue 13, Article R107 Mao et al.

Quantitative real-time PCR results for selected non-chromosome 21 genes in Table 2

Gene name Chromosome  p value Cerebrum Cerebellum Astrocyte Heart
Microarray qPCR Microarray qPCR Microarray qPCR Microarray qPCR

Myomesin | (skelemin) (185 18 8.82E-08 BBL - BBL - BBL - 1.40 1.25 £ 0.06

kDa) (MYOMI)

Myoglobin (MB) 22 1.09E-07 BBL - BBL - BBL - 1.64 1.58 £0.16

Calsequestrin 2 (cardiac muscle) | 1.56E-07 BBL - BBL - BBL - 1.65 2.89 £ 0.58

(CASQ2)

Ras-related associated with 16 5.06E-06 BBL - BBL - BBL - 0.49 0.82 + 0.08

diabetes (RRAD)

Troponin |, cardiac (TNNI3) 19 5.90E-06 BBL - BBL - BBL - 1.62 1.31 £0.25

Insulin-like growth factor binding 4 1.12E-05 1.41 1.02 £ 0.27 0.70 1.55 £0.33 1.74 2.12+0.08 1.53 0.77 £ 0.09

protein 7 (IGFBP7)

Actin, alpha 1, skeletal muscle | |.20E-05 BBL - BBL - BBL - 417 6.27 + 0.59

(ACTAI)

Calcineurin-binding protein 4 1.22E-05 BBL - BBL - BBL - 1.49 1.35 £ 0.09

calsarcin-1 (MY0Z2)

Cardiac troponin T2 (TNNT2) | 2.56E-05 BBL - BBL - BBL - 1.34 1.31 £0.25

A disintegrin-like and Il 3.21E-05 BBL - BBL - BBL - 0.55 0.55£0.17

metalloprotease (reprolysin
type) with thrombospondin type
I motif, 8 (ADAMTS8)

Data were normalized to the HPRT housekeeping gene. P values were derived using the same ANOVA model used for the microarray data. Values
for microarray data are fold-regulation. For each qPCR experiment, values were determined by measuring samples in duplicate at multiple
concentrations (mean * standard error). Each experiment was performed independently at least three times. BBL, below background level; qPCR,

quantitative real-time PCR.

Expression data analysis: statistical testing

A mixed-model ANOVA was used to detect differential
expression at individual gene level and at the chromosome
level. The ANOVA model was chosen to partition subject-to-
subject, tissue, and disease type variability from variability
due to biological and experimental noise. ANOVA was per-
formed using Partek® software [52]. The following linear
mixed model (equation 1) was used to detect differential
expression on a gene-by-gene basis:

Y= D;+ T;j+ DT+ S(D)y + &

where y;;, is the expression of the gene for ith disease type, jth
tissue, and kth subject. The symbols D, T, DT, and S(D) rep-
resent effects due to disease, tissue, disease-by-tissue
interaction, and subject-nested-within-disease, respectively.
The error for each gene for sample ijk is designated as &. Tis-
sue and disease are fixed effects and subject is a random effect
in the mixed model. The average R2value for genes assigned
to chromosome 21 was 0.760 and for all genes assigned to
other chromosomes was 0.757. This indicates that approxi-
mately 76% of the variance in the data was explained by the
ANOVA model of equation 1.

To test chromosomes for differential expression, for each of
the 25 tissue samples we first averaged all genes from a par-
ticular chromosome. For example, a total of 253 expression
values (corresponding to 253 probe sets) assigned to chromo-

some 21 were averaged. This resulted in 23 values for each tis-
sue sample, with each value representing the average
expression of all genes on each chromosome for that tissue
sample (chromosome X and Y were combined). The linear
model of equation 1 was used to test for differential expres-
sion between TS21 and euploid controls to test our hypothesis
that some chromosomes may show overall differential
expression between TS21 and control groups. In each case,
the Benjamini-Hochberg step-up FDR [30] was applied to
determine the list of genes deemed to be statistically
significant.

Expression data analysis: class prediction

We investigated the ability to classify tissue samples as TS21
or euploid controls based on the expression of genes assigned
to chromosome 21, or to other genes. We used Partek® soft-
ware for these analyses. Detailed methods are available in
Additional data file 3 [53]. Briefly, our classification tests
employed a nested leave-one-subject-out cross-validation
step that was carried out in three parts: gene selection, selec-
tion of an optimal classifier, and estimation of classification
accuracy. For gene selection (variable selection) we used
ANOVA, and varied the number of predictor genes. For selec-
tion of an optimal classifier, the methods that we employed
were K-Nearest Neighbor [54], Nearest 'Shrunken' Centroid
[55], and Discriminant Analysis. For estimation of the classi-
fication accuracy, nested cross-validation was performed (see
Additional data file 3). The nested cross-validation is per-
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formed using an 'outer' cross-validation that was used to
obtain accuracy estimates, and a nested, 'inner' cross-valida-
tion that was used to select genes and tune classifier
parameters.

Expression data analysis: functional group testing

Most of the probe sets on the Affymetrix GeneChip® human
U133A microarray can be assigned to one or more functional
groups with a unique ID number based upon GO annotations
[31-33]. GO IDs are organized in a tree-like structure via par-
ent-child relationships. The top level has only one group:
'Gene_Ontology', which is then sub-divided into three groups
at the second level, including biological_process,
cellular_component, and molecular_function. To assess the
statistical significance of gene expression differences in dis-
tinct functional groups, we implemented a novel t test proce-
dure that we named a 5T analysis (tree-travel, transform, t
test). This algorithm differs from web-based tools such as
GoMiner [56], FatiGO [57], GO:TermFinder [58], or GOTree
Machine [59], which define genes as either regulated or not,
and employ a Fisher's exact test or hypergeometric distribu-
tion analysis. Under the usual assumptions, namely inde-
pendence and normality of the error, a t test offers more
power than a test with a dichotomized outcome. Our algo-
rithm also differs from methods such as MAPPFinder [60]
that assess the significance of a user-defined, predetermined
set of genes of interest.

A detailed description of the 5T method is presented in Addi-
tional data file 3 [53]. Briefly, the first step is tree-travel: for
each probe set, we parsed its GO annotations, and generated
a list of functional groups located in the top six levels of GO
tree structure. In the transform step, we generated a list of
probe sets assigned to a functional group and a list of probe
sets not assigned to this functional group (‘"non-group mem-
bers"). In the t test step, for each functional group with three
or more members in a tissue/cell type, we performed a t test
on this group and non-group members using log ratio gene
expression values. The process was repeated for all the func-
tional groups. We then sorted all the functional groups in a
tissue/cell type based on their p values from the t tests. To
avoid discarding potentially useful information, we also per-
formed Wilcoxon's rank test to assess the statistical signifi-
cance of differentially regulated functional groups having
only one or two members.

We also applied an alternative statistical test to the data based
upon a permutation principle. We started with a list of probe
sets assigned to a particular functional group. We then ran-
domly selected an equal number of probe sets from all probe
sets on the microarray and calculated the mean log ratio val-
ues. This random selection was repeated 100 times. The aver-
age of the mean log ratio values was calculated, and compared
to the mean log ratio value of that particular functional group.
The permutation test was performed on all functional groups.
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Quantitative real-time PCR

Total RNA was isolated from frozen tissues or astrocytes
using RNeasy® Midi Kit (Qiagen) and followed by cDNA syn-
thesis using Invitrogen SuperScript™ First-Strand System for
RT-PCR (Invitrogen Life Technologies, Carlsbad, CA, USA).
Quantitative real-time PCR was performed by a 7900HT
Sequence Detector System (Applied Biosystems, Foster City,
CA, USA) or LightCycler (Roche Molecular Biochemicals,
Indianapolis, IN, USA). Primer sequences are described in
Additional data file 8. The expression level of the HPRT
housekeeping gene was used for normalization. Detailed
methods are provided in Additional data file 3 [53].

Additional data files

The following additional data are included with the online
version of this article. Additional data file 1 is a word docu-
ment entitled 'Information on samples used in microarray
studies'. It lists information on 25 samples such as race, gen-
der, and postmortem interval. Additional data file 2 is a word
document entitled 'Results of test for whether individual
genes assigned to any chromosome were differentially
expressed in TS21 relative to euploid samples'. This table
describes FDR results shown for each individual
chromosome. Additional data file 3 is a word document enti-
tled 'Additional methods'. This file provides detailed methods
for the following topics: Expression data analysis: class pre-
diction; Error estimation using nested cross-validation;
Selection of predictor genes for classification; Expression
data analysis: functional group testing; and Quantitative real-
time PCR. The functional group testing section includes the
description of a novel algorithm for functional group
analyses. Additional data file 4 is a word document that pro-
vides figure legends for the Additional data file 5 and 7 fig-
ures. Additional data file 5 is an EPS file entitled 'Permutation
test on GO functional groups'. This figure shows the results of
permutation tests, providing evidence that the functional
groups we identified are likely to have been identified with a
probability far greater than is expected by chance (as deter-
mined by a series of random permutations of the data). Addi-
tional data file 6 is a word document entitled 'Results of
Wilcoxon rank test for analysis of functional group regula-
tion'. This table provides results of a Wilcoxon rank test that
is appropriate for functional groups having a small size.
Additional data file 7 is a tif file entitled 'Relative amounts of
ZNF294 transcripts present in the fetal TS21 and euploid cer-
ebrum samples detected by quantitative real-time PCR'. This
figure shows a typical quantitative real-time PCR result, in
which the level of a transcript is significantly up-regulated in
a trisomic sample. Additional data file 8 is a word document
entitled 'Primer sequences and other information of the
quantitative real-time PCR experiments'. This table includes
oligonucleotide sequences.
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