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Ballistic superconductivity and tunable π–junctions
in InSb quantum wells
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Planar Josephson junctions (JJs) made in semiconductor quantum wells with large spin-orbit

coupling are capable of hosting topological superconductivity. Indium antimonide (InSb) two-

dimensional electron gases (2DEGs) are particularly suited for this due to their large Landé

g-factor and high carrier mobility, however superconducting hybrids in these 2DEGs remain

unexplored. Here we create JJs in high quality InSb 2DEGs and provide evidence of ballistic

superconductivity over micron-scale lengths. A Zeeman field produces distinct revivals of

the supercurrent in the junction, associated with a 0−π transition. We show that these

transitions can be controlled by device design, and tuned in-situ using gates. A comparison

between experiments and the theory of ballistic π-Josephson junctions gives excellent

quantitative agreement. Our results therefore establish InSb quantum wells as a promising

new material platform to study the interplay between superconductivity, spin-orbit

interaction and magnetism.
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Two-dimensional electron gases (2DEGs) coupled to
superconductors offer the opportunity to explore a variety
of quantum phenomena. These include the study of novel

Josephson effects1, superconducting correlations in quantum
(spin) Hall systems2–7, hybrid superconducting qubits8,9, and
emergent topological states in semiconductors with strong spin-
orbit interaction (SOI)10–13. Topological superconductivity in
such 2DEGs can be realized using planar Josephson junctions
(JJs), where the combined effect of SOI and a Zeeman field is
known to significantly alter the current-phase relation14–16. In
particular, one expects a complete reversal of the supercurrent
(i.e., a π–JJ)17–19 when the Zeeman and Thouless energy of the
system become comparable. It was shown recently that such a
0–π transition in a 2D system is in fact accompanied by a
topological phase transition12,13,20,21. This, combined with the
promise of creating scalable topological networks22–24, provides a
strong motivation to study induced superconductivity in 2DEGs.

Key requirements for the semiconductor include low disorder,
large SOI and a sizable Landé g-factor, combined with the ability
to grow it on the wafer scale. InSb satisfies all of these require-
ments25–28 and has emerged as a prime material candidate for
engineering topological superconductivity, as evident from
nanowire-based systems29,30. However, despite significant pro-
gress in the growth of InSb 2DEGs31,32, material challenges have
prevented a systematic study of the superconducting proximity
effect in these systems.

Here, we overcome these issues and reliably create JJs, thus
providing evidence of induced superconductivity in high quality
InSb quantum wells. The JJs support supercurrent transport over
several microns and display clear signatures of ballistic super-
conductivity. Furthermore, we exploit the large g-factor and gate
tunability of the junctions to control the current-phase relation,
and drive transitions between the 0 and π-states. This control
over the free energy landscape allows us to construct a phase
diagram identifying these 0 and π-regions, in agreement with
theory.

Results
Induced superconductivity in InSb 2DEGs. The JJs are fabri-
cated in an InSb 2DEG wafer grown by molecular beam epitaxy,
with a nominal electron density n= 2.7 × 1011 cm−2 and mobility
μ ≈ 150,000 cm2V−1s−1, which corresponds to a mean free path
le ≈ 1.3 μm. Figure 1a shows a cross-sectional illustration and
scanning electron micrograph of a typical JJ. Following a wet etch
of the 2DEG in selected areas, NbTiN is deposited to create side-

contacts to the 2DEG, thus defining a JJ of width W and length L.
Prior to sputtering NbTiN, an in-situ argon plasma cleaning of
the exposed quantum well is performed in order to obtain good
electrical contacts. A metal top-gate, deposited on a thin dielectric
layer is used to modify the electron density in the JJ. Details of the
device fabrication and wafer growth can be found in the Methods
section.

The junctions are measured using a quasi-four terminal
current-biased circuit (Fig. 1a) at a temperature of 50 mK. We
observe a clear supercurrent branch with zero differential
resistance, dV/dI, followed by a jump to the resistive branch at
switching current, Is. In small perpendicular magnetic fields, Bz,
Fraunhofer-like interference patterns are observed, as seen in
Fig. 1b. The magnitude of supercurrent is controlled using the
gate (Fig. 1c). Lowering the gate voltage, Vg, leads to a reduction
of the electron density in the 2DEG and therefore to a
suppression of Is and an increase in the normal state resistance,
Rn. In addition, we observe multiple Andreev reflections
indicating an induced superconducting gap of 0.9 meV, and
excess current measurements allow us to estimate transparencies
in the range of 0.6–0.7 (representative data are provided in the
Supplementary Note 2).

Ballistic superconductivity. Studying JJs of varying lengths
(L= 0.7–4.7 μm), we gain insight into the transport regime. These
devices fall in the long junction limit, since their lengths exceed
the induced superconducting coherence length of around 500 nm
(see Supplementary Note 2). In this limit the product of the cri-
tical current, Ic, and Rn is proportional to the Thouless energy33,
ETh= ℏvFle/2L2, where vF is the Fermi velocity in the 2DEG. Thus,
for ballistic (diffusive) transport where le= L (le < L), we expect
IcRn to scale as 1/L (1/L2). In our experiments we measure Is, but
expect it to be close to Ic, since the Josephson energy (≈20 K)
is significantly larger than the fridge temperature (≈50 mK).
Figure 1d shows IsRn for a set of JJs. We find a 1/L scaling (black
dots) indicative of ballistic superconductivity, with deviations
only for the longer (L ≥ 2.7 μm) junctions. Such a 1/L dependence
was predicted decades ago34 but has only recently been experi-
mentally observed over micron-scale lengths in clean graphene-
based JJs35,36. To confirm the scaling arguments we also include
data from a lower mobility wafer (see Supplementary Note 1)
with le ≈ 0.5 μm (red dots) and find a 1/L2 scaling, consistent with
diffusive behavior. In the remainder of this work we focus on JJs
fabricated on the high mobility wafer.
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Fig. 1 Ballistic superconductivity in InSb 2DEGs. a Cross-sectional schematic and false-colored scanning electron micrograph (along with a measurement
schematic) of a top-gated JJ of widthW and length L. b Differential resistance, dV/dI, versus perpendicular magnetic field, Bz, and current bias, I, displaying
a Fraunhofer-like interference pattern for a JJ with W= 9.7 μm, L= 1.1 μm. White line indicates the magnitude of the switching current, Is, at zero magnetic
field. c dV/dI as a function of I and gate voltage, Vg, for the same JJ, showing gate control of Is. d Length dependence of IsRn for JJs on a high mobility (black
dots) and low mobility (red dots) wafer, obtained at Vg= 0 V. Dashed lines are 1/L and 1/L2 fits to the data, indicating ballistic and diffusive transport,
respectively
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0–π transitions in Josephson junctions. Using these ballistic
junctions, we now explore their response to a Zeeman field. The
theory of JJs with large SOI subjected to a magnetic field has been
discussed extensively14,17,20. Below we briefly describe the
essential elements of the physical picture. At zero B the Fermi
surfaces are split due to the Rashba SOI (solid lines of Fig. 2a
inset). The magnetic field then splits the bands by the Zeeman
energy, EZ= gμBB, leading to a shift in the Fermi surfaces by
±δk/2. The depicted shift of the Fermi surfaces assumes that the
spin-orbit energy dominates over the Zeeman energy, which is
indeed the case for the measured JJs (see Supplementary Note 3
for a detailed discussion). Therefore, Cooper pairs (electrons with
opposite momentum and spin) now possess a finite momentum,
given by kF ⋅ δk= EZ(m*/ℏ2), where kF is the Fermi momentum
and m* the effective mass. This translates to a phase acquired by
the superconducting order parameter along the direction of cur-
rent flow, Ψ(r) ∝ cos(δk ⋅ r)37–39. Depending on the length of the
Cooper pair trajectories, |r|, the order parameter is either positive
or negative, corresponding to the ground state of the JJ being at 0
or π superconducting phase difference, respectively. This oscilla-
tion of the order parameter results in a modulation of the critical
current Ic ∝ |Ψ|, where a minimum of Ic is expected whenever
the order parameter switches sign14,15. Taking only trajectories
perpendicular to the contacts δk ¼ δkbx; kF ¼ kFbxð Þ, a JJ with
length L will display minima in Ic when Lδk= (2N+ 1)π/2, with
N= 0, 1, 2... The condition for the first minimum (N= 0) can be
expressed as a resonance condition in terms of the Zeeman and
ballistic Thouless energy as EZ= πETh giving:

gμBB ¼ π
�h2

ffiffiffiffiffiffiffiffi

2πn
p

m�2L
: ð1Þ

The 0–π transition therefore depends on three experimentally
accessible parameters: (1) applied magnetic field, (2) length of the
JJ, and (3) carrier density. In the following, we demonstrate
independent control of each of these parameters, allowing for a
complete study of the free energy landscape of the junctions.

Magnetic field-driven 0–π transitions. We start by varying By,
while n (controllable by Vg) and L remain fixed. The orientation of
the magnetic field reflects the Fermi surfaces described, and avoids
unwanted geometric effects40. Figure 2a shows the expected
oscillation of Is with increasing By, displaying two distinct minima
at By= 470mT and By= 1250mT (see Supplementary Note 4 for
details about magnetic field alignment). This behavior is consistent
with a magnetic field-driven 0–π transition, as discussed above,
where the first (second) minimum corresponds to a transition of
the JJ state from 0 to π (π–0). This interpretation is corroborated
by the occurrence of the second minimum at a field value, which is
approximately three times larger than the first. Note that this is
incompatible with a Fraunhofer interference pattern that might
arise from the finite thickness of the 2DEG. Furthermore, taking
into account the gate dependence of the transition and other
geometric considerations (discussed in detail in the Supplemen-
tary Note 5) allows us to conclusively rule out such a mechanism
for the supercurrent modulation.

Next, we investigate how the length of the JJ influences B0-π, the
magnetic field at which the transition occurs. Figure 2b presents the
Is oscillation for JJs with four different lengths, showing that B0-π is
systematically reduced for increasing L. Plotting B0-π with respect to
1/L (inset of Fig. 2b), we find a linear dependence as expected from
Eq. (1). The transition points are therefore determined by the
ballistic ETh, consistent with the conclusions from Fig. 1d. Finally,
we check the dependence of the transition on the electron density.
In Fig. 2c, we plot Is versus By for different gate voltages using a JJ
with L= 1.1 μm. As Vg is lowered, B0-π shifts to smaller values,
again in qualitative agreement with Eq. (1). Interestingly, above a
certain magnetic field the state of the JJ (0 or π) becomes gate-
dependent. For example at By= 400mT, the junction changes
from a 0-JJ (Vg= 0 V) to a π-JJ (Vg=−0.4 V), with a transition at
Vg=−0.2 V. This indicates the feasibility of tuning the JJ into the
π-state using gate voltages, while the magnetic field remains fixed.

Gate-driven 0–π transitions. These gate-driven transitions are
demonstrated in Fig. 3a–d, which show a sequence of I–Vg plots
for increasing in-plane magnetic fields. At By= 250 mT, Is dis-
plays a monotonic reduction with decreasing Vg. At a higher
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magnetic field, By= 325 mT, Is reveals a markedly different
behavior, whereby the supercurrent first decreases and then (at
Vg=−0.32 V) shows a clear revival, indicative of a gate-driven
0–π transition, where the resonance condition (EZ= πETh) is
achieved by tuning the electron density. Increasing By further,
continuously moves the transition point to higher gate voltages
(larger density), perfectly in line with expectations for a 0–π
transition. Figure 3e shows two line-cuts from Fig. 3d. At zero
current bias, dV/dI shows a clear peak, indicative of a re-entrance
of the supercurrent due to the the 0–π transition. However, at
high bias, dV/dI increases monotonically, similar to the response
at zero magnetic field. This eliminates trivial interference effects
as an explanation for the supercurrent modulation, where one
would expect a correlation between the two curves35,41,42.

Construction of the 0–π phase diagram. In contrast to the field-
driven measurements (Fig. 2), controlling the transition with a
gate avoids the need for time-consuming field alignment proce-
dures, thus allowing us to efficiently explore a large parameter
space in magnetic field and gate voltage. We now combine these
results to construct a 0–π phase diagram of the JJ. The combi-
nation of a high quality 2DEG and relatively long devices results
in well defined magneto-resistance oscillations, allowing us to
directly extract the electron density in the junction. Figure 4a
shows the Landau fan diagram in perpendicular magnetic fields,
Bz, from which we identify the filling factors, ν= nh/eBz (Fig. 4b),
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and thereby obtain the n vs. Vg curve (Fig. 4c). We then plot all
the transition points in Fig. 4d. The axes represent the two
important energy scales in the system (By ∝ EZ and

ffiffiffi

n
p / ETh),

thereby highlighting the 0 and π regions in the phase space.
Finally, we compare our results with the theory of ballistic JJs
represented by Eq. (1). To do so, we independently extract the
effective mass (see Supplementary Note 7), m*= (0.022 ± 0.002)
me, and fit the data to a single free parameter, gy (the in-plane g-
factor), giving gy= 25 ± 3 in good agreement with previous
measurements on similar InSb quantum wells28.

Our work provides the first evidence of induced superconduc-
tivity in high quality InSb 2DEGs and demonstrates the creation of
robust, gate-tunable π-Josephson junctions. We show that the 0–π
transition can be driven both by magnetic fields and gate voltages.
The significant region of phase space where the π–JJ is stable could
prove advantageous in the study of topological superconductivity in
planar JJs12,13,20,21. Moreover, these large SOI 2DEGs, in conjunc-
tion with our magnetic field compatible superconducting electrodes
and clear Landau quantization, would also be excellent candidates
to realize topological junctions in the quantum Hall regime7.
Finally, the ability to control the ground state between 0 and π
states using gates is analogous to recent experimental results in
ferromagnetic JJs43, and could possibly serve as a semiconductor-
based platform for novel superconducting logic applications44. We
therefore establish InSb 2DEGs as a new, scalable platform for
developing hybrid superconductor-semiconductor technologies.

Methods
Wafer growth. InSb-based 2DEGs were grown on semi-insulating GaAs (100)
substrates by molecular beam epitaxy in a Veeco Gen 930 using ultra-high purity
techniques and methods as described in ref. 45. The layer stack of the hetero-
structure is shown in Supplementary Fig. 1a. The growth has been initiated with a
100 nm thick GaAs buffer followed by a 1 μm thick AlSb nucleation layer. The
metamorphic buffer is composed of a superlattice of 300 nm thick In0.91Al0.09Sb
and 200 nm thick In0.75Al0.25Sb layers, repeated three times, and directly followed
by a 2 μm thick In0.91Al0.09Sb layer. The active region consists of a 30 nm thick InSb
quantum well and a 40 nm thick In0.91Al0.09Sb top barrier. The Si δ-doping layer
has been introduced at 20 nm from the quantum well and the surface. The
InxAl1−xSb buffer, the InSb quantum well and the InxAl1−xSb setback were grown
at a temperature of 440 °C under a p(1 × 3) surface reconstruction. The growth
temperature was lowered to 340 °C, where the surface reconstruction changed to c
(4 × 4), just before the δ-doping layer, to facilitate Si incorporation46. The scanning
transmission electron micrograph of Supplementary Fig. 1b reveals the efficiency of
the metamorphic buffer to filter the dislocations.

Device fabrication. The devices are fabricated using electron beam lithography.
First, mesa structures are defined by etching the InSb 2DEG in selected areas. We
use a wet etch solution consisting of 560 ml deionized water, 9.6 g citric acid
powder, 5 ml H2O2 and 7 ml H3PO4, and etch for 5 min, which results in an etch
depth around 150 nm. This is followed by the deposition of superconducting
contacts in an ATC 1800-V sputtering system. Before the deposition, we clean the
InSb interfaces in an Ar plasma for 3 min (using a power of 100W and a pressure
of 5 mTorr). Subsequently, without breaking the vacuum, we sputter NbTi (30 s)
and NbTiN (330 s) at a pressure of 2.5 mTorr, resulting in a layer thickness of
approximately 200 nm. Next, a 45 nm thick layer of AlOx dielectric is added by
atomic layer deposition at 105 °C, followed by a top-gate consisting of 10 nm/
170 nm of Ti/Au.

Data availability
All data files are available at 4TU.ResearchData repository, https://doi.org/10.4121/
uuid:5fab8273-8794-4cd7-96d4-ba8ec00a62cf
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