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Abstract
The anterior cingulate cortex (ACC) is involved in emotion regulation and salience processing. Prior research has
implicated ACC dysfunction in suicidal ideation (SI) and suicidal behavior. This study aimed to quantify ACC
glutamatergic concentrations and to examine relationships with SI in a sample of healthy and depressed adolescents.
Forty adolescents underwent clinical evaluation and proton magnetic resonance spectroscopy (1H-MRS) at 3 T,
utilizing a 2-dimensional J-averaged PRESS sequence sampling a medial pregenual ACC voxel. Cerebrospinal fluid-
corrected ACC metabolite concentrations were compared between healthy control (HC, n= 16), depressed without SI
(Dep/SI−, n= 13), and depressed with SI (Dep/SI+, n= 11) youth using general linear models covarying for age, sex,
and psychotropic medication use. Relationships between ACC metabolites and continuous measures of SI were
examined using multiple linear regressions. ROC analysis was used to determine the ability of glutamate+glutamine
(Glx) and the N-acetylaspartate (NAA)/Glx ratio to discriminate Dep/SI− and Dep/SI+ adolescents. Dep/SI+
adolescents had higher Glx than Dep/SI− participants (padj= 0.012) and had lower NAA/Glx than both Dep/SI− (padj
= 0.002) and HC adolescents (padj= 0.039). There were significant relationships between SI intensity and Glx (pFDR=
0.026), SI severity and NAA/Glx (pFDR= 0.012), and SI intensity and NAA/Glx (pFDR= 0.004). ACC Glx and NAA/Glx
discriminated Dep/SI− from Dep/SI+ participants. Uncoupled NAA−glutamatergic metabolism in the ACC may play a
role in suicidal ideation and behavior. Longitudinal studies are needed to establish whether aberrant glutamatergic
metabolism corresponds to acute or chronic suicide risk. Glutamatergic biomarkers may be promising targets for novel
risk assessment and interventional strategies for suicidal ideation and behavior.

Introduction
Suicide and suicide attempts have increased among

adolescents and young adults during the past two dec-
ades1–3. Suicide is now the second leading cause of
death in young people1,4. Suicidal behavior accounts for
a substantial and increasing proportion of pediatric

hospital visits5. The broad spectrum of suicidal thoughts
and behaviors is remarkably common in youth; large
epidemiological surveys of adolescents6,7 estimate high
prevalence of suicidal ideation (SI; 12.1–17.7%), plan-
ning (4.0–14.6%), and attempts (4.1–8.6%). Adolescence
represents a critical time in the development of suicidal
behavior. More than half of index suicide attempts occur
by the age of 258. Furthermore, childhood and adoles-
cent suicidality predict suicidal behavior and attempts
later in life9. Clinical practice is uninformed by neuro-
biological data and relies almost entirely on parent and
adolescent reporting, which demonstrate a concerning
lack of concordance10. Despite the need for objective
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neurobiological markers to augment the clinical
assessment of suicide risk, substantial prior research in
this field has not yielded reliable predictive tools11,12.
There is a compelling need for better brain-based
markers of suicide risk and interventions that target
underlying brain dysfunction.
Numerous neurotransmitter and neuroendocrine sys-

tems have been implicated in suicide and suicidal beha-
vior13,14. Increasing evidence indicates dysregulated
glutamatergic neurotransmission in suicidal individuals.
Gene association studies have linked suicidal behavior
with single nucleotide polymorphisms in genes encoding
subunits of the N-methyl-D-aspartate (NMDA) glutama-
tergic receptor15,16 and associated enzymes and trans-
porters16. Postmortem studies in suicide victims have
demonstrated altered expression of genes encoding
NDMA and α-amino-3-hydroxy-5-methyl-4-iso-
xazolepropionic acid (AMPA) ionotropic receptors17,18,
metabotropic glutamate receptors18, and related pro-
teins17,18. Other investigations in suicide attempt survi-
vors have linked cerebrospinal fluid (CSF) levels of
endogenous NMDA receptor agonists to suicidal beha-
vior, which change over time following suicide attempts19.
Further evidence for the role of glutamate in suicidality
arises from the effects of ketamine, an NMDA receptor
antagonist, in rapidly reducing suicidal ideation20,21.
Concentrations of glutamate (Glu) and related meta-

bolites, including glutamine (Gln), glutamate+glutamine
(Glx), N-acetylaspartate (NAA), and N-acet-
ylaspartylglutamate (NAAG), can be quantified non-
invasively using proton magnetic resonance spectroscopy
(1H-MRS). Prior 1H-MRS studies of adults with unipolar
depression have found reductions in Glu22–25, Glx22,26–29,
Gln29, and NAA24,25 in various cortical regions. A small
number of 1H-MRS studies in adults have examined
cortical glutamate and NAA in depressed individuals with
prior suicide attempts30–32. However, findings have been
inconsistent, possibly due to divergent populations (e.g.,
unipolar32 vs. bipolar31 depression), different brain
regions sampled, the lack of nonsuicidal depressed control
groups30, and variable temporal distance between suicidal
behavior and 1H-MRS measurements. Several previous
1H-MRS investigations have found that adolescents with
major depression have decrements in Glu33 and Glx34,35

in the anterior cingulate cortex (ACC) and reduced NAA
in the ACC and medial prefrontal cortex36 compared to
healthy youth, while more recent work has examined the
neurochemical basis for symptomatologic dimensions and
depressive subtypes in adolescents37,38. However, to our
knowledge no previous spectroscopic studies have
examined glutamatergic correlates of current suicidal
thoughts and behaviors among depressed adolescents.
This study sought to examine 1H-MRS-measured cor-

tical glutamatergic metabolism in a sample of healthy and

depressed youth with and without current SI. The ACC
was selected as the region of interest considering (1) the
robust evidence for its role in the pathophysiology of
depression in adults and youth, and (2) its role in mod-
ulation of prefrontal and limbic processes39, notably the
evaluation of negatively valent stimuli and their salience
to the self40–44, which is highly pertinent to suicidal
thoughts and behaviors45. We anticipated that depressed
adolescents with current SI would demonstrate elevated
Glx and reduced NAA in the ACC compared to non-
suicidal depressed and healthy youth. It was also hypo-
thesized that Glx and NAA concentrations would
correlate with continuous measures of SI intensity and
severity. Finally, exploratory analyses were performed to
examine the ability of ACC Glx and NAA/Glx to dis-
criminate depressed adolescents with current SI from
those without SI.

Materials and methods
Participants
Participants were adolescents between the ages of 13

and 21 years. Depressed participants were recruited from
an adolescent psychopharmacology clinic and consisted of
treatment-seeking youth with depressive symptoms; those
who enrolled completed study assessments and 1H-MRS
prior to undergoing appropriate clinical care (initiation of
an antidepressant medication or change to another anti-
depressant). Healthy control participants were recruited
from pediatric primary care clinics and through com-
munity advertising. Parents or guardians of minor parti-
cipants (age < 18 years) provided written informed
consent, and minor participants provided written
informed assent; participants 18 years or older provided
written informed consent. All study procedures were
approved by the Mayo Clinic institutional review board
(Rochester, MN, USA).

Clinical assessment and measures
All participants and parents/guardians underwent clin-

ical assessment by a board-certified child and adolescent
psychiatrist (P.E.C.) prior to 1H-MRS. This included
evaluation on a semi-structured diagnostic interview, the
K-SADS-PL46. Depressive symptom severity was rated on
the Children’s Depression Rating Scale, Revised (CDRS-
R)47 based on clinical interview of the adolescent parti-
cipant and parent/guardian. Seventeen individual symp-
tom items were rated by the clinician and summed for a
total CDRS-R raw score ranging from 17 to 113. Addi-
tionally, since suicidality is assessed on the CDRS-R, an
adjusted CDRS-R score was calculated by subtracting two
items pertaining to suicidal and morbid ideation (items 12
and 13) from the total score to yield a measure of
depressive symptom severity distinct from suicidal
symptoms.
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Current SI was assessed by clinical interview of parti-
cipants using the Columbia Suicide Severity Rating Scale
(C-SSRS)48. The “Severity of Ideation” and “Intensity of
Ideation” subscales were used to characterize participants’
suicidal thoughts. The C-SSRS “Severity of Ideation”
subscale is an ordinal scale derived from five items that
assess the quality of suicidal thoughts. Severity of SI is
rated as: 0= no SI; 1=wish to be dead; 2= non-specific
active suicidal thoughts; 3= active SI with any method
(not plan) without intent to act; 4= active SI with some
intent to act, without specific plan; 5= active SI with
specific plan and intent. The C-SSRS “Intensity of Idea-
tion” subscale is derived from five individual items that
assess intensity of suicidal thoughts across several
dimensions: frequency of ideation, duration of ideation,
controllability of thoughts, deterrents to suicide, and
reasons for suicidal ideation. Each dimension is given a
score of 0 to 5, for a total Intensity of Ideation subscale
score of 0 (no SI present) to 25 (maximum intensity).
Additionally, based on C-SSRS items corresponding to
prior lifetime suicidal behavior (SB), participants were
rated on an ordinal scale of maximal lifetime SB: 0= no
prior SB; 1= nonsuicidal self-injurious behavior; 2=
planning or preparation for an attempt; 3= aborted or
interrupted attempt; 4= suicide attempt.
Presence or absence of psychotropic medication use at

the time of 1H-MRS was coded as a dichotomous variable
(0= no psychotropic medication; 1= current psycho-
tropic medication use).

Group eligibility and classification
Adolescents in the healthy control group had no current

or historical psychiatric diagnosis, no current or previous
psychopharmacologic or psychotherapeutic treatment,
and had depression severity raw scores less than 30 on the
CDRS-R. Participants in the two depressed groups had
current diagnoses of unipolar depressive disorders on the

K-SADS-PL diagnostic interview and had CDRS-R raw
scores of 35 or greater. The Depressed without Suicidal
Ideation (Dep/SI−) group had scores of zero on the
current Severity of Ideation and Intensity of Ideation
subscales of the C-SSRS. The Depressed with Suicidal
Ideation (Dep/SI+) group consisted of depressed adoles-
cents with current C-SSRS Severity of Ideation and
Intensity of Ideation subscale scores of 1 or greater.
Exclusion criteria for all participants consisted of lifetime
history of mania or psychosis; presence of an active sub-
stance use disorder (except nicotine); and any contra-
indication to magnetic resonance imaging, such as
implanted ferromagnetic material or orthodontic hard-
ware that would cause artifact in MRI images.

1H-MRS methods
All participants underwent structural magnetic reso-

nance imaging and 1H-MRS on a General Electric 3 T
Discovery 750 scanner (GE Healthcare, Chicago, IL, USA)
with an 8-channel head coil and running version
22.1 software. Structural images underwent review for
incidental findings by a board-certified neuroradiologist
(J.D.P.).
For acquisition of volumetric data, a FAST 3D SPGR

sequence was used (sagittal acquisition, TR= 7.4 ms, TE
= 3.0 ms, flip angle= 8°, voxel dimensions= 1.02 × 1.02 ×
1.2 mm). Positioning of the ACC voxel was performed
according to previously published methods49. In brief, an
axial reference slice approximately 1 cm superior to the
genu of the corpus callosum and permitting a continuous
visualization of both anterior and posterior horns of the
lateral ventricles was selected. On the reference slice, an
8-cm3 (2 × 2 × 2 cm) voxel encompassing predominantly
prefrontal gray matter was centered on the interhemi-
spheric fissure, with the posterior margin of the voxel
abutting the genu of the corpus callosum. The voxel thus
corresponded to the pregenual ACC (Brodmann areas

Fig. 1 Pregenual anterior cingulate cortex (ACC) voxel. a Sagittal view; b Axial view.
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24a, 24b, and 32 as cytoarchitecturally defined)50. Voxel
placement is shown in Fig. 1.
Spectroscopic data were acquired using a 2-dimensional

J-averaged PRESS sequence (TR= 2000ms, TE=
35–195 ms in 16 steps, TR= 2000ms, 8 averages, 3-way
phase cycling) designed for optimal measurement of
glutamate51,52. Following the scan, images and spectro-
scopic data were transferred to a workstation running
SAGE-IDL software (GE Healthcare). Integrity of spectra
was verified on visual review by the neuroradiologist, and
scans with significant visible artifact were excluded.
Metabolite concentrations were quantified using LCMo-
del53 software version 6.3–1K and a vendor-provided
basis set. Scans with signal-to-noise ratios less than 10
were excluded, and individual metabolite measurements
were excluded if they had Cramér-Rao lower bounds
(representing measurement error) > 20%.
Metabolite concentration measurements were corrected

to the cerebrospinal fluid (CSF) fraction according to
previously published methods49,54. In brief, segmentation
of the T2-weighted anatomical images into gray matter,
white matter, and CSF was performed using an in-house
thresholding technique. The ACC voxel was then super-
imposed on the segmented anatomical images, and the
number of pixels for gray matter, white matter, and CSF
were quantified and normalized to the total pixels within
the voxel to yield a fraction for each tissue type. The
metabolite measurement (M) corrected to the CSF frac-
tion (FCSF) was calculated as

½M�corrected ¼ ½M�measured ´
1

1� FCSF
and is expressed in institutional units. CSF-corrected Glu,
Glx, and NAA concentrations were measured. Addition-
ally, the NAA/Glx ratio was calculated. This was based on
prior literature suggesting that the ratio of NAA to
glutamatergic concentrations (or vice versa) allows
measurement of altered glutamatergic metabolism while
correcting for the effect of neuronal loss (as indexed by
NAA alone)55,56 and may correspond to impairment in
the metabolic cycling of glutamate–glutamine–NAA in
neuropsychiatric disease states57,58.

Statistical analyses
Statistical analyses were performed using IBM SPSS

Statistics for Windows, Version 25 (IBM Corp., Armonk,
NY, USA) and JMP Pro 14.1.0 (SAS Institute, Inc., Cary,
NC, USA) software. The significance level was set at α=
0.05, and p-values were adjusted for multiple comparisons
according to the false-discovery rate (FDR) method59. The
normality of distributions for spectroscopic outcome
measures (Glu, Glx, NAA, NAA/Glx) was examined with
Shapiro-Wilk tests. Distributions of all spectroscopic
measures did not deviate from the normal distribution in

the overall sample or within any group (all p > 0.2).
Consequently, parametric statistical tests were used for
the analyses.
For our primary aim, a separate fixed-effects general

linear model (GLM) was conducted for each spectro-
scopic measure (Glu, Glx, NAA, NAA/Glx). In each GLM,
main effects of the following independent variables were
tested: group (HC vs. Dep/SI− vs. Dep/SI+), sex, age at
time of scan, and psychotropic medication status (coded
as a dichotomous variable denoting the presence or
absence of psychotropic medication at the time of the 1H-
MRS scan). The main effect of group was corrected for a
total of four comparisons using the FDR method59. Post
hoc comparisons of estimated group marginal means on
each metabolite (for a total of three pairwise contrasts
each) were adjusted for multiple comparisons using the
Šidák correction.
For the secondary aim, the relationship between meta-

bolite concentrations and (1) ordinal variables of SI severity,
and (2) continuous variables of SI intensity were examined
with multiple linear robust regressions that included age,
sex, depression severity (adjusted CDRS-R total score), and
psychotropic medication status as covariates.
As an exploratory sensitivity analysis, a receiver oper-

ating characteristic (ROC) analysis was used to determine
the ability of ACC Glx and the NAA/Glx ratio to dis-
criminate between Dep/SI− and Dep/SI+ groups. The
analysis tested the areas under the curve (AUCs) of Glx
and the NAA/Glx ratio against a nominal AUC of 0.5. The
AUCs, 95% confidence intervals, sensitivity, specificity,
positive predictive value (PPV), and negative predictive
value (NPV) are reported for each optimal cutpoint.

Results
Participant characteristics
Forty adolescents (25 female, 15 male; mean age ± SD,

16.66 ± 1.92 years; range 13.58–20.81 years) underwent
clinical evaluations and 1H-MRS scans. The three groups
(HC, Dep/SI−, Dep/SI+ ) did not differ in age or sex
distribution. Demographic and clinical characteristics of
the three participant groups are reported in Table 1.
Comparing the two depressed groups, Dep/SI− and

Dep/SI+ adolescents did not differ in the proportions of
participants who had family histories of psychiatric illness,
mood disorders, or attempted or completed suicide
(Fisher’s exact tests, p > 0.99, p= 0.458, p= 0.414,
respectively). Participants in the Dep/SI+ had higher
CDRS-R total scores than did those in the Dep/SI− group
(t=−2.477, p= 0.021). However, the adjusted depression
severity score (removing CDRS-R items assessing morbid
and suicidal ideation) did not differ (t=−1.247, p=
0.225). Dep/SI− and Dep/SI+ groups did not differ in
number of depressive episodes (t=−0.640, p= 0.529),
current episode duration (t=−1.643, p= 0.127),
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cumulative time depressed (t=−1.616, p= 0.120), or
total depressive illness duration (t=−1.572, p= 0.130).
The proportion of participants taking a psychotropic

medication did not differ between the two depressed
groups (p= 0.675). Medications taken by individual par-
ticipants are reported in Supplemental Table S1.

Table 1 Demographic and clinical characteristics by group.

Characteristic HC

(n= 16)

Dep/SI−

(n= 13)

Dep/SI+

(n= 11)

p

Age at time of 1H-MRS scan (years), mean ± SD 16.90 ± 1.92 16.70 ± 2.08 16.26 ± 1.87 0.708a

Sex 0.783a

Female, n (%) 11 (68.75%) 8 (61.54%) 6 (54.55%)

Male, n (%) 5 (31.25%) 5 (38.46%) 5 (45.45%)

Family history

Any psychiatric illness, n (%) 7 (50.00%)b 13 (100%) 11 (100%) <0.001a

Mood disorder, n (%) 7 (50.00%)b 13 (100%) 10 (90.91%) 0.003a

Attempted or completed suicide, n (%) 0 (0%)b 5 (41.67%)c 7 (63.64%) <0.001a

Depression severity: CDRS-R

Total score, mean ± SD 18.50 ± 1.41 48.69 ± 7.93 57.64 ± 9.77 0.021d

Adjusted total score (without SI, morbid ideation items), mean ± SD 16.50 ± 1.41 45.23 ± 7.24 49.36 ± 9.00 0.225d

Current psychotropic medication, n (%) 0 (0%) 4 (30.77%) 5 (45.45%) 0.675d

Number of depressive episodes, mean ± SD n/a 1.54 ± 0.66 1.73 ± 0.79 0.529d

Duration of current MDE (months), mean ± SD n/a 5.71 ± 5.42 14.82 ± 17.70 0.127d

Cumulative duration of all lifetime MDEs (months), mean ± SD n/a 11.48 ± 8.26 19.82 ± 16.35 0.120d

Duration of depressive illness (years), mean ± SD n/a 1.59 ± 1.58 2.73 ± 1.98 0.130d

Suicidal ideation/behavior: C-SSRS

Severity of ideation (current), n (%) <0.001d

0= no suicidal ideation 16 (100%) 13 (100%) 0 (0%)

1=wish to be dead 0 (0%) 0 (0%) 2 (18.18%)

2= non-specific active suicidal thoughts 0 (0%) 0 (0%) 2 (18.18%)

3= active suicidal ideation with any method (not plan) without intent to act 0 (0%) 0 (0%) 2 (18.18%)

4= active suicidal ideation with some intent to act, without specific plan 0 (0%) 0 (0%) 3 (27.27%)

5= active suicidal ideation with specific plan and intent 0 (0%) 0 (0%) 2 (18.18%)

Intensity of ideation (current), mean ± SD 0 ± 0 0 ± 0 13.09 ± 3.39 <0.001d

Maximal lifetime SB severity, n (%) <0.001d

0= none 16 (100%) 11 (84.62%) 0 (0%)

1= nonsuicidal self-injurious behavior 0 (0%) 2 (15.38%) 2 (18.18%)

2= planning or preparation for attempt 0 (0%) 0 (0%) 0 (0%)

3= aborted or interrupted attempt 0 (0%) 0 (0%) 4 (36.36%)

4= suicide attempt 0 (0%) 0 (0%) 5 (45.45%)

1H-MRS proton magnetic resonance spectroscopy, C-SSRS Columbia Suicide Severity Rating Scale, CDRS-R Children’s Depression Rating Scale, Revised, Dep/SI−
depressed without suicidal ideation, Dep/SI+ depressed with suicidal ideation, HC healthy control, MDE major depressive episode, n/a not applicable, SB suicidal
behavior, SD standard deviation, SI suicidal ideation.
aThree-group comparisons (HC vs. Dep/SI− vs. Dep/SI+) on demographic characteristics were conducted using one-way ANOVAs for continuous variables and Fisher’s
exact tests for categorical variables.
bMissing two observations.
cMissing one observation.
dTwo-group comparisons (Dep/SI− vs. Dep/SI+) on clinical characteristics were conducted using independent samples t-tests for continuous variables and Fisher’s
exact tests for categorical variables.
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Among the Dep/SI+ participants, two (18.18%) had
current C-SSRS Severity of Ideation scores of 1, two
(18.18%) had scores of 2, two (18.18%) had scores of 3,
three (27.27%) had scores of 4, and two (18.18%) had
scores of 5. On the Intensity of Ideation subscale, scores
in the Dep/SI+ group ranged from 8 to 19 (mean score±
SD, 13.09 ± 3.39). No adolescents in the HC group had
any lifetime suicidal behavior (SB). Two participants in
the Dep/SI− group (15.38%) had prior nonsuicidal self-
injury; no Dep/SI− adolescents had any history of other
forms of SB. In the Dep/SI+ group, two (18.18%) had
prior nonsuicidal self-injury, four (36.36%) had a prior
aborted or interrupted attempt, and five (45.45%) had
made a suicide attempt.

Primary aim: group comparisons on 1H-MRS-measured
ACC metabolites
Estimated marginal means of ACC metabolites are

reported in Table 2. In the GLM analyses, there were no
significant main effects of group (HC vs. Dep/SI− vs.
Dep/SI+ ) on Glu (F2,32= 1.888, p= 0.168, pFDR= 0.178,
η2p = 0.106) or NAA (F2,32= 1.821, p= 0.178, pFDR=
0.178, η2p = 0.102). However, there were significant group
main effects for ACC Glx (F2,31= 5.003, p= 0.013,
pFDR= 0.026, η2p = 0.244) and the ACC NAA/Glx ratio
(F2,31= 7.473, p= 0.002, pFDR= 0.008, η2p = 0.325). In
post hoc pairwise contrasts (Fig. 2), Dep/SI− participants
had lower mean ACC Glx than Dep/SI+ adolescents
(padj= 0.012), although they did not differ from HC par-
ticipants (padj= 0.190), and HC and Dep/SI+ adolescents
also did not differ in mean ACC Glx (padj= 0.567). Dep/SI
+ adolescents had a significantly lower mean NAA/Glx
ratio than both Dep/SI− participants (padj= 0.002) and
HC adolescents (padj= 0.039), whereas Dep/SI− and HC
participants did not differ (padj= 0.649).

Secondary aim: relationships between glutamatergic
neurochemistry and suicidal ideation
In the multiple linear regression analyses (Table 3),

adjusting for age, sex, psychotropic medication, and
depression severity (adjusted CDRS-R total score), there
were no significant relationships between severity of SI
(C-SSRS Severity of Ideation subscale) and ACC Glu (b ̂=
2.486, p= 0.140, pFDR= 0.187), Glx (b ̂= 5.653, p= 0.032,
pFDR= 0.064), or NAA (b ̂=−0.262, p= 0.781, pFDR=
0.781). However, there was a significant negative rela-
tionship between SI severity and ACC NAA/Glx (b ̂=
−0.044, p= 0.003, pFDR= 0.012).
In separate multiple linear regression models, again

adjusting for age, sex, psychotropic medication, and
depression severity (adjusted CDRS-R total score),
there were no significant relationships between SI
intensity (C-SSRS Intensity of Ideation subscale) and
ACC Glu (b ̂= 0.655, p= 0.114, pFDR= 0.152) or NAA
(b ̂=−0.014, p= 0.952, pFDR= 0.952). There was a
significant positive relationship between SI intensity
and Glx (b ̂= 1.603, p= 0.013, pFDR = 0.026), as well as
a significant negative relationship between SI intensity
and ACC NAA/Glx (b ̂=−0.012, p= 0.001, pFDR=
0.004).

Exploratory sensitivity analyses
The ROC analysis indicated that ACC Glx, using a

cutpoint of ≥ 109.811, discriminated Dep/SI− participants
from Dep/SI+ participants (AUC= 0.864, SE= 0.083, p
= 0.005, pFDR= 0.005) with 90.00% sensitivity, 81.80%
specificity, a PPV of 81.82%, and an NPV of 90.00%. The
ROC analysis determined that the ACC NAA/Glx ratio,
using a cutpoint of ≤ 0.73995, discriminated Dep/SI−
participants from Dep/SI+ participants (AUC= 0.900, SE
= 0.066, p= 0.002, pFDR= 0.004) with 81.80% sensitivity,

Table 2 1H-MRS-measured anterior cingulate metabolites by group.

Metabolite Estimated marginal mean ±SE p (pFDR) η2p

HC

(n= 16)

Dep/SI−

(n= 13)

Dep/SI+

(n= 11)

Glu 85.04 ± 4.19 78.44 ± 3.71a 88.43 ± 3.93a 0.168 (0.178) 0.106

Glx 110.13 ± 6.10 95.64 ± 5.51b 120.13 ± 5.67a 0.013 (0.026) 0.244

NAA 85.74 ± 2.40 80.39 ± 2.12a 81.07 ± 2.25a 0.178 (0.178) 0.102

NAA/Glx 0.807 ± 0.033 0.852 ± 0.030b 0.686 ± 0.031a 0.002 (0.008) 0.325

General linear models (GLMs) were used to examine the main effect of group on metabolite concentrations, covarying for sex, age at scan, and psychotropic
medication use. p-values and reported effect sizes (η2p) are for main effect of group.
1H-MRS proton magnetic resonance spectroscopy, Dep/SI− depressed without current suicidal ideation, Dep/SI+ depressed with current suicidal ideation, Glu
glutamate, Glx glutamate+glutamine, HC healthy control, NAA N-acetylaspartate, pFDR p-value adjusted for multiple comparisons according to the false-discovery rate
procedure59, SE standard error of the mean.
aMissing one observation (Cramér-Rao lower bound > 20%).
bMissing two observations (Cramér-Rao lower bound > 20%).
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80.00% specificity, a PPV of 80.00%, and an NPV of
81.82%. ROC curves for the ACC Glx and NAA/Glx
sensitivity analyses are displayed in Supplemental Fig. S1.

Discussion
The ACC plays essential roles in cognitive and emo-

tional processes relevant to suicidal ideation and behavior.
Through its prefrontal and limbic projections, the ACC
mediates input from executive functions and motivational
drives39,60. The dorsal/caudal ACC has been implicated in
attentional and interpretive mechanisms used in evaluat-
ing internal and external stimuli61,62. The rostral (preg-
enual and subgenual) ACC, a portion of which was
sampled in our study, is involved in affective regulation
via inhibition of limbic and sympathetic responses to
negatively valent stimuli and emotional conflict43,62. This
latter ACC division, in conjunction with other areas of the
medial prefrontal cortex, also appears to be involved in
determining self-relevance of emotionally salient sti-
muli40,41. Encoding emotional valence involves implicit
cognitive associations63, which have been shown to
involve ACC activity in electroencephalographic63 and
functional MRI64 studies. Implicit associations to suicide-
and self-injury-related stimuli are stronger in adults65 and
adolescents66–68 with histories of suicidality, and experi-
mentally measured suicide- and self-injury-related impli-
cit associations predict future suicidal ideation and self-
harm in adolescents66,67,69. Altered rostral ACC activity
also has been linked to other characteristics of suicidal
individuals, including rumination and negative self-
referential thinking42–44. Moreover, task-related ACC
activation70–72 and functional connectivity to other
emotion-regulating regions71 differ between adolescent

Fig. 2 Anterior cingulate cortex (ACC) metabolite differences by group. a Glutamate+glutamine (Glx); b N-acetylaspartate/glutamate
+glutamine (NAA/Glx) ratio. General linear models tested main effects of group, covarying for age, sex, and psychotropic medication use. Estimated
marginal means and 95% confidence intervals for metabolites are displayed for each adolescent participant group (HC, healthy control, n= 16; Dep/
SI−, depressed without suicidal ideation, n= 13; Dep/SI+ , depressed with suicidal ideation, n= 11). p-values adjusted for multiple comparisons (padj)
are displayed for significant group differences in pairwise post hoc tests.

Table 3 Relationships between suicidal ideation and
1H-MRS-measured anterior cingulate metabolites.

Metabolite b̂ SE 95% CI for b̂ p (pFDR)

Severity of ideation

Glu 2.486 1.644 −0.863 to 5.834 0.140 (0.187)

Glx 5.653 2.518 0.518 to 10.788 0.032 (0.064)

NAA −0.262 0.936 −2.168 to 1.644 0.781 (0.781)

NAA/Glx −0.044 0.014 −0.072 to −0.016 0.003 (0.012)

Intensity of ideation

Glu 0.655 0.403 −0.167 to 1.476 0.114 (0.152)

Glx 1.603 0.607 0.365 to 2.841 0.013 (0.026)

NAA −0.014 0.231 −0.484 to 0.457 0.952 (0.952)

NAA/Glx −0.012 0.003 −0.018 to −0.005 0.001 (0.004)

Multiple linear regressions examining relationships of suicidal ideation severity
and intensity with 1H-MRS-measured ACC metabolites. Regression models
include sex, age at scan, psychotropic medication use, and depression severity
(adjusted CDRS-R total score). The unstandardized parameter estimate
(coefficient) for the SI variable (b̂), standard error of b̂, 95% confidence intervals
for b̂, and p-values for the regression relationship between the suicidal ideation
variable and the ACC metabolite are reported.
1H-MRS proton magnetic resonance spectroscopy, CI confidence interval, Glu
glutamate, Glx glutamate+glutamine, NAA N-acetylaspartate, pFDR p-value
adjusted for multiple comparisons according to the false-discovery rate
procedure59, SE standard error.
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suicide attempters and depressed non-attempters, sug-
gesting that suicidality may involve ACC functions dis-
tinct from those related to depressive mood states.
Spectroscopic studies comparing depressed and healthy

adolescents have found glutamatergic deficits in the
ACC33–35 and diminished NAA concentrations in ACC
and medial prefrontal cortex36, although, to our knowl-
edge, none have directly compared cortical neurochemical
profiles of suicidal and nonsuicidal youth. In adults, prior
1H-MRS studies have shown mixed findings on the
potential roles of cortical glutamate and NAA in suicid-
ality. Sheth et al.73 found no differences in Glu/H2O or
NAA/H2O concentrations in dorsal ACC and posterior
cingulate voxels between groups of military veterans with
and without suicidal behavior (SB). In the same sample,
Prescot et al.74 examined dorsal ACC metabolite con-
centrations in the overall sample, as well as in male and
female subgroups; no differences in NAA/Cr+PCr or
Glu/Cr+PCr were observed between veterans with and
without SB in the overall sample, or within either sex
group. Other 1H-MRS studies have examined potential
relationships between suicidality and cortical metabolism
in regions beyond the ACC. Jollant et al.32 utilized 1H-
MRS to examine metabolites in the right dorsolateral
prefrontal cortex (DLPFC) in healthy and depressed
adults, including those with historical SB. Although no
group differences survived correction for multiple com-
parisons, healthy control adults had lower Gln than both
nonsuicidal depressed and suicide attempter groups,
while NAA was lower in suicide attempters than in
healthy controls. Right DLPFC NAA concentrations cor-
related negatively with current psychological pain, which
persisted when controlling for various clinical character-
istics such as age, gender, and depression severity; addi-
tionally, psychological pain mediated the relationship
between DLPFC NAA and current SI32. Smesny et al.75

examined metabolite concentrations in adults with cluster
B and C personality disorders, conditions with increased
suicide risk, and in healthy comparators. The investigators
found increased right DLPFC Glu and decreased right
dorsal ACC NAA in cluster B patients, while cluster C
patients demonstrated decreased NAA in bilateral
DLPFC, left dorsomedial prefrontal cortex, and left dorsal
ACC voxels, as well as decreased bilateral DLPFC and left
dorsomedial prefrontal Glu75. By contrast, Rocha et al.31

found no difference in orbitofrontal cortical metabolite
concentrations between healthy adults and groups of
currently euthymic bipolar patients with and without
historical suicide attempts.
When considering our results in the context of these

earlier, disparate findings, it is important to note certain
methodological differences. First, less mature excitatory
circuitry in our younger sample may contribute to the
differences in metabolite measurements between groups

that we observed compared with prior adult studies.
Second, metabolite concentrations differ not only
between brain regions but also between heterogeneous
segments of a single structure; indeed, many studies that
sampled ACC voxels73–75 examined more dorsal aspects
of the ACC than our pregenual voxel. The pregenual ACC
is distinct in glutamatergic receptor density and micro-
architecture compared to other ACC subregions, and
prior 1H-MRS work has found the pregenual ACC to have
higher Glu and Gln concentrations than more caudal
subregions76. Furthermore, many prior studies have
referenced metabolite values to total creatine (Cr+PCr).
Total creatine has been found to differ in a variety of
neuropsychiatric disease states in both adults54,77 and
youth78,79. Thus, studies reporting metabolite concentra-
tions relative to Cr+PCr introduce this additional con-
found when comparing clinical and healthy groups, and
creatine-referenced metabolite values may not be directly
comparable to CSF-corrected absolute concentrations as
measured in our study.
Additionally, many prior studies classified patients on

the basis of having a history of SB. Despite the frequent
presence of prior SB in persons with current SI, it has not
been established whether the neurochemical correlates of
historical behavior are necessarily the same as those of
current ideation. The grouping of depressed participants
by presence or absence of current SI in our study is
unique, and future work with larger samples of current
ideators with and without prior SB is necessary to deter-
mine whether their neural metabolite profiles differ.
The most novel findings in our study were that the ACC

NAA/Glx ratio was reduced in Dep/SI+ adolescents
compared to those in the HC and Dep/SI− groups, cor-
related with current SI intensity and severity, and sig-
nificantly discriminated depressed adolescents with and
without current SI. Notably, these findings were observed
in the absence of significant group differences in NAA or
significant relationships between SI and NAA. This raises
important questions about the meaning of the NAA/Glx
ratio and the role that dysregulated NAA−glutamate
metabolism in this crucial brain region might play in
suicidality. NAA is found predominantly in neurons, and
1H-MRS-measured NAA values correspond to neuronal
density80,81. Diminished NAA has been found in disease
processes involving neuronal loss, and yet NAA con-
centrations also have been observed to recover, suggesting
that NAA may index both permanent and state-
dependent aspects of neuronal health, viability, and
activity80–82. The 1H-MRS-measured Glx concentration is
a composite of Glu and Gln signals, with γ-aminobutyric
acid (GABA) and glutathione also being minor fac-
tors80,81. Glutamate both functions as the main excitatory
transmitter and has roles in energy metabolism, while
glutamine serves predominantly as an intermediate for
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glutamate and GABA synthesis, being shuttled between
astrocytes and neurons in a form less reactive than these
transmitters81. Glx thus indicates the combined (neuronal
and glial) cytosolic pool of glutamate and glutamine that
can be used for both energetic and neurotransmission
functions80,81. Neuronal NAA can be converted to glu-
tamate via a series of reactions occurring in astrocytes,
oligodendrocytes, and neuronal mitochondria, and thus
NAA also may serve as a reservoir for the production of
glutamate and glutamine, particularly in conditions of
metabolic stress57. NAA may index ATP-dependent
metabolism, as well as this alternative glutamate-
dependent energy production, in neuronal mitochon-
dria82. Considering the complex relationships between
these metabolites, examining their concentrations relative
to one another, as indicated by a ratio, may offer insights
into how cycling and metabolism of glutamate, glutamine,
and NAA differ in pathological conditions57,58. Addi-
tionally, concentration ratios may be more sensitive to
metabolic derangements of related molecules than single
metabolite measurements alone55,83.
Local dysregulation in NAA and glutamatergic meta-

bolism, as indicated by low NAA/Glu or NAA/Glx con-
centrations (or, inversely, high Glu/NAA or high Glx/
NAA), has been identified as a potential marker of
damage to brain structures or networks that correspond
to the symptomatic processes specific to diverse neuro-
logic and psychiatric conditions. White matter Glu/NAA
was elevated in a large sample of patients with multiple
sclerosis compared to healthy controls, and this ratio
predicted longitudinal brain volume loss55. Hypothalamic
Glx/NAA also was higher in multiple sclerosis patients
than in healthy comparators, and was higher in patients
with more active disease, while Glx/NAA also corre-
sponded to symptom severity and fatigue58. Primary
motor cortex NAA/Glu correlated negatively with disease
duration in amyotrophic lateral sclerosis84. Glx/NAA was
elevated in epileptogenic foci relative to healthy brain
regions in partial epilepsy, and demonstrated utility in
identifying seizure foci56. In schizophrenia, hippocampal
Glx/NAA was increased compared to healthy adults83.
Significant positive correlations between Glx and NAA
concentrations were present in healthy controls but not in
schizophrenic patients in the hippocampus83,85 right
DLPFC86, and left striatum87, suggesting that the usually
linked metabolism of NAA and glutamate becomes
uncoupled in these regions in the disease state. Similarly,
right hippocampal Glu/NAA was elevated in posttrau-
matic stress disorder (PTSD) patients compared to
trauma-exposed controls, which correlated with re-
experiencing symptoms and trauma load in patients88. It
is notable that the symptomatology of both schizophrenia
and PTSD are characterized by deficits in processes
involving the hippocampus, and that the DLPFC and

striatum have been implicated previously in schizo-
phrenia. Altered NAA−glutamate metabolism in the
ACC, by comparison, might be expected to correspond to
conditions typified by impaired emotion-processing
functions, such as mood disorders and suicidality. In
one study, ACC NAA/Glx was lower in adults with
bipolar disorder compared to healthy controls, both
before treatment and after 12 weeks of lamotrigine89. This
suggests the need to examine ACC glutamatergic meta-
bolism in suicidal individuals in longitudinal studies, both
for changes that occur in conjunction with natural fluc-
tuations in suicidal risk and also for the effects (or lack
thereof) of anti-suicidal interventions.
Our study has several important limitations. The sample

was small, and larger, well-powered investigations are
necessary to replicate these findings before they can inform
clinical risk assessment and future interventions. It is par-
ticularly important for future studies to include adequate
numbers of both male and female participants across broad
neurodevelopmental trajectories. NAA and glutamate levels
have been found to differ between age and sex groups
among healthy individuals90, and patterns of suicidal
behavior differ by both age and sex. The limited research
examining sex-related differences in excitatory−inhibitory
neurochemistry in suicidality suggests potential distinctions
in ACC metabolism, but these remain poorly understood74.
Regarding our spectroscopic methodology, the 2-
dimensional J-averaged PRESS sequence used in this
study is optimized for glutamate signal acquisition at 3 T,
but it did not permit reliable measurement of Gln or
GABA. It is noteworthy that while we did find significant
group differences and a relationship with SI for ACC Glx,
there were no significant findings for Glu. This suggests the
possibility that glutamine, which accounts for the majority
of the non-Glu portion of the Glx signal, could be
responsible for the discrepancy between our Glu and Glx
findings. This is particularly relevant considering that the
pregenual ACC has a substantially higher ratio of Gln to
Glu than other subregions of the cingulate gyrus76. More-
over, preliminary data suggest that these related metabolites
are productive areas for further study of the intersection of
mood disorders and suicidality. For example, DLPFC Gln
was lower in healthy adults compared to depressed adults
with and without prior suicide attempts32, and ACC GABA
concentrations were found to be reduced in female veterans
with SB and correlated negatively with measures of sui-
cidality74. Further 1H-MRS studies are needed to under-
stand how the metabolically-linked GABA and glutamate
−glutamine systems relate to clinical features such as SI and
SB. TE-optimized PRESS approaches91 that allow accurate
measurement of Gln and MEGA-PRESS sequences
designed to quantify GABA92,93, in conjunction with the use
of higher field strengths, may yield more comprehensive
insights into how cortical excitatory−inhibitory metabolism
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corresponds to acute suicidality. Furthermore, the instru-
ment used for classifying participants and rating the
intensity and severity of SI in our study, the C-SSRS, was
designed to assess clinical suicide risk. Future investigations
should utilize dimensional measures assessing not only
overt measures of suicidality, but also specific cognitive and
emotional constructs associated with suicidal thoughts and
behaviors. Several promising adolescent studies have
examined the role of cortical neurochemistry in sympto-
matologic features relevant to suicidality. Anhedonia has
demonstrated strong associations with suicidality that are
independent of other depressive symptoms94–97. Pregenual
ACC Gln was lower in highly anhedonic depressed adults
than in low-anhedonia depressed and healthy individuals,
whereas ACC glutamate and NAA correlated with func-
tional MRI-measured ACC activation in response to emo-
tional stimuli in depressed persons98. By contrast, ACC
GABA was found to be significantly reduced in anhedonic
depressed youth compared to nonanhedonic depressed and
healthy adolescents37,38. However, the relationships
between constructs like anhedonia and complex behaviors
like SB remain poorly understood at present. Future
research must strive to delineate how symptom-related,
cognitive, and emotional functions mediate the relationship
between SB and observed neurochemical deficits in parti-
cular brain structures and circuits. Doing so will enable the
development of more comprehensive and sophisticated
models of the neurobiology of suicidality.
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