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ABSTRACT We report the isolation, identification, and assemblies of three antibiotic-
producing soil bacteria (Staphylococcus pasteuri, Peribacillus butanolivorans, and Micrococcus
yunnanensis) that inhibit the growth of Neisseria commensals in coculture. With pathogenic
Neisseria strains becoming increasingly resistant to antibiotics, bioprospecting for novel anti-
microbials using commensal relatives may facilitate discovery of clinically useful drugs.

Antibiotic resistance (AR) in Neisseria gonorrhoeae, the Gram-negative pathogen responsible
for the sexually transmitted infection gonorrhea, is a worldwide threat to public health.

Resistance to all therapeutics that have been recommended for empirical treatment has
emerged (1, 2), and only two drugs, namely, zoliflodacin (currently in phase 3 trials [3, 4])
and gepotidacin (in phase 2 trials [5, 6]), are in development as alternative options.
Bioprospecting for antibiotics produced by microbes in soil communities could uncover
novel inhibitory compounds against the gonococcus and other important human patho-
gens (7, 8). This approach can be implemented in undergraduate classrooms as an inquiry-
based exercise, which was previously demonstrated by the Small World Initiative (9, 10),
Tiny Earth (11, 12), and academic groups (13–16). Developed protocols screen for soil bacteria
that produce antibiotics effective against “safe” bacteria (biosafety level 1 [BSL1]), which may
also have inhibitory properties against pathogens within the same genus (e.g., ESKAPE patho-
gens [17, 18]). Here, we expand this methodology to Neisseria, using BSL1 commensals as
proxies for pathogens, and identify three soil microbes (WAM01, WAM04, and WAM06)
that inhibit commensal Neisseria growth as part of an undergraduate-level classroom exercise
in the Thomas H. Gosnell School of Life Sciences at the Rochester Institute of Technology (RIT)
(BIOL126-Introductory Biology Laboratory).

Soil samples were collected from Geneseo, New York (USA), and included sediment from
an agricultural drainage ditch located at Big Tree Farm (42.798,277.846) and soil from under
an oak tree at the end of Main Street (42.792, 277.815). From these samples, serial dilutions
were prepared on 50% tryptic soy agar (TSA), and individual colonies were isolated after 1
week of incubation at room temperature. Commensal Neisseria strains were obtained from
the Centers for Disease Control and Prevention (CDC) and Food and Drug Administration
(FDA) AR Isolate Bank Neisseria species matrix-assisted laser desorption ionization–time
of flight (MALDI-TOF) verification panel, including AR-0944 (Neisseria cinerea), AR-0951
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(Neisseria mucosa), and AR-0953 (Neisseria subflava), which were previously characterized
and their draft assemblies published (19). Commensal Neisseria strains were plated as a
lawn on 50% TSA and were subsequently inoculated with a patch (1 cm by 1 cm) of the soil
bacterial strains WAM01, WAM04, and WAM06. Resultant cocultures were incubated at 28°C
for 1 week, and the presence or absence of zones of inhibition (ZOIs) was recorded (Table 1
and Fig. 1). WAM06 produced a ZOI against all commensal Neisseria strains tested.

After incubation for 1 week at room temperature on 50% TSA, DNA was purified from
isolates using the Thermo Fisher Scientific PureLink genomic DNAminikit after lysis in Tris-EDTA
buffer with 0.5 mg/mL lysozyme and 3 mg/mL proteinase K. The Illumina Nextera XT kit was
used to prepare libraries, which were pooled and sequenced using a 600-cycle v3 cartridge
(2 � 300 bp) on the Illumina MiSeq platform at the RIT Genomics Core. Default parameters
were used for all analyses except where otherwise noted. Paired-end sequencing resulted in
an average of 3.13 6 0.77 million reads, with an average read length of 185.63 6 50.25 per
library. Library quality was assessed using FastQC v0.11.9 (20), and SPAdes v3.14.1 (21) was
used for de novo assembly. Assembly statistics were generated with QUAST (http://quast
.sourceforge.net/quast), excluding contigs of,500 bp, and are reported in Table 1. Open read-
ing frames (ORFs) were annotated using the GenBank Prokaryotic Genome Annotation
Pipeline (PGAP) v5.2 (22) (Table 1), which was also used to assign genera and species, as fol-
lows: WAM01, Staphylococcus pasteuri; WAM04, Peribacillus butanolivorans; WAM06,Micrococcus
yunnanensis. Further characterization of the anti-Neisseria compounds produced by the bac-
teria reported here will be reported in a future publication.

Data availability. The genome assemblies and raw reads are available in GenBank and
the SRA, respectively, under the accession numbers listed in Table 1. All code is accessible at
https://github.com/wadsworthlab/2022-soil-bacteria.
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