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NADPH oxidase is an enzyme that generates reactive oxygen species from oxygen and 
NADPH and is highly conserved in eukaryotes. In Fusarium graminearum, a series of 
different Nox enzymes have been identified. NoxA is involved in sexual development and 
ascospore production and, like NoxB, also contributes to pathogenicity. Both NoxA and 
NoxB are regulated by the subunit NoxR, whereas NoxC is usually self-regulated by 
EF-hand motifs found on the enzyme. In this study, we characterized another NADPH 
oxidase in F. graminearum, FgNoxD. In the FgNoxD deletion mutant, vegetative growth 
and conidia production were reduced, while sexual development was totally abolished. 
The FgNoxD deletion mutant also showed reduced resistance to cell wall perturbing 
agents; cell membrane inhibitors; and osmotic, fungicide, cold, and extracellular oxidative 
stress, when compared to the wild type. Moreover, in comparison to the wild type, the 
FgNoxD deletion mutant exhibited reduced virulence against the host plant. The FgNoxD 
deletion mutant produced less deoxynivalenol than the wild type, and the Tri5 and Tri6 
gene expression was also downregulated. In conclusion, our findings show that FgNoxD 
is involved in the survival against various stresses, conidiation, sexual development, and 
virulence, highlighting this enzyme as a new target to control the disease caused by 
F. graminearum.

Keywords: Fusarium graminearum, NADPH oxidase, virulence, sexual development, stress

INTRODUCTION

Fusarium graminearum is a homothallic ascomycete fungus that causes Fusarium head blight 
(FHB) in cereal crops worldwide (Leslie and Summerell, 2006). It produces deoxynivalenol 
(DON) which inhibits protein synthesis by binding to ribosomes, making it toxic to humans 
and animals (Desjardins and Proctor, 2007; Pestka, 2010; Chong et  al., 2020). Despite the 
major economic and health impacts caused by F. graminearum, sufficient strategies to control 
FHB have not been developed.

Reactive oxygen species (ROS) are highly reactive chemical molecules that play important 
roles in cell signaling, cell growth, and homeostasis (Dunand et  al., 2007; Veal and Day, 2011). 
ROS are generated by all aerobic organisms as byproducts of normal metabolism. Excess ROS, 
such as superoxide, hydrogen peroxide (H2O2), and hydroxyl radicals, can non-specifically and 
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rapidly react with other molecules including lipids, proteins, 
DNA, and carbohydrates (Gutteridge, 1994; Rodriguez and 
Redman, 2005). These reactions cause DNA mutation, lipid 
peroxidation, and protein oxidation, resulting in cellular 
dysfunction and apoptosis (Aguirre et  al., 2005; Halliwell and 
Gutteridge, 2015).

NADPH oxidases (Nox), a ROS-producing enzyme, is 
membrane-bound enzyme complex exposed to the extracellular 
space. This multicomponent Nox enzyme complex was first 
studied in human phagocytic cells, where it was found that 
NADPH is used as an electron donor and the electrons are 
transported through the membrane to convert oxygen to 
superoxide (Lambeth, 2004). In animal cells, Nox enzymes are 
linked to cell signaling, cell growth, and cell death (Sumimoto, 
2008; Brown and Griendling, 2009). In plant cells, Nox is 
implicated in the response to abiotic stresses, infection by 
pathogens, and polarized growth of root hairs. Additionally, 
Nox also acts as a secondary messenger for speedy transmission 
over long distance and in  local signaling (Torres et  al., 2002; 
Foreman et  al., 2003; Suzuki et  al., 2011; Lee et  al., 2020).

Nox enzyme have also been studied in fungi. Four different 
fungal Nox enzymes—NoxA (Nox1), NoxB (Nox2), NoxC 
(Nox3), and NoxD—have been characterized to date. The 
gh91phox protein homolog enzyme, NoxA, is involved in fruiting 
body formation in various filamentous fungi, including 
Aspergillus nidulans, Podospora anserina, and Neurospora crassa 
(Lara-Ortíz et al., 2003; Malagnac et al., 2004; Cano-Dominguez 
et  al., 2008). Furthermore, NoxA is also related to virulence, 
formation of sclerotia, and cellulose degradation (Giesbert 
et  al., 2008; Segmuller et  al., 2008; Brun et  al., 2009; Kim 
et  al., 2011; Yang and Chung, 2012). Another gh91phox protein 
homolog enzyme, NoxB, is necessary for host penetration in 
Magnaporthe oryzae and Botrytis cinerea, and ascospore 
germination in N. crassa and P. anserina (Malagnac et  al., 
2004; Egan et al., 2007; Cano-Dominguez et al., 2008; Segmuller 
et  al., 2008). Although many fungi, for example, M. oryzae 
and P. anserine, express the NoxC enzyme, little is known 
about this enzyme and its function, except for its regulatory 
subunits (Takemoto et  al., 2007).

In phagocytes, gh91phox binds to the p22phox protein, both 
of which are subunits of flavocytochrome b558, necessary for 
activation of the Nox enzyme. Moreover, the transmembrane 
protein also applies to Nox1, Nox3, and Nox4 (Nakano et  al., 
2008; Zana et  al., 2018; Makhezer et  al., 2019). In fungi, the 
functional orthologue of the p22phox protein was first identified 
in Sordaria macrospora which was named Pro41. In S. macrospora, 
Pro41 is required for fruiting body maturation (Nowrousian 
et al., 2007, 2012; Galhano et al., 2017). The membrane protein 
NoxD is highly homologous to the endoplasmic reticulum (ER) 
protein Pro41 in several fungi (Nowrousian et al., 2007; Lacaze 
et  al., 2015; Siegmund et  al., 2015). In B. cinerea, NoxA and 
NoxD interact with each other and are involved in pathogenicity, 
fusion of conidial anastomosis tube, and formation of sclerotia 
and conidia (Siegmund et  al., 2015).

Fusarium graminearum also expresses NoxA, NoxB, NoxC, 
and NoxD. Study of NoxA and NoxB in F. graminearum 
indicate that NoxA is involved in perithecia development 

and ascospore production, and both NoxA and NoxB contribute 
to virulence but are not associated with mycotoxin synthesis 
(Wang et  al., 2014). NoxC in F. graminearum is typically 
self-regulated by EF-hand motifs found on the enzyme, whereas 
NoxA and NoxB are regulated by the regulatory subunit 
NoxR (Heller and Tudzynski, 2011; Tudzynski et  al., 2012; 
Zhang et al., 2016). Although the Pro41 homolog gene NoxD 
is also found in F. graminearum, the function of the gene 
product has not yet been studied. Therefore, in this study, 
we  identified the location and characterized the functions 
of NoxD in F. graminearum (FgNoxD for F. graminearum 
NoxD). The study determined the phenotypic changes in 
conidial germination, vegetative growth, virulence, and 
mycotoxin synthesis to determine the biological functions 
of FgNoxD.

MATERIALS AND METHODS

Fungal Strains and Culture Media
Fusarium graminearum wild-type strain GZ3639 (Bowden and 
Leslie, 1999) and mutants were cultivated in media following 
the Fusarium laboratory manual (Leslie and Summerell, 2006). 
Conidia formation was induced in carboxyl methyl cellulose 
(CMC; Cappellini and Peterson, 1965) or yeast malt agar (YMA) 
medium (Harris, 2005), and fungal strains were cultivated in 
complete medium (CM). All strains were stored as agar block 
in 20% glycerol at −80°C.

Transformation
Targeted gene deletion and complementation were manipulated 
according to the split-marker recombination (SMR) strategy 
(Catlett et  al., 2003). For gene deletion, the 5' and 3' flankings 
of the target gene were amplified from GZ3639. Meanwhile, 
a hygromycin resistance cassette (HYG) was amplified from 
pIGPAPA (Horwitz et  al., 1999) using primer pairs. The three 
amplicons were mixed and fused using PCR. The final product 
for transformation was amplified during the third PCR step 
using nested primer pairs. To complement the gene deletion, 
a DNA fragment carrying the open read frame and native 
promoter of FgNoxD was fused with the geneticin resistance 
cassette (GEN) and amplified with pII99 through SMR (Namiki 
et  al., 2001). For transformation, protoplasts of GZ3639 were 
prepared and a previously described method was applied (Kim 
et  al., 2006; Li et  al., 2019). In brief, conidia were incubated 
in 50 ml of YPG (10 g/L of peptone, 3 g/L of yeast extract, 
and 20 g/L of glucose) with shaking at 200 rpm for 12 h at 
25°C. After that, the mycelia were harvested by filtration, then 
incubated in 35 ml of 1 M NH4Cl containing 15 mg/ml driselase 
(Sigma-Aldrich) to generate protoplast. The final PCR product, 
which carried a selectable marker, was incorporated directly 
into the protoplast. Transformants carrying selectable markers 
were selected on regeneration medium (1 g/L of casein, 1 g/L 
of yeast extract, 342 g/L of sucrose, and 15 g/L of micro agar) 
containing 75 μg/ml hygromycin or 75 μg/ml geneticin. The 
PCR primers used in this study are listed in Table  1.
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Quantitative Real-Time PCR
To validate the constructed mutant and differently expressed genes 
involved in DON production, quantitative real-time PCR (qRT-
PCR) was performed. The conidia of each strain (1 × 105 conidia/
ml) were cultivated in 20 ml of CM at 200 rpm and 25°C for 
3 days. Mycelia were harvested and ground using liquid nitrogen 
before the total RNA of each strain was extracted using the easy-
spin Total RNA Extraction Kit (iNtRON Biotechnology, Seongnam, 
Korea) following the manufacturer’s protocol. Next, cDNA was 
generated using the First Strand cDNA Synthesis Kit (TOYOBO 
Co., Osaka, Japan) following the manufacturer’s instructions. The 
synthesized cDNA of each strain was diluted to 100 ng/μl and 
2 μl of cDNA was used for qRT-PCR. The qRT-PCR conditions 
were 95°C for 5 min, followed by 40 cycles of 95°C for 5 s, 60°C 
for 10 s, and 72°C for 35 s. Relative gene expression was normalized 
to that of cyclophilin (CYP; Son et  al., 2013).

Mycelia Growth and Conidia Germination
The GZ3639, FgNoxD deletion mutant (ΔFgNoxD), and 
complementation (FgNoxD-C) strains were cultivated on potato 

dextrose agar (PDA), CM, minimal medium (MM), and YMA 
for 3 days at 25°C, after which the colony diameter of each 
strain was measured. The aerial mycelia growth of each strain 
was measured as previously described, with slight modifications 
(Nguyen et  al., 2011). Briefly, each strain was inoculated in 
CM in a test tube at 25°C for 3 days and aerial mycelial growth 
was measured. For conidial germination of each strain, conidia 
(1 × 105 conidia/ml) harvested from CMC were incubated in 
MM. The number of total conidia and germinated conidia 
were counted at 4, 8, and 12 h by light microscopy.

Perithecia Development
Perithecial production was induced as described in a previous 
study (Min et al., 2010). Each strain was inoculated onto carrot 
agar medium for 8 days at 25°C in the dark. Thereafter, the 
mycelia were removed with 1 ml of 2.5% Tween-20 and the 
plates were incubated under near-ultraviolet light (20 W, 50 
lux) for 10 days at 25°C. Perithecia and ascospores were observed 
and photographed using Moticam Pro S5 Lite camera (Motic, 
Barcelona, Spain).

Stress Tests
The role of FgNoxD in stress response was tested as described 
in previous studies with slight modifications. For the osmotic 
stress test, each strain was inoculated in MM supplemented 
with 1.4 M KCl and NaCl and cultivated for 5 days at 25°C, 
after which radial growth was measured (Gu et  al., 2015). 
Cold stress tests were performed as previously described (Li 
et  al., 2019). Briefly, conidia (1 × 103 conidia/ml) in distilled 
water were stored at 4°C for 6 days and 100 μl of each suspension 
was spread on PDA. The number of surviving spores was 
counted after 1 day. The cell wall and membrane integrity of 
each stain were tested on MM supplemented with 60 mg/L 
Congo red (CR; Sigma-Aldrich), 50 μg/ml calcofluor white 
(CFW; Sigma-Aldrich), and 0.01% of SDS. The colony diameter 
of each strain was measured after cultivation at 25°C for 3 days 
(Ram and Klis, 2006; Schroeder and Ikui, 2019). For the 
fungicide resistance test, mycelia from each strain were inoculated 
onto MM supplemented with 0.1–0.5 mg/L prochloraz fungicide 
and cultivated at 25°C for 5 days (Li et  al., 2019). Oxidative 
stress tests were performed using menadione (Katikireddy et al., 
2018; Majiene et  al., 2019; Funk et  al., 2021) and H2O2. Each 
strain was inoculated in MM supplemented with 1 or 3 mM 
menadione and cultivated at 25°C for 3 days. Different 
concentrations (1, 3, and 5 mM) of H2O2 were added to MM 
and mycelia plugs of each strain were cultivated at 25°C for 
1 day. Then mycelia plug were transmitted to a new CM and 
cultivated for another 3 days at 25°C to investigate the survival 
of each strain.

Lipid Body Staining
Lipid body staining was performed after treatment with cold 
stress. Briefly, conidia (1 × 106 conidia/ml) in distilled water were 
stored at 4°C for 1 day. The conidia were harvested by centrifugation 
and washed twice with phosphate-buffered saline (PBS). Thereafter, 
the lipid body in each strain was stained with a Nile Red 

TABLE 1 | Primers used for genetic manipulation in this study.

Primer name Sequence (5' → 3')

 FgNoxD deletion mutant

5'F primer AGTCAACCAACACCAGATCTGCC
5'F nested primer GTGGGCGGGAGGGAAAACC
5'R primer TGTAAGTGGCATGGAGGGAAGC
HYG F primer GGCTTGGCTGGAGCTAGTGGAGG
HYG R primer TAACTGGTTCCCGGTCG
3'F primer CTGGACGTTGTTTGGCTGTTTACC
3'R nested primer AGTTCCCCGAGCGCCAGG
3'R primer AGACAAGGAGCCCAGGGAACACT
HYG nestedF GATGTAGGAGGGCGTGGATATGT
HYG nestedR GAACCCGCTCGTCTGGCTAAGA

 FgNoxD complemented strain

5'F primer CTACCCGCCCATGCTTCT
5'F nested primer CGAGGTCAACACCAATTACCA
5'R primer TGCACGAGATTGTCCGCC
GEN F primer TTATCTTTGCGAACCCAGGG
GEN R primer CGACAGAAGATGATATTGAAGG
3'F primer CTGGACGTTGTTTGGCTGTTT
3'R primer GGCATATTTGATGATAGCGCC
3'R nested primer GCCACACAAGTGGACACC
5'R nested primer TCTCCTGTCATCTCACCTTG
3'F nested primer TCCTGAACACCATTTGTCTCAAC

 FgNoxD qRT-PCR

FgNoxD_F GGCTGCCATCGAGTGCTTCTTC
FgNoxD_R AACCAGCGACGAAATTAAGAGGCC

 Tri5 qRT-PCR

Tri5_F GACCCTAAGCGACTACAG
Tri5_R GTGCTACGGATAAGGTTC

 Tri6 qRT-PCR

Tri6_F AGCGCCTTGCCCCTCTTTG
Tri6_R AGCCTTTGGTGCCGACTTCTTG

 CYP qRT-PCR

CYP_F TCAAGCTCAAGCACACCAAGAAGG
CYP_R GGTCCGCCGCTCCAGTCT
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solution consisting of 0.01 mg/ml Nile Red Oxazone (Sigma-
Aldrich; Seong et  al., 2008; Jung et  al., 2018). The samples were 
incubated for 15 min at room temperature and washed twice 
with PBS. Fluorescence emitted by the lipid body was observed 
using Olympus BX50 microscope (Olympus, Tokyo, Japan).

Virulence Test and DON Production
Virulence of each strain was evaluated using the wheat cultivar, 
Geumgangmil, and the rice cultivar DongjinByeo. For the 
virulence tests on wheat, plant at two different stages were 
inoculated. Before inoculating each strain on coleoptile, wheat 
seeds were germinated on moist filter paper at 25°C. Then 
top 2–3 mm of the coleoptiles were removed and 2 μl of conidia 
suspension (1 × 106 conidia/ml in 0.01% Tween-20) was inoculated. 
The coleoptiles were then cultivated in a growth chamber at 
25°C with 100% relative humidity and 12 h of light per 24 h. 
The virulence of each strain was assessed by measuring the 
length of the lesion on the diseased stem 10 days after inoculation 
(Wu et  al., 2005). For wheat head inoculation, 10 μl of conidia 
suspension (1 × 106 conidia/ml in 0.01% Tween-20) was inoculated 
into the center of each spikelet. Spikelet exhibiting FHB symptoms 
were counted 14 days after inoculation. The rachis of each wheat 
head were also examined (Lee et  al., 2009). For rice head 
inoculation, rice heads were dipped into suspensions of each 
strain (1 × 105 conidia/ml in 0.01% Tween-20) for 30 s and 
individually sealed in plastic bags for 72 h. The infected rice 
heads were then placed in a greenhouse and rice exhibiting 
FHB symptoms were counted after inoculation (Jung et al., 2018).

The production of DON was evaluated as described in a 
previous study (Ponts et al., 2006). Briefly, conidia of each strain 
were cultivated in 20 ml of GYEP medium (10 g/L glucose, 1 g/L 
yeast extract, and 1 g/L peptone) supplemented with or without 
1 mM of H2O2 for 5 days at 200 rpm and 25°C. DON concentrations 
were determined using an enzyme-linked immunosorbent assay 
kit (CUSABIO, College Park, MD, United  States) following the 
manufacturer’s instructions (Yoshizawa et  al., 2004; Jung et  al., 
2018; Xu et  al., 2018). Furthermore, mycelia were cultured with 
same method to detect the transcript levels of Tri5 (Maier et al., 
2006) and Tri6 (Nasmith et  al., 2011) genes.

Statistical Analysis
Statistical differences of mycelial growth, cold stress, cell wall, 
and membrane stress tests, and virulence were examined by 
parametric one-way analysis of variance using R software (version 
4.0.2). Additionally, statistical differences in osmotic stress resistance, 
DON production, and qRT-PCR were examined using t-test.

RESULTS

Transformation and Phylogenetic Analysis 
of FgNoxD
The gene sequence of FgNoxD (FGSG_01268) was acquired 
from National Center for Biotechnology Information database1 

1 https://www.ncbi.nlm.nih.gov

using the BcNoxD protein sequence of B. cinerea. FgNoxD, 
which contains 1709 bp with two introns, is predicted to 
encode a protein with 146 amino acids. Phylogenetic analysis 
and protein alignment indicated that NoxD was highly 
conserved in eukaryote (Figure  1A; Supplementary  
Figure S1).

To characterize the functions of FgNoxD, the FgNoxD 
gene was replaced with a constitutively expressed HYG 
cassette via SMR (ΔFgNoxD). To verify whether the observed 
changes found in the deletion mutant were caused by gene 
defection, FgNoxD was reintroduced at an alternate site in 
the deletion mutant (FgNoxD-C; Figure  1B). qRT-PCR 
showed that the transcripts of FgNoxD were completely 
abolished in the deletion mutant but was recovered in 
FgNoxD-C (Figure  1C).

Effects of FgNoxD on Normal Mycelia 
Growth, Conidia Production, and Sexual 
Development
Compared to GZ3639 and FgNoxD-C, ΔFgNoxD showed 
significantly reduced mycelia growth and aerial hyphae growth 
(Figures  2A,B). Although the conidial germination and 
morphology were not significantly different between GZ3639 
and ΔFgNoxD, conidia production was significantly reduced 
in ΔFgNoxD (Table  2). Moreover, ΔFgNoxD completely lost 
self-fertility and did not form any initial perithecia structures 
(Figure  2C).

Effects of FgNoxD on Cell Wall and 
Membrane Integrity and Oxidative Stress 
Resistance
To confirm the role of FgNoxD in resistance to various 
stresses, a series of abiotic stress resistances were tested. 
ΔFgNoxD showed significantly reduced resistance to osmotic 
stress when supplied with 1.4 M KCl or 1.4 M NaCl compared 
to the wild type (Figure  3A). ΔFgNoxD also showed a 
significantly lower survival rate under cold condition compared 
to the wild-type and complemented strains (Figure  3B). In 
cell wall integrity test, ΔFgNoxD showed a significantly 
reduced inhibition rate compared to the wild type not only 
in CR supplemented medium but also in CFW supplemented 
medium. ΔFgNoxD also displayed reduced resistance to SDS, 
which disrupts cell membrane integrity (Figure 3C). Compared 
to the wild type, ΔFgNoxD also showed significantly reduced 
resistance to prochloraz, a fungicide which target the cell 
membrane (Figure  3D). In addition, the lipid body of 
ΔFgNoxD was reduced under cold condition (Figure  4). 
Treatment with menadione showed no significantly difference 
between deletion mutant and wild type (Figure  5). When 
H2O2 was added to the medium, there was no difference 
between the deletion mutants and the wild type. However, 
when these strains without mycelium growth (Figure  6A) 
were transferred to another normal CM, it could be  seen 
that, contrary to the wild type, mycelium growth could not 
be  observed in the deletion mutants, that means H2O2 was 
lethal to the deletion mutant (Figure  6).
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FgNoxD Is Required for Virulence
The virulence of the deletion mutant was reduced compared 
with that of the wild type. Compared to the wild type, the 

lesion length on coleoptile was significantly reduced when 
coleoptile was inoculated with the deletion mutant (Figure 7A). 
FHB symptom in wheat heads and rachis inoculated with the 
deletion mutant were also significantly reduced (Figure  7B). 
The deletion mutant showed significantly reduced disease severity 
compared to the wild-type and complemented strains 
(Figure  7C).

FgNoxD Is Required for DON Production
There was no significant difference between the deletion mutant 
and wild-type strains with respect to DON production when 
they were cultivated in GYEP medium. However, when the 
medium was supplemented with H2O2, the deletion mutant 
showed reduced DON production compared to the wild type 
(Figure 8A). The transcript levels of both Tri5 and Tri6 showed 
no significantly differences between ΔFgNoxD and the wild 
type in GYEP medium but were significantly reduced in 
ΔFgNoxD compared to the wild type in the medium with 
H2O2 (Figures  8B,C).

DISCUSSION

The multicomponent Nox reduces molecular oxygen to 
superoxides in a stepwise manner, leading to the production 
of ROS (Lambeth, 2004). In fungi, these multicomponent 
enzymes are involved in virulence and differentiation (Malagnac 
et  al., 2004; Egan et  al., 2007; Takemoto et  al., 2007; Giesbert 
et  al., 2008). Moreover, previous studies in B. cinerea revealed 
that NoxD is involved in vegetative differentiation, colonization 
of host tissue, and oxidative stress resistance (Siegmund et  al., 
2015). Similar to previous studies on NoxD, our current study 
showed that FgNoxD in F. graminearum is involved in normal 
vegetative growth, virulence, asexual development, and resistance 
to various stressors.

Sexual development in F. graminearum is a vital factor that 
leads to its genetic diversity and adaptability in nature (Lee 
et  al., 2011; Ni et  al., 2011; Li et  al., 2019). Sexual development 
is also a central strategy to survival in soil or host plant debris 
in the fields during winter (Guenther and Trail, 2005). Our 
study showed that ΔFgNoxD completely lost sexual development 
and also showed reduced resistance to cold stress (Figures  2C, 
3B). These results suggest that FgNoxD plays an important role 
in F. graminearum survival during winter. The accumulated of 
lipid bodies act as reserves for perithecium development (Guenther 
et  al., 2009; Son et  al., 2011). Moreover, lipids are known to 
be  involved in cold tolerance and survival in fungi (Istokovics 
et  al., 1998). Our data also showed that lipid accumulation in 
ΔFgNoxD was reduced compared to the wild-type strain 
(Figure  4), which might have resulted in the abolishment of 
sexual development and reduction in cold stress resistance.

The fungal cell wall is an essential component with great 
plasticity that plays a vital role in normal cell growth and 
protection of cells from osmotic stress (Gow et  al., 2017; 
Garcia-Rubio et al., 2019). ΔFgNoxD showed reduced vegetative 
and aerial hyphae growth (Figures 2A,B) and reduced resistance 
to osmotic stress compared to the wild type (Figure  3A). 

A

B

C

FIGURE 1 | FgNoxD amino sequence phylogenetic tree and gene 
manipulation. (A) Phylogenetic analysis of FgNoxD protein. All amino acid 
sequences were aligned using ClustalW which built-in MEGA X (version 6.0). 
The phylogenetic tree analyses were performed using the method of Maximum 
likelihood (ML). (B) Homologous recombination for construction of FgNoxD 
deletion and complementation constructs. Complementation strain was created 
using the ΔFgNoxD-3. (C) Relative expression levels of FgNoxD in GZ3639, 
ΔFgNoxD, and FgNoxD-C. Error bars indicate standard errors from four 
repeated experiments with three biological replications. Asterisks indicate value 
of p (NS, no significance; ***p < 0.001) after comparison with Welch’s t-test. 
HYG, hygromycin resistance cassette and GEN, geneticin resistance cassette.
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ΔFgNoxD was more sensitive to cell wall perturbing factor 
compared to the wild-type and complemented strains (Figure 3C), 
leading to the defects in vegetative growth and osmotic stress 
in the mutant. In addition, these results showed that FgNoxD 
plays a pivotal role in cell wall integrity in F. graminearum.

The fungal cell membrane is also an important component 
that is enriched with diverse lipids, such as sphingolipids and 
sterols (Sant et al., 2016). These lipids regulate fungal pathogenicity 
through lipid–protein and lipid–lipid interactions (Rella et  al., 
2016). In our study, ΔFgNoxD showed significantly reduced 
fungicide resistance compared to the wild type when the medium 
was supplemented with prochloraz, a fungicide that targets the 
fungal cell membrane. On the other hand, cell membrane also 

involved in response to osmotic stress (You et al., 2012; Freitag 
et al., 2014; Ren et al., 2019). The results showed that ΔFgNoxD 
was more sensitive to osmotic stress as well as cell membrane 
inhibitors than the wild-type and complemented strains 
(Figures  3A,C). Furthermore, lipid accumulation in ΔFgNoxD 
was significantly reduced (Figure  4). These results suggested 
that FgNoxD plays an important role for cell membrane integrity, 
and is tightly linked to virulence in F. graminearum (Figure 7).

The virulence of F. graminearum against the host plant can 
be ascribed to many factors, including resistance to ROS produced 
by the host plant and biosynthesis of trichothecenes (Boenisch 
and Schafer, 2011; Barna et  al., 2012; Mentges and Bormann, 
2015). ROS is a common by-product of both eukaryotic and 

A

C

B

FIGURE 2 | Fungal growth and sexual development GZ3639, ΔFgNoxD, and FgNoxD-C. (A) The growth of GZ3639, ΔFgNoxD-3, ΔFgNoxD-4, and FgNoxD-C on 
potato dextrose agar (PDA), complete medium (CM), minimal medium (MM), yeast malt agar (YMA) for 3 days at 25°C. Colony diameters of the strains were 
measured. Error bars represent the SD from five replicates. (B) Aerial hyphae growth of the strains on CM for 3 days. Colony height of the strains was measured. 
Error bars represent the SD from three replicates. (C) Sexual development induced on carrot agar (CA) for 10 days at near UV. Perithecia formation and ascospores 
were observed after 10 days. White bar = 10 μm; Black bar = 1 mm. Values with different letters are significantly different according to Tukey’s test ( p < 0.001).
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prokaryotic organisms (Aguirre et  al., 2005). ROS has a well-
established damaging effect on cell components and are commonly 
used in plant defense systems (Jones and Dangl, 2006; Halliwell 
and Gutteridge, 2015). When plants recognize a pathogen, plant 
cells are capable of producing a burst of ROS, initially comprising 
H2O2, which can react with the proteins, DNA, and lipids of the 

pathogen to accelerate cell death (Sharma and Davis, 1997; O’Brien 
et  al., 2012). Therefore, fungi must deactivate ROS produced by 
plants for successful plant infections. In our study, ΔFgNoxD 
showed reduced resistance to oxidative stress compared to the 
wild-type and complemented strains (Figure  6). The production 
of DON, which is an important virulence factor in F. graminearum, 

TABLE 2 | Asexual development and conidia production.

Strain Germination rate (%)a

Conidia morphologyb

Conidia production 
(No./ml)c

Length (μm) Width (μm) No. of septa

GZ3639 38 Ad 51 A 7.0 A 4.5 A 2.1 × 106 A
ΔFgNoxD-3 39 A 50 A 7.1 A 4.1 A 6.9 × 105 B
ΔFgNoxD-4 40 A 50 A 7.0 A 4.2 A 5.7 × 105 B
FgNoxD-C 39 A    49 AC 7.1 A 4.3 A    1.5 × 106 AB

aGermination rate measured 8 h after inoculation in MM broth medium.
bThirty conidia harvested from YMA for each strain were observed by microscopy.
cProduced conidia were evaluated by counting the number of conidia produced in carboxyl methyl cellulose medium.
dValues within a column with different letters are significantly different (p < 0.05) based on Tukey test.

A C

B D

FIGURE 3 | Resistance of GZ3639, ΔFgNoxD, and FgNoxD-C to various stresses. (A) Osmotic stress: strain was cultured in MM supplemented with 1.4 M KCl 
and NaCl for 5 days. Error bars represent the SE from five replicates. (B) Cold stress: 103 conidia/ml of each strain were stored at 4°C for 6 days in distilled water. 
One hundred microliter of each conidia suspension was spread onto PDA and the survived spore was counted after 1 day. Error bars represent the SD from five 
replicates. (C) Cell membrane and cell wall stress test. All strains were cultured in MM without or with 60 mg/L congo red (CR), 50 μg/ml calcofluor white (CFW), 
0.01% SDS for 3 days. Error bars represent the SD from five replicates. Values with different letters are significantly different according to Tukey’s test ( p < 0.001). 
(D) Fungicide test: the strains were inoculated in MM containing different concentration of prochloraz for 5 days at 25°C. This experiment was repeated five times.
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is triggered by H2O2 (Proctor et al., 1995; Audenaert et al., 2010). 
The amount of DON production triggered by H2O2 was reduced 
in ΔFgNoxD compared to the wild type (Figure 8A). Meanwhile, 
when exposed to H2O2, the expression levels of Tri5 and Tri6 
were all significantly decreased in ΔFgNoxD compared to the 
wild-type and complemented strains (Figures 8B,C). In summary, 

FIGURE 4 | Accumulated lipid body in GZ3639, ΔFgNoxD, and FgNoxD-C. 
Conidia suspension of GZ3639, ΔFgNoxD, and FgNoxD-C (1 × 106 conidia/ml 
in distilled water) were store at 4°C for 1 day and stained with Nile Red. White 
arrow depicts accumulated lipid body. Scale bar = 10 μm.

FIGURE 5 | Resistance of GZ3639, ΔFgNoxD, and FgNoxD-C to 
menadione. Fusarium graminearum strain was cultured on MM supplemented 
with different concentration of menadione for 3 days at 25°C. This experiment 
was repeated five times.

A

B

FIGURE 6 | The effect of H2O2 on survival of GZ3639, ΔFgNoxD, and 
FgNoxD-C. (A) All strains were cultured in MM supplemented with different H2O2 
concentrations for 1 day. (B) Strains from media containing 3 or 5 mM H2O2 were 
cultured for 3 days. The red circles indicate areas of growing mycelium.

A

B

C

FIGURE 7 | Virulence of GZ3639, ΔFgNoxD, and FgNoxD-C. (A) Wheat 
coleoptiles were inoculated with 2 μl conidial suspension (1 × 106 conidia/ml in 
0.01% Tween-20), and lesion length was measured for at least 10 wheat 
coleoptiles at 10 dpi. This experiment was repeated three times. (B) Flowering 
wheat heads were inoculated with 10 μl conidial suspension (1 × 106 conidia/
ml in 0.01% Tween-20) and observed at 14 dpi. Disease index was 
determined from the number of symptomatic spikelets per wheat head. At 
least 14 wheat heads inoculated with F. graminearum strain were examined in 
addition to the wheat head rachis. (C) Flowering rice heads were dipped into 
conidial suspension (1 × 105 conidia/ml in 0.01% Tween-20) for 30 s and 
symptomatic rice grains per rice head were examined at 14 dpi. Disease 
severity was determined from the number of symptomatic grains per rice 
head. This experiment was repeated three times. Values with different letters 
are significantly different according to Tukey’s test ( p < 0.001).
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the reduced virulence of ΔFgNoxD in host plants may be a result 
of reduced resistance to oxidative stress and DON biosynthesis.

In this study, we  identified that FgNoxD plays an important 
role in the virulence of F. graminearum. The loss of virulence 
in ΔFgNoxD could be  due to reduced mycelia growth, cell wall 
and membrane integrity, and resistance to ROS. FgNoxD 
contributed to the spread of the infected F. graminearum 
throughout the entire spike (Figure  7B). In addition, FgNoxD 
also plays an important role in sexual development and conidial 
production (Table 2). Therefore, understanding the role of FgNoxD 
may provide a new way to control FHB in the field. This study 
expands our knowledge of the Nox family in F. graminearum, 
and future studies will allow further dissection the role of FgNoxD 
and interaction with other Nox family members in F. graminearum.
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