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Introduction
Proteins perform a vast array of functions within living 
organisms. As a result, natural selection affects both the 
structure of proteins and the regulation of their production. 
A major source of structural constraints arises because pro-
teins require a stable and suitable three-dimensional struc-
ture to function. Mutations that destabilize proteins will be 
selected against.1 Also, selective constraints in a protein vary 
according to structural locations. For example, Franzosa 
and Xia2 found a strong, positive, and linear relationship 
between the ratio of nonsynonymous and synonymous rates 
and a measure of solvent exposure at the structural location. 
While structural constraints have mainly been investigated 
to explain nonsynonymous rate variation within proteins, 
functional constraints have been shown to explain a large 
amount of the variation in average nonsynonymous rate 
among proteins.3–5 For example, Drummond et al.4 showed 
that expression level explains roughly half the variation in 
average nonsynonymous rate among Saccharomyces cerevisiae 
protein-coding genes.

To reflect structural constraints when modeling protein 
evolution, the pioneering simulation work of Parisi and 
Echave6 had a statistical potential to govern the amino acid 
replacement process. A similar approach was adopted by later 
inferential studies.7–10 Statistical potentials can include terms 
related to solvent accessibility, pairwise distance interactions, 
torsion angles, and flexibility of the residues.11

Structurally constrained evolutionary models have tended 
to place less emphasis on codon usage. The assumption that 
synonymous mutations are selectively neutral has often been 
made.7,8,10 This may be a reasonable first assumption, because 
so much natural selection depends on the protein sequence. 
However, synonymous change is also affected by natural 
selection. For example, Agashe et al.12 found that synonymous 
mutations to a key-enzyme coding gene can decrease gene 
expression and fitness by more than 90% compared to wild 
type. Also, selection acting on gene expression was found to 
be the single dominant predictor, among all predictors con-
sidered, of the number of nonsynonymous substitutions per 
site in yeast.4

Roles of Solvent Accessibility and Gene Expression in  
Modeling Protein Sequence Evolution

Kuangyu Wang1,*, shuhui yu1,2,†,‡, Xiang Ji1, clemens lakner1,§, Alexander Griffing1 and  
Jeffrey l. thorne1

1Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA. 2College of Life Science, Chongqing University, 
Chongqing, China. *First author. †Co-first author. ‡Current Address: University Library, Southwest University, Chongqing, China.  
§Current Address: European Molecular Biology Laboratory, Heidelberg, Germany.

AbstrAct: Models of protein evolution tend to ignore functional constraints, although structural constraints are sometimes incorporated. Here we 
propose a probabilistic framework for codon substitution that evaluates joint effects of relative solvent accessibility (RSA), a structural constraint; and gene 
expression, a functional constraint. First, we explore the relationship between RSA and codon usage at the genomic scale as well as at the individual gene 
scale. Motivated by these results, we construct our framework by determining how probable is an amino acid, given RSA and gene expression, and then 
evaluating the relative probability of observing a codon compared to other synonymous codons. We come to the biologically plausible conclusion that both 
RSA and gene expression are related to amino acid frequencies, but, among synonymous codons, the relative probability of a particular codon is more closely 
related to gene expression than RSA. To illustrate the potential applications of our framework, we propose a new codon substitution model. Using this 
model, we obtain estimates of 2N s, the product of effective population size N, and relative fitness difference of allele s. For a training data set consisting of 
human proteins with known structures and expression data, 2N s is estimated separately for synonymous and nonsynonymous substitutions in each protein. 
We then contrast the patterns of synonymous and nonsynonymous 2N s estimates across proteins while also taking gene expression levels of the proteins into 
account. We conclude that our 2N s estimates are too concentrated around 0, and we discuss potential explanations for this lack of variability.

Keywords: protein evolution, protein structure, gene expression, codon usage, scaled selection coefficient, solvent accessibility

CitAtion: Wang et al. roles of solvent accessibility and Gene Expression in modeling Protein 
sequence Evolution. Evolutionary Bioinformatics 2015:11 85–96 doi: 10.4137/EBo.s22911.

RECEivEd: December 14, 2014. RESubMittEd: february 4, 2015. ACCEPtEd foR 
PubliCAtion: february 9, 2015.

ACAdEMiC EditoR: Jike cui, associate Editor

tYPE: original research

fundinG: cl, Jlt, and sy were supported by niH award Gm070806.  aG, KW, and 
Jlt were supported by nsf award mcB 1021883. XJ was supported by niH award 
GM090201. The authors confirm that the funder had no influence over the study design, 
content of the article, or selection of this journal.

CoMPEtinG intEREStS: Authors disclose no potential conflicts of interest.

CoRRESPondEnCE: thorne@statgen.ncsu.edu

CoPYRiGht: © the authors, publisher and licensee libertas academica limited. this is 
an open-access article distributed under the terms of the creative commons cc-By-nc 
3.0 license.

 Paper subject to independent expert blind peer review by minimum of two reviewers. all 
editorial decisions made by independent academic editor. upon submission manuscript 
was subject to anti-plagiarism scanning. Prior to publication all authors have given signed 
confirmation of agreement to article publication and compliance with all applicable ethical 
and legal requirements, including the accuracy of author and contributor information, 
disclosure of competing interests and funding sources, compliance with ethical 
requirements relating to human and animal study participants, and compliance with any 
copyright requirements of third parties. this journal is a member of the committee on 
Publication Ethics (coPE).

 Published by libertas academica. learn more about this journal.

http://www.la-press.com/journal-evolutionary-bioinformatics-j17
http://www.la-press.com
http://dx.doi.org/10.4137/EBO.S22911
mailto:thorne@statgen.ncsu.edu
http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Wang et al

86 Evolutionary Bioinformatics 2015:11

To explain the negative correlations between rates of 
coding sequence evolution and gene expression levels that 
have been inferred across a wide range of taxa, Drummond 
and Wilke13 suggested that mistranslation-induced protein 
misfolding explains much of coding sequence evolution. 
Another study discovered that translationally optimal codons 
are associated with structurally sensitive sites.14 These findings 
indicate that structural and functional constraints are coupled. 
While protein structures are increasingly considered in protein 
evolution models, less attention has been paid to the combined 
effect of gene expression and protein structure.

The overall codon usage in a genome can be dramati-
cally different between species.15 Chen et al.16 concluded that 
different patterns of codon usage between species are deter-
mined primarily by mutational processes that act throughout 
the genome and only secondarily by selective forces acting on 
protein-coding sequences. From a selectionist point of view, 
a classic explanation for systematic variation across a genome 
is that certain preferred codons are translated more accurately 
and/or efficiently.17–19 Strong evidence for this hypothesis has 
been found in several species.20–24 However, 30% of bacterial 
species show no evidence of translational selection.25 Under-
standing codon usage patterns continues to be an active area 
of research.

Relative solvent accessibility (RSA) is a summary of 
local structural environment at a protein location that aims to 
quantify the relative exposure of an amino acid in a globular 
protein to water molecules. It has been a widely used summary 
that is correlated with rates and patterns of protein evolution.2 
Here, we attempt to characterize the roles played by RSA and 
gene expression in modeling protein evolution. We propose 
a probabilistic framework aiming to combine effects of RSA 
and gene expression on amino acid usage as well as codon 
usage. We carry out hypothesis testing in order to address 
whether RSA tendencies vary among synonymous codons. To 
capture potentially species-specific association between RSA 
and codon usage, the testing procedure is conducted at the 
genomic scale as well as at the individual gene scale in two dif-
ferent species (Mus musculus and Homo sapiens). We assess the 
effects of gene expression on synonymous codon usage and the 
combined effects of RSA and gene expression in influencing 
amino acid usage. We do this via a multinomial logistic regres-
sion (MLR) approach that connects RSA and gene expression 
to evolution using correlation rather than causality. To dem-
onstrate possible applications of our probabilistic framework, 
we propose a new protein evolutionary model that accounts 
for both the structural and functional contexts of a codon. 
Our model has a mutation-selection balance framework that 
incorporates the selective impacts of possible synonymous and 
nonsynonymous mutations on human protein-coding genes. 
The selective impacts of these mutations are assessed by our 
estimates of scaled selection coefficients (ie, twice the product 
of effective population size N and the relative fitness differ-
ence s between the mutant and wild-type allele).

Materials and Methods
structural, sequence, and expression data. We collected 

protein structures, amino acid sequences, nucleotide sequences, 
and protein-coding gene expression data for two species,  
H. sapiens and M. musculus. Protein structures were obtained from 
the Protein Data Bank (PDB).26 Only structures determined by 
X-ray crystallography with a resolution of 3.0 Å or better were 
employed. In addition, proteins were required to have lengths 
greater than 50 amino acids. In an effort to collect a relatively 
homogeneous data set to which a single model applies, we restrict 
our data to monomeric proteins with one chain. Also for the 
purposes of gathering a relatively homogeneous data set, mem-
brane proteins and protein–DNA/RNA hybrid structures were  
excluded. To lessen problems arising from estimating para-
meters when proteins are correlated because of common ances-
try, homologs were removed from our data by employing a 30% 
identity filter. Gene expression measurements were not used to 
determine which homologs were included or excluded.

Because the Consensus CDS (CCDS) database27 stores 
a core set of human and mouse protein-coding regions that 
are associated with highly reliable annotation, it was used to 
identify nucleotide sequences that encode the proteins selected 
from PDB. To get CCDS IDs, protein PDB IDs were trans-
lated to the UniProt Knowledgebase (UniProtKB) IDs. The 
UniProt IDs were then mapped to Gene IDs. Finally, Gene 
IDs were converted to CCDS IDs. Proteins with CCDS IDs 
that could not be successfully identified were removed.

To match a protein in PDB with its corresponding protein-
coding nucleotide sequence, we used the Smith–Waterman 
algorithm28 of the water program from the EMBOSS tools.29 
This let us identify the longest ungapped region with an exact 
match between the nucleotide sequence and amino acid 
sequence. This process yielded 864 and 156 matches in 
H. sapiens and M. musculus, respectively (see PDB IDs in 
Supplementary files). For each site in the ungapped region 
in each protein structure, relative solvent accessibility (RSA) 
was calculated by the NACCESS software.30 The presence of 
heteroatoms in some structures was ignored when calculating 
accessibilities.

RNA-seq data for H. sapiens and M. musculus were col-
lected as part of a multi-species multi-organ gene expression 
study31 and were downloaded from the Expression Atlas data-
base.32 To establish one-to-one mapping between the PDB 
ID of a protein and the Ensembl ID of a transcript, PDB IDs 
were translated to the UniProtKB IDs and then the UniProt 
IDs were mapped to Ensembl IDs via the ID mapping service 
hosted by the Protein Information Resource.33 Following a 
previous study by Drummond and Wilke,13 aggregate mRNA 
level was quantified as the geometric mean signal of the mea-
surements from the six tissues in the Brawand et al data set. 
We log-transformed these geometric means in the following 
analysis. There are 241 human proteins and 60 mouse proteins 
in our data set that have both structure and gene expression 
information available.
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A probabilistic framework for assessing the joint effect 
of rsA and gene expression on amino acid and codon usage. 
Our probabilistic framework is based on the idea that the pro-
pensity of a codon representing a given site of a protein can be 
predicted by a two-step process: First, estimate the probability 
of the corresponding amino acid by the observed frequency of 
that amino acid at similar structural and functional contexts 
in other proteins. Second, predict the relative probability of 
observing a codon conditional upon the amino acid, the struc-
tural context, and the functional context. For a codon C of 
a protein sequence, let A be the amino acid encoded by this 
codon. Here, R is the RSA at the site and represents the struc-
tural context, while E is the expression level of the gene and 
represents the functional context. The probability of obtaining 
C conditional upon the context is then

   P C R E P C A R E P A R E| | |, , , , .( ) = ( )⋅ ( )  (1)

Testing association between codon usage and RSA. 
Codon usage is correlated with gene expression.19 Further-
more, amino acid usage is RSA dependent2,34,35 and also 
influenced by gene expression.36,37 Zhou et al.14 tested the asso-
ciation between codon optimality and solvent accessibility. Instead 
of focusing on codon optimality that primarily reflects the 
influence of selection for translation speed and/or accuracy on 
codon usage, we test a slightly more general null hypothesis 
that, conditional upon the amino acid, codon usage is inde-
pendent of RSA.

To do this, a k-sample Anderson–Darling (A-D) test38 
was applied to compare RSA distributions of different syn-
onymous codons encoding an amino acid. Here, k equals the 
number of synonymous codons. For example, k = 6 if a test is 
conducted for serine. The A-D test is nonparametric and distri-
bution free. To get the null distributions of A-D test statistics, 
we permuted RSA values among codons that specify the same 
amino acid type. By doing this, the association between amino 
acid usage and structural environments was not affected, but 
any association between codon usage and structural environ-
ments was eliminated. For each test, 10,000 simulated A-D 
test statistics were generated via this sort of permutation. The 
actual computation was done with the ad.test function in the 
R package kSamples.38

We can test whether RSA distributions of synonymous 
codons are different either at the genomic scale or at the indi-
vidual gene scale. At the genomic scale, for each of the 18 
amino acids that have more than one codon, a k-sample A-D 
test was conducted. Positions in all genes that have the same 
amino acid type were pooled together, and RSA values were 
permuted among these positions. In each test, the null distri-
bution was formed by the 10,000 simulated A-D test statistics. 
To get the P-value, the test statistic computed from observed 
data is compared to the null distribution, and the proportion 
of the null distribution that exceeds the observed test statistic 
value is recorded. At the genomic scale, we have the power to 

detect even slight violations of the null hypothesis. A disad-
vantage of the genomic-level test is that permuted data sets do 
not retain the same codon usage patterns as the actual data. 
This means that association between codon usage and gene 
expression is disrupted in the permuted data sets.

When the hypothesis was tested at the gene scale, the 
resampling procedure only allows RSA values belonging to 
positions that have the same amino acid type to be permuted 
within a gene. Therefore, permuted data sets do not disrupt 
association between codon usage and gene expression because 
permuted genes retain the same codon usage for each gene 
as found in actual data. Under this restriction, 18 × 864 and 
18 × 156 null distributions were generated, since we have 864 
human proteins and 156 mouse proteins. To perform a single 
test of association between codon usage and RSA within each 
amino acid type, normalized test statistics (z-scores) were 
obtained for the amino acid type in each gene by subtracting 
the sample mean of the individual k-sample A-D test statistics 
for each combination of gene and amino acid type and then 
dividing the differences by the sample standard deviation. For 
each amino acid type, the 10,000 × 864 and 10,000 × 156 
z-scores were summed across proteins so that 10,000 sum-
of-z-scores (the combined null distribution) were obtained in 
human and in mouse. Finally, we compute P-values by com-
paring the observed sum-of-z-score for an amino acid with the 
corresponding null distribution. Although testing at the gene 
scale allows gene-specific codon bias to be removed, there is 
less power to reject the null hypothesis at the individual gene 
scale because each gene has a comparatively small number of 
codons for each amino acid.

Clustering amino acids according to RSA preference. 
The RSA of an amino acid residue in a protein is affected by 
tertiary structure of the protein, apart from the amino acid’s 
physicochemical properties.39 Before we proceed to quantita-
tive modeling, we would like to find out how interchangeable 
two amino acids are in terms of RSA distribution and whether 
amino acids can be grouped together by their RSA distribu-
tion similarities. The two-sample Kolmogorov–Smirnov (KS) 
test is one of the most useful and general nonparametric 
methods for comparing two samples. In other contexts,40–42 
the KS test statistic has been used to define distances for the 
purpose of hierarchical clustering. Borrowing the idea from 
hypothesis testing, we define the distance between a pair of 
amino acids by the normalized two-sample KS test statistic 
(Equation 2) when contrasting their RSA distributions. We 
let n and n′ be sample sizes for each amino acid type, and we 
obtain a test statistic:

   

normalized KS statistic
sup

=
( ) − ( )

+ ′
′

′x | |1 2F x F x

n n
nn

n n, ,
 (2)

where F1,n and F2,n′ are the empirical RSA distribution func-
tions of the two amino acids, respectively. Similar to hypothesis 

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Wang et al

88 Evolutionary Bioinformatics 2015:11

testing for codon usage, an amino acid distance matrix can be 
constructed either at the genomic scale or at the individual 
gene scale. For the latter, one distance matrix can be com-
puted within each protein and all matrices can be combined by 
taking element-wise means. Complete-linkage clustering43 is 
employed to find the grouping pattern in a distance matrix.

Logistic regression (LR). 
If there is no significant association between codon usage and 
RSA, we can make the following simplification to Equation 1:

   P C A R E P C A E| |, , , .( ) = ( )  (3)

Since we are interested in understanding how gene 
expression (a predictor variable) affects probabilities of amino 
acid types (a categorical outcome variable), LR (in cases where 
there are exactly two synonymous codons) and MLR can 
be employed. The most frequent codon in each synonymous 
group is denoted as Cr, and the probability of any other syn-
onymous codon C is modeled relative to it:

  
log

P C A E
P C A E

E
r

C

|

|

,
,

( )
( )









 = + ⋅α β  (4)

where α is the intercept and βC is the slope for gene expression 
with codon C. When amino acids have exactly two synony-
mous codons, we use LR instead of MLR. Since methionine 
and tryptophan are encoded by a single codon, they are not 
included in this analysis.

To measure the joint effect of RSA and gene expression 
on amino acid usage quantitatively, we use both gene expres-
sion and RSA as independent variables and build a model 
similar to the one in Equation 4, but this time the probabili-
ties are relative to Ar, the reference amino acid:

   
log

P A R E
P A R E

R ER A E A
|

|

,
, , ,

( )
( )









 = + ⋅ + ⋅

r

α β β  (5)

where βR,A and βE,A are the slopes for amino acid A of RSA 
and gene expression, respectively. The most frequent amino 
acid (in our case, leucine) is chosen as Ar. A likelihood ratio 
test can compare the full model in Equation 5 with reduced 
models in Equations 6 and 7.
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r

α β  (7)

A functionally and structurally constrained Markov 
model of codon substitution. Using the probabilistic framework 

that we have constructed, we develop a model of protein-
coding DNA sequence evolution that explicitly accounts for 
structural and functional constraints.

The rate of change from codon i to codon j is denoted by 
qij. Our mutation-selection balance parameterization has each 
substitution rate be proportional to the mutation rate from i to j  
multiplied by the probability that a new mutation becomes 
fixed. We denote πk as the stationary probability of nucleotide 
type k (k ∈ {A, C, G, T}) in the absence of natural selection and 
use π as the vector representing the four nucleotide frequen-
cies. Let κ be the transition–transversion rate ratio. Assume 
a diploid population of effective size N individuals, and let 
P(Zij) be the probability that a new mutant allele j eventually 
gets fixed in the population that otherwise consists of 2N − 1 
alleles of type i. We set qij to 0 if i or j is a stop codon, or i and 
j differ by more than one nucleotide. When i and j differ by 
exactly a single codon position and codon j has nucleotide type 
h at this position, our model specifies the substitution rate qij 
from codon i to codon j as

   
q

u N P Z

u N P Zij
h ij

h ij

=
× × ( )

× × ( )


 π

π

2

2

transversion,

transition,κ


 (8)

where the scale factor u is defined by the requirement that the 
average substitution rate for a codon substitution process at 
stationarity is 1.

Following Choi et al.44, we design our evolutionary model 
to have a stationary distribution that matches a desired target 
probability distribution. In this case, we have our evolutionary 
model yield a stationary distribution that is identical to the 
probability distribution of codons that we estimated via MLR 
from solvent accessibility and gene expression data of human 
proteins. Accordingly, we set P(i|R,E) as the stationary prob-
ability for codon i. It can be calculated using Equations 1, 4, 
and 5.

Let P0(i|π) be the probability of codon i under a model 
where stop codons are lethal, but all other codons are equally 
fit. Adjusting for the three stop codons in the universal genetic 
code,

   
P i i i i

T A A T A G T G A
0 |

1
1 2 3π

π π π

π π π π π π π π π
( ) =

− − −
.  (9)

According to the approximation introduced in Choi et al.44,

   
τ

π
πij

P j R E P j
P i R E P i

=
( ) ( )
( ) ( )

| |

| |
0

0

, /
, /

 (10)

and

   
2

1 1
N P Zij

ij

ij

× ( ) =
( )

−

log τ

τ/
,  (11)
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yield a Markov model that is time reversible. One advantage 
of our model is that the number of parameters that are intro-
duced in the effort to include RSA and gene expression is 
small. The trade-off is that our model will incur extra com-
putation because RSA values can be different from site to site. 
We need to have one rate matrix for each site, although these 
rate matrices can share parameters such as κ.

We set the relative fitnesses of i and j, respectively, as 1 
and 1 + s. For an effective population of size N diploid indi-
viduals with multiplicative fitnesses, the scaled selection coef-
ficient S = 2N s can be assessed by Refs. 44–46:

   
S N s ij= = ⋅ ( )2

1
2

log τ .  (12)

To get reliable estimates of coefficients for MLRs in 
Equations 4 and 5, a sufficient number of proteins with both 
PDB structure and RNA-Seq data are required. Owing 
to insufficient multi-organ RNA-seq data from mouse, we 
conducted the LR and trained the evolutionary model only 
for humans. For this analysis, we use nucleotide frequencies 
observed in the human genome (41% GC base pairs and 59% 
AT base pairs according to International Human Genome 
Sequencing47) as estimates of π. This way of estimating π 
stems from the fact that the majority of the human genome 
consists of DNA with no known biological function and 
that is putatively evolving without much impact from natu-
ral selection. We therefore set π

a
= π

t
= 0.59/2 = 0.295 and 

π
c
= π

g
 = 0.41/2 = 0.205. This treatment could be improved 

by allowing π to vary among genes to account for regional 
genomic differences in mutation patterns, but it is not pur-
sued in this study.

results
After using the Benjamini–Hochberg (BH) method48 to con-
trol for false discovery rate, no synonymous codon group in 
mouse was found to exhibit a significant correlation between 
codon usage and RSA. In contrast, 15 out of 18 synonymous 
codon groups in human were statistically significant (Table 1). 
For humans, the null hypothesis cannot be rejected in synony-
mous codon groups belonging to cysteine (C), phenylalanine 
(F), and histidine (H).

When the same hypothesis was tested at the individual 
gene level, the P-value results can be found in Table 2. After 
applying the BH method, no synonymous codon group was 
found to be statistically significant in either human or mouse, 
although P-values in human are consistently smaller than 
those in mouse.

Figure 1 shows the hierarchical clustering result of the 
amino acid distance matrix computed for combined human 
data. As would be expected, if natural selection is associated 
with solvent accessibility, the hierarchical clustering suggests 
that RSA tendencies of amino acids in naturally occurring 
proteins are correlated with the physicochemical properties 
of these amino acids. On the whole, the 20 amino acids are 
naturally separated into two groups. The first group contains 

table 1. test at genomic scale of whether rsa tendencies vary among synonymous codons.

SYnonYMouS Codon GRouPS AA huMAn p-vAluE MouSE p-vAluE

Gct, Gcc, Gca, GcG a 0.0003* 0.2473

tGt, tGc c 0.9381 0.2330

Gat, Gac D 0.0115* 0.4074

Gaa, GaG E ,0.0001* 0.5510

ttt, ttc f 0.4852 0.3127

GGt, GGc, GGa, GGG G 0.0153* 0.9709

cat, cac H 0.2765 0.3875

att, atc, ata i ,0.0001* 0.0703

aaa, aaG K 0.0012* 0.0320

tta, ttG, ctt, ctc, cta, ctG l 0.0057* 0.0975

aat, aac n 0.0001* 0.0188

cct, ccc, cca, ccG P 0.0016* 0.6651

caa, caG Q 0.0058* 0.1058

cGt, cGc, cGa, cGG, aGa, aGG r 0.0338* 0.2547

tct, tcc, tca, tcG, aGt, aGc s ,0.0001* 0.0326

act, acc, aca, acG t 0.0034* 0.3692

Gtt, Gtc, Gta, GtG v 0.0255* 0.8705

tat, tac y 0.0082* 0.2580

notes: The first column contains synonymous codon groups, and the second column shows the corresponding amino acid type. The P-values of individual 
k-sample A-D tests are shown in the final two columns. To control for false discovery at level α = 0.05, the BH method48 was applied to the human P-values and then 
the mouse P-values. An * indicates significance at α = 0.05.
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table 2. test at individual gene scale of whether rsa tendencies vary among synonymous codons.

SYnonYMouS Codon GRouPS AA huMAn p-vAluE MouSE p-vAluE

Gct, Gcc, Gca, GcG a 0.0941 0.2033

tGt, tGc c 0.2529 0.5224

Gat, Gac D 0.4482 0.2829

Gaa, GaG E 0.9285 0.9118

ttt, ttc f 0.4127 0.9098

GGt, GGc, GGa, GGG G 0.0071 0.4487

cat, cac H 0.2685 0.3649

att, atc, ata i 0.1844 0.6461

aaa, aaG K 0.1098 0.7943

tta, ttG, ctt, ctc, cta, ctG l 0.3073 0.4867

aat, aac n 0.5365 0.0688

cct, ccc, cca, ccG P 0.3841 0.2274

caa, caG Q 0.4883 0.7631

cGt, cGc, cGa, cGG, aGa, aGG r 0.0730 0.4402

tct, tcc, tca, tcG, aGt, aGc s 0.0466 0.4255

act, acc, aca, acG t 0.1324 0.2816

Gtt, Gtc, Gta, GtG v 0.0713 0.5674

tat, tac y 0.5540 0.5869

notes: The first column contains synonymous codon groups, and the second column shows the corresponding amino acid type. The P-values of individual 
k-sample A-D tests are shown in the final two columns. To control for false discovery at level α = 0.05, the BH method48 was applied to the human P-values and then 
the mouse P-values. No tests for either human or mouse were significant at α = 0.05.

C M W A Y F V I L E K S G H T N P R Q D

C
M
W
A
Y
F
V
I

L
E
K
S
G
H
T
N
P
R
Q
D

0 10 30 50
Value

Color Key

figure 1. Distance matrix for amino acids using combined human data. 
Distance between two amino acid types is defined by the normalized KS 
test statistics (Equation 2). the complete-linkage method was used to 
perform hierarchical clustering.
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figure 2. Distance matrix for amino acids using stratified human data. 
Distance between two amino acid types is defined by the normalized 
Ks test statistics (Equation 2). the complete-linkage method was used 
to perform hierarchical clustering. Entries in the matrix are computed 
by taking the average of the distances between amino acids among all 
proteins.

mainly hydrophobic amino acids (C, M, W, A, Y, F, V, I, L) 
and the second group contains the other amino acids (D, Q , 
R, P, N, T, H, G, S, K, E). According to the dendrogram, 
there are a few smaller and tighter clusters within each group. 
For example, in the first group, amino acids L, I, V, and F 

have more similar RSA preference than other amino acids 
in this group. In the second group, the cluster that contains 
amino acids K and E shows strong distinct signal, while two 

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Accessibility and expression in protein evolution

91Evolutionary Bioinformatics 2015:11

other clusters (one formed by T, H, G, S and the other formed 
by D, Q , R, P, N) are also present.

As explained in the Materials and Methods section, we 
also constructed another distance matrix using data stratified 
by each gene. We computed one distance matrix for each pro-
tein in our data set and then calculated the average values for 
each cell in the distance matrix across all proteins. The result-
ing distance matrix is shown in Figure 2. The same cluster-
ing pattern was found as in Figure 1, although the signal is 
weaker because of the much smaller sample sizes in individual 
protein-coding genes.

MLr results. Using human data, the estimated coef-
ficients of MLR models for synonymous codon groups with 
more than two codons are shown in Table 3. For groups with 
exactly two synonymous codons, estimated coefficients of LR 
models are in Table 4. The estimates of the slope parameter 
for log-scaled gene expression are all negative for LR models, 
and they are all statistically significant. Across all MLR 
models, 24 out of 32 slope estimates for gene expression are 
negative and statistically significant, while only one coeffi-
cient belonging to codon TCG in amino acid serine is positive 
and significant. Since we define the most frequent (also called 

table 3. Codons: MLR-estimated coefficients for gene expression using human data.

AA REf Codon non-REf Codon intERCEPt CoEf ExPRESSion CoEf intERCEPt p-vAluE ExPRESSion p-vAluE

a Gcc Gca −0.3091 −0.1650 0.0002 ,0.0001

GcG −1.6278 0.0331 ,0.0001 0.3824

Gct −0.0943 −0.1363 0.2237 ,0.0001

G GGc GGa 0.1279 −0.1639 0.1294 ,0.0001

GGG −0.3834 −0.0039 ,0.0001 0.8958

GGt −0.5043 −0.0909 ,0.0001 0.0076

i atc ata −0.6378 −0.2427 ,0.0001 ,0.0001

att 0.0974 −0.1437 0.2063 ,0.0001

l ctG cta −1.3565 −0.1966 ,0.0001 ,0.0001

ctc −0.5859 −0.0597 ,0.0001 0.0089

ctt −0.6472 −0.2047 ,0.0001 ,0.0001

tta −1.1326 −0.2292 ,0.0001 ,0.0001

ttG −0.9156 −0.1259 ,0.0001 ,0.0001

P ccc cca 0.1390 −0.1315 0.1450 0.0001

ccG −1.4229 0.0621 ,0.0001 0.1675

cct 0.1333 −0.1263 0.1619 0.0001

r cGG aGa 0.3689 −0.1976 0.0012 ,0.0001

aGG 0.2032 −0.1231 0.0754 0.0013

cGa 0.0133 −0.2373 0.9170 ,0.0001

cGc 0.0172 −0.0124 0.8795 0.7315

cGt −0.6141 −0.0978 ,0.0001 0.0428

s aGc aGt −0.2386 −0.1159 0.0157 0.0012

tca −0.3185 −0.1327 0.0018 0.0004

tcc −0.1431 0.0058 0.1140 0.8499

tcG −1.7424 0.1118 ,0.0001 0.0167

tct −0.0936 −0.1069 0.3207 0.0016

t acc aca −0.0842 −0.0641 0.3423 0.0341

acG −1.1397 0.0214 ,0.0001 0.5834

act −0.1699 −0.1289 0.0705 0.0001

v GtG Gta −0.9888 −0.2038 ,0.0001 ,0.0001

Gtc −0.6873 −0.0132 ,0.0001 0.6153

Gtt −0.6146 −0.1727 ,0.0001 ,0.0001

notes: The first column denotes amino acid types for synonymous codon groups. Within each synonymous codon group, the most frequent codon for each amino 
acid is chosen as the reference category, and these codons are shown in the second column. the non-reference codons are listed in the third column. the fourth 
and fifth columns contain the estimated coefficients for intercept and gene expression in Equation 4. The corresponding P-values of the estimated coefficients can 
be found in the last two columns.
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table 4. Codons: LR-estimated coefficients for gene expression using human data.

AA REf Codon non-REf Codon intERCEPt CoEf ExPRESSion CoEf intERCEPt p-vAluE ExPRESSion p-vAluE

c tGc tGt 0.1474 −0.1109 0.1622 0.0035

D Gac Gat 0.0650 −0.0985 0.3275 ,0.0001

E GaG Gaa 0.1872 −0.1632 0.0018 ,0.0001

f ttc ttt 0.1959 −0.1009 0.0091 0.0001

H cac cat −0.1216 −0.1132 0.2212 0.0018

K aaG aaa −0.0871 −0.1144 0.1714 ,0.0001

n aac aat 0.0934 −0.1340 0.2320 ,0.0001

Q caG caa −0.6138 −0.1920 ,0.0001 ,0.0001

y tac tat −0.1045 −0.0688 0.2184 0.0213

notes: The first column denotes amino acid types for synonymous codon groups. Within each synonymous codon group, the most frequent codon for each amino 
acid is chosen as the reference category, and these codons are shown in the second column. the non-reference codons are listed in the third column. the fourth 
and fifth columns contain the estimated coefficients for intercept and gene expression in Equation 4. The corresponding P-values of the estimated coefficients can 
be found in the last two columns.

table 5. Amino acids: MLR-estimated coefficients for RSA and gene expression using human data.

AA intERCEPt RSA ExPRESSion

CoEf p-vAluE CoEf p-vAluE CoEf p-vAluE

a −0.9449 ,0.0001 0.0208 ,0.0001 0.0378 0.0065

c −1.2789 ,0.0001 −0.0080 ,0.0001 −0.0255 0.2123

D −1.9803 ,0.0001 0.0479 ,0.0001 0.0320 0.0292

E −2.0101 ,0.0001 0.0523 ,0.0001 0.0478 0.0006

f −0.7462 ,0.0001 −0.0034 0.0105 −0.0020 0.9009

G −1.3812 ,0.0001 0.0354 ,0.0001 0.0309 0.0283

H −2.0176 ,0.0001 0.0322 ,0.0001 −0.0128 0.5008

i −0.5001 ,0.0001 −0.0057 ,0.0001 −0.0282 0.0634

K −2.2285 ,0.0001 0.0537 ,0.0001 0.0526 0.0003

m −1.9446 ,0.0001 0.0096 ,0.0001 0.0381 0.0813

n −2.0827 ,0.0001 0.0455 ,0.0001 −0.0246 0.1393

P −2.0514 ,0.0001 0.0455 ,0.0001 0.0295 0.0571

Q −2.1544 ,0.0001 0.0464 ,0.0001 0.0176 0.2721

r −1.9454 ,0.0001 0.0441 ,0.0001 0.0373 0.0136

s −1.3001 ,0.0001 0.0366 ,0.0001 −0.0126 0.3740

t −1.5064 ,0.0001 0.0329 ,0.0001 0.0305 0.0421

v −0.5067 ,0.0001 0.0034 0.0020 0.0304 0.0263

W −1.9197 ,0.0001 0.0022 0.2615 −0.0159 0.5218

y −1.2309 ,0.0001 0.0109 ,0.0001 0.0019 0.9128

notes: The first column shows amino acid types in their one-letter format. The second and third columns contain estimated values and their corresponding P-values 
of the intercept (see Equation 5). The fourth and fifth columns show estimated coefficients and their P-values of RSA in MLR. The last two columns show coefficient 
estimates and P-values of log-transformed gene expression. the most frequent amino acid leucine (l) is not included in the table because it is chosen as the 
reference category for mlr.

preferred) codon to be the reference category in both MLR 
and LR cases, these estimates coincide with findings from 
earlier studies21,24,49 that the probability of observing the most 
frequent codon increases when gene expression level is higher 
(with one exception).

A likelihood ratio test suggests that the full model for 
amino acid probability (Equation 5) is significantly better than  

the model considering only RSA (Equation 6; P-value 
4.1e–09) and the model considering only the level of gene 
expression (Equation 7; P-value  2.2e–16). Table 5 summa-
rizes the maximum-likelihood estimates of the parameters 
and their P-values in the full model. With the exception of 
three amino acids (cysteine, phenylalanine, and isoleucine), 
slope estimates for RSA of the non-reference amino acids are 
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positive. This means that the relative probability of observing 
these amino acids rather than the reference amino acid leucine 
is higher as RSA increases, holding gene expression identical. 
To depict a full picture of the joint effect of RSA and gene 
expression, heatmaps present the predicted probabilities of 
each amino acid (Fig. 3 and Supplementary Fig. 1). While 
RSA plays a dominant role in determining the region of high 
probabilities for amino acids such as leucine and proline, the 
effect of gene expression is evident in cases such as histidine 
and serine (Fig. 3).

scaled selection coefficients. By applying Equation 12, 
we estimated the scaled selection coefficient S = 2N s of all 
possible point mutations at each site for the 241 protein-coding 
human genes. The estimated values fall into two groups defined 
by nonsynonymous and synonymous substitutions. Figure 4 
depicts how the distribution of scaled selection coefficients for 
genes changes with the corresponding gene expression levels. 
We can see from the figure that when mutations are being 
selected against (S , 0), both nonsynonymous and synony-
mous mutations are inferred to be more deleterious as the gene 
expression level increases. The figure also shows that the degree 
of selective advantage for beneficial mutations gets larger with 

increasing gene expression. As expected, Figure 4 indicates 
that nonsynonymous mutations are influenced by gene 
expression to a lesser degree than synonymous ones.

discussion
We developed a probabilistic framework that simultaneously 
considers RSA (a structural constraint) and gene expression  
(a functional constraint). By design, the two-step construction 
process of this framework (Equation 1) captures codon usage 
bias at the nucleotide level as well as structural and functional 
dependence of amino acids.

Hypothesis testing at a genomic scale reveals a poten-
tially species-specific difference in the relationship between 
synonymous codon choice and RSA. In humans, the null 
hypothesis that RSA is independent of synonymous codon 
choice can be rejected. In mouse, the result is not statistically 
significant, possibly because of insufficient data and possibly 
because the relationship between RSA and synonymous codon 
usage is less strong. At the individual gene level, we test the 
same hypothesis using permutation and resampling. Although 
we fail to reject the null hypothesis in both human and mouse, 
we notice that the association between RSA and codon usage 
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figure 3. Predicted probabilities of four amino acids across possible ranges of rsa and gene expression. Probabilities for each amino acid were 
calculated from the estimated RSA and gene expression coefficients (see Table 5). The horizontal axis covers the possible range of RSA, and the vertical 
axis is for gene expression. red regions indicate relatively high probabilities, while blue regions show low probabilities. the four amino acids depicted 
here (histidine, leucine, proline, and serine) were selected for the diversity of heatmap diagrams that they represent. Heatmaps for the other 16 amino 
acids can be found in supplementary figure 1.
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is stronger in human than in mouse. This is consistent with 
our finding at the genomic scale. Because we derive one test 
statistic from each gene and combine the test statistics to get 
an overall test statistic and its null distribution, we are treat-
ing each protein equally. However, because of small sample 
size, the test statistics calculated in some proteins may not be 
informative and can contribute stochastic noise to the com-
bined test statistic. Improved test statistics might yield differ-
ent conclusions.

In the first step of constructing our probabilistic frame-
work, we used MLR and LR to model the probabilities of 
different synonymous codons, given gene expression. Slope 
estimates suggest that, in general, it is more likely to observe 
the preferred codon in highly expressed genes. This is con-
sistent with previous findings.21,24,49 RSA is ignored in this 
step because our analyses indicate that the correlation between 
RSA and codon usage is small to nonexistent. This does not 
mean that there is no structure constraint on codon usage. Pro-
tein structure may lead to selection pressure on synonymous 
codon choice through an interaction between the translation 
process and protein folding.50 Codon usage is also subject to 

other constraints because it can affect splicing and/or mRNA 
stability.51

To predict amino acid types, we incorporate both RSA 
and gene expression as independent variables in our MLR 
model. Our likelihood ratio test confirms that the full model 
with both variables fits data significantly better than reduced 
models. Although the impact of gene expression on amino 
acid probabilities is weaker than the impact of RSA, it is still 
significant. The heatmaps for amino acids such as histidine 
and serine show that these amino acids reach their highest 
probabilities at intermediate RSA values (Fig. 3).

We observed a trend that 2N s estimates for both non-
synonymous and synonymous point mutations become more 
negative as gene expression increases (Fig. 4). This observa-
tion is biologically reasonable, and a few mechanisms might 
contribute to it. Highly expressed proteins have been found 
to evolve slower because of the stronger selection pressure 
that they experience.4,13,52 Many highly expressed proteins are 
functionally important or even essential. For these proteins, 
the cell cannot afford their function to be disturbed or their 
abundance to become low.53
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Some aspects of the scaled selection coefficients are 
qualitatively reasonable. For example, 64.2% of the possible 
point mutations yield negative values of 2N s. This is in keep-
ing with the expectation that if protein-coding genes are 
affected by natural selection, more possible point mutations 
should be deleterious than advantageous. The qualitative pat-
tern remains when we restrict consideration to synonymous 
point mutations. Of these mutations, 64.0% yield negative 
values. Among nonsynonymous mutations, 64.3% of possible 
point mutations are inferred to be deleterious.

However, the distribution of nonsynonymous scaled selec-
tion coefficient estimates is clearly unrealistic in that it is too 
tightly clustered around the value of 0. Because some possible 
nonsynonymous mutations are lethal or at least highly deleteri-
ous, there should be some scaled selection coefficient values 
that are far below 0. We do not observe this expected long lower 
tail of the distribution of scaled selection coefficients for non-
synonymous point mutations (eg, see the 5% nonsynonymous 
values in Fig. 4). Because some nonsynonymous mutations 
should be extremely deleterious, we also expect the average 
over all possible nonsynonymous mutations to be substantially 
below zero. We do not observe this. In fact, the average esti-
mates of 2N s for nonsynonymous mutations is about −0.162,  
and this is only slightly less than the −0.158 value represented  
by the average 2N s estimate among synonymous point muta-
tions. Similar shortcomings have been noted for distributions 
of scaled selection coefficients that have been inferred via a 
mutation-selection balance model of molecular evolution.44,54 
Much of the mismatch between our expectations and our 
estimates is likely because of flaws of our evolutionary model. 
Specifically, the rates in our model depend on the RSA and 
gene expression covariates, but other aspects of phenotype are 
clearly very relevant to natural selection and are not captured 
by our model.

An additional possible weakness of our mutation-selection 
model and other mutation-selection models is the assumption 
that each new mutation is fixed or lost before the next one 
occurs. Our inferential framework does not accommodate the 
possibility that fitness-affecting genetic variants at one locus 
interfere with the survival or loss of fitness-affecting variants 
at other loci. This Hill–Robertson phenomenon55 is potentially 
important to consider when connecting interspecific models of 
sequence change to population genetics.56

A basic assumption of our probabilistic framework is 
that sites in a protein-coding sequence are independent. This 
assumption is commonly made, and it allows simplification 
of computation, even though it is clear that sites in a protein 
sequence do not evolve independently. It would be challeng-
ing yet worthwhile for future evolutionary studies to include 
structural constraints related to site dependence in a coding 
sequence.
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