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Serum magnesium is associated with osteoporosis and cardiometabolic diseases,

but their causal associations remain elusive. We used the two-sample Mendelian

randomization (MR) study to explore the causal roles of serum magnesium on

osteoporosis and cardiometabolic diseases by using the aggregated genome-wide

association studies (GWASs). Six single-nucleotide polymorphisms (SNPs, p < 5 ×

10−8) associated with serum magnesium concentrations were all used as instrumental

variables. A genetic predisposition to higher serum magnesium concentrations was

inversely associated with lower lumbar spine bone mineral density (BMD, beta-estimate:

−1.982, 95% CI: −3.328 to −0.635, SE: 0.687, p = 0.004), which was further

confirmed by multiple sensitivity analyses. There was limited evidence of associations

between serum magnesium and type 2 diabetes, coronary artery disease, heart failure,

and atrial fibrillation. This work provided strong evidence that genetically increased

serum magnesium concentrations were causally associated with low lumbar spine

BMD and suggested that serum magnesium concentrations may be crucial to

prevent osteoporosis.

Keywords: serum magnesium, lumbar spine BMD, osteoporosis, cardiometabolic diseases, Mendelian

randomization study

INTRODUCTION

Magnesium, the second most abundant intracellular cation, participates in many physiological
processes in osteoporosis and cardiovascular function, such as vascular tone, endothelial function,
glucose, and insulinmetabolism (1–3). Experimental studies reported thatmagnesium insufficiency
aggravated inflammatory bone resorption and promoted atherosclerosis (4–6). Previous studies
revealed the benefits of magnesium supplementation to improve endothelial function (7, 8) and
reduce blood pressure (9, 10), arterial stiffness (11), and postoperative arrhythmias (12, 13).
However, there is no evidence from randomized controlled trials assessing the causal effect of serum
magnesium on osteoporosis or cardiometabolic diseases.

Chronic inflammation has a strong association with the concentration of magnesium and
osteoporosis (14–17). The pathogenesis of cardiovascular diseases (e.g., coronary artery disease,
heart failure, and atrial fibrillation) and type 2 diabetes are also affected by chronic inflammation
(18–21). Osteoporosis and cardiometabolic diseases have a robust connection with pathogenesis,
and thus this study aims to study the influence of serum magnesium concentrations for the
prevention and treatment of osteoporosis and cardiometabolic diseases.
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Observational studies documented that high serum
magnesium concentrations might be associated with a modest
reduction in osteoporosis and cardiovascular diseases, such
as coronary heart disease, but it was elusive whether these
associations were causal (1, 22, 23). These observational
studies may be subject to confounding and reverse causality,
which may affect the association between serum magnesium
and osteoporosis/cardiometabolic diseases. Genome-wide
association studies (GWASs) demonstrated that osteoporosis
and cardiometabolic diseases were highly polygenic traits (24–
29), and thus this two-sample Mendelian randomization (MR)
study is intended to explore the causal relationship between
serum magnesium and osteoporosis/cardiometabolic diseases,
which benefits to prevent and treat these diseases.

METHODS

Genetic Instrument for Serum Magnesium
The largest available GWAS associated with serum magnesium
concentrations reported the joint analysis of the discovery
(n = 15,366 individuals) and replication (n = 8,463 individuals)
cohorts (30). Serum magnesium concentrations were measured
using the method described by Gindler and Heth with
metallochromic dye, Calmigate [1,-[1-hydroxy-4-methyl-2-
phenylazo)-2-napthol-4-sul-fonic acid] in the Atherosclerosis
Risk in Communities (ARIC) study, by METPATH in
Framingham Heart Study (FHS) with a Merck Diagnostica
kit (method Xylidyl blue) on an Elan Autoanalyzer (Merk) in
Rotterdam Study (RS), with a Xylidylblue kit on a Modular
analyzer (Roche) in the Cooperative Health Research in the
Region of Augsburg (KORA) study, or using a commercial
colorimetric test (Roche Diagnostics, Mannheim, Germany) with
a Hitachi 717 autoanalyzer in the Study of Health in Pomerania
(SHIP) study. The measurement unit was mmol/L. All tests were
adjusted for age, sex, and study center.

All single-nucleotide polymorphisms (SNPs) that reached
genome-wide significance (p < 5 × 10−8) were selected
as the instrumental variables. Then, six SNPs were initially
found to serve as instrumental variables. We measured linkage
disequilibrium (LD, R2 < 0.001, window size = 10,000 kb)
between selected SNPs using European samples from the 1,000
genomes project, and no SNP was excluded due to strong
LD. Six SNPs were finally used as instrumental variables
(Supplementary Table 1). If SNPs were unavailable in the
outcome dataset, the proxy SNPs in high linkage disequilibrium
(LD, r2 > 0.9) with the closest distance to the original SNPs
were used as the instrumental variables. The heat map showed
the effects (beta and SE) of instrumental variables associated with
serum magnesium (Supplementary Figure 1).

Prior to any MR analysis, we first performed a standard
allele harmonization to align alleles on the forward strand, and
palindromic SNPs were aligned when minor allele frequencies
(MAFs) were <0.3 or were otherwise excluded. The effect of
ambiguous SNPs with non-concordant alleles (e.g., A/G vs. A/C)
and palindromic SNPs with an ambiguous strand (i.e., A/T or
G/C) was corrected, or the ambiguous and palindromic SNPs

were directly excluded from the above-selected instrument SNPs
in harmonizing process.

Outcome Data Sources
Summary-level data for the genetic associations with the
outcomes were obtained from several largest GWASs (Table 1).
Briefly, for osteoporosis, we used data involving forearm BMD,
femoral neck BMD, and lumbar spine BMD (measured by
dual X-ray absorptiometry) among 53,236 individuals (31), heel
BMD (estimated by heel quantitative ultrasound), and fracture
(excluding fracture cases including the fracture of the skull,
face, hands, feet, and pathological fractures due to malignancy,
atypical femoral fractures, periprosthetic, and healed fracture)
among 4,26,824 people (32). In terms of cardiometabolic
diseases, the outcome measures included type 2 diabetes among
8,98,130 subjects (33), coronary artery disease among 5,47,261
individuals (34), heart failure among 9,77,323 people (35), and
atrial fibrillation in 5,87,446 persons (36). Fasting glucose, fasting
insulin, and HbA1c were included to assess the glycaemic traits
in the large-scale GWAS among 2,81,416 individuals (37). Most
GWASs were adjusted for sex, BMI, and genetic principal
components. Summary statistics for the SNPs related to each
outcome are presented in Supplementary Table 2.

Statistical Analyses
The exposure and outcome studies included in the two-sample
MR study should not involve overlapping participants, but we
could not estimate the degree of overlap based on the original
articles. However, F statistic was used to estimate the bias from
sample overlap, and this bias could be minimized by using strong
instruments with F statistic >10 (38). The estimated F-statistics
were relatively high (>30 for each SNP, Supplementary Table 1),
and thus all SNPs were strong instruments.

To determine MR estimates of serum magnesium on each
outcome, we conducted the inverse variance weighted (IVW)
analysis because more than two SNPs were available. IVW
method used a meta-analysis approach to combine Wald
estimates for each SNP to get the overall estimates of the effect
of serum magnesium concentrations on each outcome (39). The
weighted median and MR–Egger regression methods were also
applied to estimate the effects. Cochrane’s Q-statistic was used to
assess the heterogeneity of SNP effects, and p < 0.05 indicated
significant heterogeneity (40).

Mendelian randomization pleiotropy residual sum and outlier
test (MR-PRESSO) was used to assess the presence of pleiotropy,
and the effect estimates were recalculated after outlying SNPs
were excluded (41). The leave-one-out analysis was also
conducted to assess the influence of individual variants on
the observed associations (42). Furthermore, we performed the
sensitivity analysis by removing potentially pleiotropic variants
that were associated with confounding factors including calcium
(rs11144134) and blood pressure (rs448378) and then studied the
MR association between serum magnesium and outcomes.

The ethical approval for each study included in this
investigation can be found in the original publications (including
informed consent from each participant). The differences
with p < 0.05 were considered statistically significant. In
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TABLE 1 | Details of studies and datasets used for analyses.

Traits Samples size Population Consortium or cohort study (Link URL)

Exposure Serum magnesium 23,829 European CHARGE and replication studies

Osteoporosis Forearm BMD 53,236 European GEFOS (http://www.gefos.org)

Femoral neck BMD 53,236 European

Lumbar spine BMD 53,236 European

Heel BMD 426,824 European GEFOS (http://www.gefos.org)

Fracture 416,795 European

Cardiometabolic diseases Type 2 diabetes 898,130 European DIAGRAM (http://diagram-consortium.org)

Coronary artery disease 547,261 European UK Biobank and CARDIoGRAMplusC4D (https://cvd.hugeamp.org/)

Heart failure 977,323 European UK Biobank (http://www.broadcvdi.org/)

Atrial fibrillation 588,190 Mixed Meta analysis of more than 50 studies (http://www.broadcvdi.org/)

Glycaemic traits Fasting glucose 281,416 Mixed MAGIC (https://magicinvestigators.org)

Fasting insulin 281,416 Mixed

HbA1c 281,416 Mixed

multiple testing, the adjusted p-value after Bonferroni correction
(p < 0.05/4 = 0.0125) indicated a statistically significant
difference. All of these analyses were conducted in R V.4.0.4
by using the R packages of “MendelianRandomization” (43),
“TwoSampleMR,” (44) and “MR-PRESSO” (45).

RESULTS

Osteoporosis
We evaluated the causal effect of serum magnesium
on forearm BMD (Supplementary Figure 2A),
femoral neck BMD (Supplementary Figure 2B),
lumbar spine BMD (Supplementary Figure 2C),
heel BMD (Supplementary Figure 2D), and fracture
(Supplementary Figure 2E) in this MR analysis (Table 2).
According to the primary (IVW) analysis, serum magnesium
demonstrated no causal effect on forearm BMD (beta-estimate:
−1.968, 95% CI: −4.397 to 0.461, SE: 1.239, p = 0.112),
femoral neck BMD (beta-estimate: −1.171, 95% CI: −2.567 to
0.225, SE:0.712, p = 0.1), heel BMD (beta-estimate: −0.225,
95% CI: −0.365 to 0.914, SE:0.582, p = 0.698), or fracture
(beta-estimate: 0.254, 95% CI: −0.946 to 1.453, SE:0.612,
p = 0.679). However, genetically higher serum magnesium
were inversely associated with lower lumbar spine BMD in
the IVW analysis (beta-estimate: −1.982, 95% CI: −3.328 to
−0.635, SE: 0.687, p = 0.004 < Bonferroni correction p), and
this significant finding was also supported in weighted-median
analysis (beta-estimate: −2.295, 95% CI: −3.739 to −0.851,
SE: 0.737, p = 0.002 < Bonferroni correction p). Additionally,
the weighted-median analysis also revealed the significant MR
association between genetically high serum magnesium and low
heel BMD (beta-estimate: −0.929, 95% CI: −1.376 to −0.481,
SE: 0.228, p < 0.001).

Cardiometabolic Diseases
This MR analysis included outcome measures of
type 2 diabetes (Supplementary Figure 3A), coronary
artery disease (Supplementary Figure 3B), heart failure
(Supplementary Figure 3C), and atrial fibrillation

(Supplementary Figure 3D). This primary (IVW) analysis
found no obvious causal influence of serum magnesium on
type 2 diabetes (beta-estimate: 0.405, 95% CI: −1.394 to 2.203,
SE:0.918, p = 0.659), coronary artery disease (beta-estimate:
−0.813, 95% CI: −1.826 to 0.201, SE: 0.517, p = 0.116), heart
failure (beta-estimate: −0.461, 95% CI: −2.048 to 1.126, SE:
0.810, p = 0.569), or atrial fibrillation (beta-estimate: −1.297,
95% CI: −2.783 to 0.190, SE:0.759, p = 0.087, Table 3). These
results were also confirmed by the weighted-median analyses.

Glycaemic Traits
Fasting glucose (Supplementary Figure 3E), fasting
insulin (Supplementary Figure 3F), and HbA1c
(Supplementary Figure 3G) were involved to evaluate the
glycaemic traits after the intervention of serum magnesium
(Table 3). Based on the results of IVW analysis, serum
magnesium showed no obvious MR association with fasting
glucose (beta-estimate: −0.096, 95% CI: −0.533 to 0.362, SE:
0.233, p = 0.682), fasting insulin (beta-estimate: 0.188, 95% CI:
0.161–0.538, SE: 0.178, p = 0.291), or HbA1c (beta-estimate:
0.346, 95% CI: −0.049 to 0.742, SE: 0.202, p = 0.086). These
results were confirmed by the weighted-median analyses except
for HbA1c, because the positive finding between genetic serum
magnesium and HbA1c was revealed by the weighted-median
analyses (beta-estimate: 0.526, 95% CI: 0.222–0.831, SE: 0.155, p
= 0.001).

Power Estimation, Evaluation of
Assumptions, and Sensitivity Analyses
The power to evaluate for causality in the observed
association of serum magnesium with outcomes is shown
in Supplementary Table 3, and all power measurements were
100%. Little evidence of directional pleiotropy was found for all
models, except for coronary artery disease (MR–Egger intercept
p = 0.009) (Tables 2, 3). Among the six SNP instrumental
variables, the MR-PRESSO method identified one outlier
(rs7965584) for femoral neck BMD, four outliers (rs4072037,
rs7965584, rs3925584, and rs11144134) for heel BMD, one
outlier (rs4072037) for type 2 diabetes, two outliers (rs4072037
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TABLE 2 | Mendelian randomization estimates of serum magnesium on osteoporosis.

Variables IVW Weighted median MR-Egger

EstimateSE 95%

CI

P-value Q

value

I2 Heterogeneity

P-value

Estimate SE 95% CI P-value Estimate SE 95% CI P-value Intercept SE 95% CI Pleiotropy

P-value

Forearm

BMD

−1.968 1.239 −4.397,

0.461

0.112 7.998 37.50% 0.156 −2.147 1.295 −4.686,

0.392

0.097 −4.366 4.051 −12.305,

3.573

0.281 0.018 0.029 −0.038,

0.074

0.531

Femoral

neck

BMD

−1.171 0.712 −2.567,

0.225

0.100 15.369 67.50% 0.009 −1.014 0.640 −2.268,

0.239

0.113 −3.051 1.906 −6.786, 0.684 0.109 0.012 0.011 −0.010,

0.033

0.289

Lumbar

spine

BMD

−1.982 0.687 −3.328,

−0.635

0.004 8.021 37.70% 0.155 −2.295 0.737 −3.739,

−0.851

0.002 −5.032 1.704 −8.372,

−1.692

0.003 0.023 0.012 −0.001,

0.047

0.058

Heel

BMD

−0.225 0.582 −0.365,

0.914

0.698 126.19396.00% <0.0001 −0.929 0.228 −1.376,

−0.481

<0.001 −1.973 1.751 −5.405, 1.459 0.260 0.013 0.012 −0.011,

0.037

0.291

Fracture 0.254 0.612 −0.946,

1.453

0.679 11.070 54.80% 0.050 1.023 0.581 −0.115,

2.161

0.078 1.139 2.031 −2.841, 5.119 0.575 −0.007 0.014 −0.035,

0.021

0.644

TABLE 3 | Mendelian randomization estimates of serum magnesium on cardiometabolic disease.

Variables IVW Weighted median MR-Egger

Estimate SE 95%

CI

P-value Q-

value

I2 Heterogeneity

P-value

Estimate SE 95% CI P-value Estimate SE 95% CI P-value Intercept SE 95% CI Pleiotropy

P-value

Type 2

diabetes

0.405 0.918 −1.394,

2.203

0.659 18.839 73.50% 0.002 −0.114 0.803 −1.687,1.459 0.887 4.462 2.288 −0.022,

8.946

0.051 −0.03 0.016 −0.062,

0.001

0.061

Coronary

artery

disease

−0.813 0.517 −1.826,0.201 0.116 10.383 51.80% 0.065 −0.419 0.471 −1.342,

0.504

0.374 1.831 1.069 −0.265,

3.927

0.087 −0.019 0.007 −0.034,

−0.005

0.009

Heart

failure

−0.461 0.810 −2.048,

1.126

0.569 12.976 61.50% 0.024 −0.751 0.682 −2.089,

0.585

0.270 −0.407 2.770 −5.836,

5.022

0.883 0.000 0.019 −0.038,

0.038

0.984

Atrial

fibrillation

−1.297 0.759 −2.783,

0.190

0.087 13.670 63.40% 0.018 −1.125 0.606 −2.313,

0.062

0.063 0.455 2.419 −4.286,

5.195

0.851 −0.013 0.017 −0.046,

0.020

0.443

Fasting

glucose

−0.096 0.233 −0.553,

0.362

0.682 16.865 70.40% 0.005 0.130 0.181 −0.225,

0.485

0.472 0.396 0.679 −0.935,

1.728

0.559 −0.004 0.005 −0.012,

0.005

0.438

Fasting

insulin

0.188 0.178 −0.161,

0.538

0.291 7.815 36.00% 0.167 0.187 0.198 −0.202,

0.575

0.347 0.518 0.524 −0.510,

1.546

0.324 −0.002 0.004 −0.009,0.005 0.501

HbA1c 0.346 0.202 −0.049,

0.742

0.086 22.611 77.90% <0.0001 0.526 0.155 0.222, 0.831 0.001 0.792 0.581 −0.346,

1.930

0.173 −0.003 0.004 −0.011,

0.004

0.411
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and rs3925584) for fasting glucose and two outliers (rs4072037
and rs11144134) for HbA1c.

After excluding these outlying SNP variants, genetically higher
serum magnesium displayed a significant causal role in lower
femoral neck BMD (beta-estimate: −1.570, 95% CI: −2.770
to −0.371, SE: 0.612, p = 0.010 < Bonferroni correction p),
whereas other MR associations were not changed (Table 4). The
leave-one-out analysis demonstrated that the causal effect of
serum magnesium concentrations on forearm BMD, femoral
neck BMD, lumbar spine BMD, coronary artery disease, atrial
fibrillation, andHbA1c was driven by potentially influential SNPs
(Supplementary Figures 4, 5), and we should carefully interpret
these results.

Among the six instrumental variables, two confounding
factors including calcium (rs11144134) and blood pressure
(rs448378) may produce some influence on the MR analysis.
After excluding these two SNPs, the significant inverse
association between genetically serum magnesium and lumbar
spine BMD was further confirmed (beta-estimate: −1.637,
95% CI: −3.076 to −0.197, SE: 0.734, p = 0.026, Table 4).
Interestingly, a positive finding between genetically serum
magnesium and HbA1c was also revealed after excluding these
confounding factors (beta-estimate: 0.572, 95% CI: 0.348–0.797,
SE: 0.114, p < 0.0001, Table 5).

DISCUSSION

Overall, our large multi-instrument approaches found the
importantly causal effect of genetically increased serum
magnesium on low lumbar spine BMD, and this inverse
MR association was confirmed by various MR methods and
sensitivity analyses. These positive findings indicated that
high serum magnesium may be one of the significant risks of
osteoporosis. In addition, we found no MR associations between
serum magnesium and type 2 diabetes, coronary artery disease,
heart failure and, atrial fibrillation.

The typical features of osteoporosis included low bone mass
and microstructure deterioration of bone tissue, reduced BMD
and bone strength, which may result in the increased risk
of fracture (46–48). Animal and human experimental models
demonstrated that Mg deficiency led to reduced osteoclastic and
osteoblastic activity, osteopenia, and skeletal fragility (49, 50).
Impaired bone growth and exacerbation of loss of bone mass
were seen in the rat model with severely deficient Mg diets (51,
52). In vitro study revealed that a high concentration of Mg can
promote the proliferation/differentiation behavior of osteoblasts
(53). These suggested the potential benefits of high magnesium
for osteoporosis.

Many observational studies have reported the association
between serum magnesium and osteoporosis, but with
conflicting results (54–58). Our MR study revealed that serum
magnesium had no causal impact on forearm BMD, femoral neck
BMD, heel BMD, or fracture. More interestingly, we found a
significant MR association between high serum magnesium and
low lumbar spine BMD, which was also confirmed by multiple
sensitivity analyses. In addition, MR-PRESSO test found the

causal role of high serum magnesium in low femoral neck BMD
(beta-estimate: −1.570, 95% CI: −2.770 to −0.371, SE: 0.612,
p = 0.010). The inverse MR association between high serum
magnesium and low BMD was completely in contrast with the
potential mechanisms of magnesium to affect osteoporosis,
which included the promotion to bone mineralization, reduced
function of osteoclasts, improved function of osteoblasts, and
inducing the homeostasis of calcium by affecting parathyroid
hormone (PTH) and 1,25(OH)2-vitamin D (1).

Several potential explanations may account for this
inconsistency. First, serum magnesium concentrations may be
not able to effectively reflect the total magnesium concentrations.
Serum magnesium concentrations may remain relatively normal
despite significant reductions of tissue and bone magnesium
concentrations in patients with chronic latent magnesium
deficiency, and serum magnesium concentrations may also
underestimate the magnesium deficiency in healthy and ill
people (1, 59). Secondly, low serum magnesium may predict the
relatively high concentration of magnesium for bone metabolism
in bone tissues. Thirdly, the concentration of magnesium
may be required to be in a specific range called the “normal”
physiological range for promoting bone formation and inhibiting
bone resorption, and highmagnesiummay result in osteoporosis.
This inverse association between serum magnesium and lumbar
spine BMD was consistent with the inverse association between
high serum calcium and low BMD (60). Fourthly, total serum
magnesium and calcium remain relatively steady, and serum
magnesium hemostasis is very complex, which is regulated by
many factors such as PTH and 1,25(OH)2-vitamin D (54).

Regarding the association with serum magnesium
concentrations and the risk of coronary artery disease, one
previous MR study (61) included the same GWAS regarding
serummagnesium concentrations (22) and one GWAS involving
coronary artery disease with a smaller population of 1,84,305
individuals (62) than that population (5,47,261 individuals)
included in our MR study (34). Contrary to the inverse
association between serum magnesium concentrations and the
risk of coronary artery disease concluded in the previous study
(61), our MR analysis confirmed no MR association between
them and did not find the benefits of high serum magnesium for
preventing coronary artery disease. In addition, although one
recent MR study [63] used the same summary genetic data about
serum magnesium concentrations (22) and atrial fibrillation
(36) compared with our MR analysis, three proxy SNPs for
rs7965584, rs3925584, and rs448378 were used, whereas only
one proxy SNP for rs7965584 was used in our MR analysis. Our
results confirmed no MR association between genetically serum
magnesium concentrations and atrial fibrillation, which was in
contrast with their inverse association (63). We also found no
causal association between serum magnesium concentrations
and heart failure.

There are several important strengths in this study. The
power to detect the causal association between serummagnesium
and outcomes was sufficient because all power measurements
were 100%. This two-sample MR study aims to investigate
the causal effect of serum magnesium on osteoporosis and
cardiometabolic diseases, and has the advantage of preventing
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TABLE 4 | Mendelian randomization estimates between serum magnesium and outcomes after excluding outliers detected by MR-PRESSO.

Estimate SE 95% CI P-value

Femoral neck BMD excluding one outlier (rs7965584) −1.570 0.612 −2.770,0.371 0.010

Heel BMD excluding four outliers (rs4072037, rs7965584, rs3925584, rs11144134) −0.188 0.289 −0.754,0.379 0.516

Type 2 diabetes excluding one outlier (rs4072037) −1.174 0.609 −2.367,0.019 0.054

Fasting glucose excluding two outliers (rs4072037, rs3925584) −0.067 0.243 −0.543,0.409 0.783

HbA1c excluding two outliers (rs4072037, rs11144134) 0.178 0.170 −0.154,0.511 0.293

TABLE 5 | Mendelian randomization estimates between serum magnesium and outcomes after excluding potentially pleiotropic variants: rs11144134, rs448378.

Estimate SE 95% CI P-value

Osteoporosis

Forearm BMD −1.329 1.407 −4.087,1.428 0.345

Femoral neck BMD −0.934 1.019 −2.931,1.064 0.360

Lumbar spine BMD −1.637 0.734 −3.076,−0.197 0.026

Heel BMD −0.068 0.808 −1.652,1.516 0.933

Fracture −0.103 0.721 −1.517,1.310 0.886

Cardiometabolic disease

Type 2 diabetes 0.614 1.276 −1.887,3.116 0.630

Coronary artery disease −0.944 0.571 −2.062,0.175 0.098

Heart failure −0.881 1.031 −2.902,1.140 0.393

Atrial fibrillation −1.762 0.840 −3.408,−0.115 0.036

Glycaemic traits

Fasting glucose −0.039 0.338 −0.701,0.623 0.908

Fasting insulin 0.347 0.182 −0.011,0.704 0.057

HbA1c 0.572 0.114 0.348,0.797 0.000

reverse causation and potential confounding factors. The
intercepts for the MR–Egger analysis suggest no directional
pleiotropy except for coronary heart disease. Multiple sensitivity
analyses are used to test the influence of pleiotropy on our
causal estimate.

We also should consider several limitations. First, all
the included participants were of predominantly European
origin, and we could not directly recommend our findings
for other populations. Second, the MR association between
serum magnesium and each BMD (forearm BMD, femoral
neck BMD, lumbar spine BMD, and heel BMD) were
inconsistent and suggested that the causal effect of serum
magnesium on BMD may act by the specific site. Third,
lumbar spine BMD measurements have relatively higher
standards errors compared with the other sites and may
bias the results. Fourth, different techniques were used to
measure serum magnesium concentrations, which may produce
some heterogeneity.

CONCLUSION

This two-sample MR study provides strong evidence
to confirm that genetically raised serum magnesium
is a significant causal risk factor of low lumbar
spine BMD, which may provide new insights to
prevent osteoporosis.
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