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The P/Q-type CaV2.1 channel regulates neurotransmitter release at neuromuscular
junctions (NMJ) and many central synapses. CACNA1A encodes the pore-containing
α1A subunit of CaV2.1 channels. In humans, de novo CACNA1A mutations result in
a wide spectrum of neurological, neuromuscular, and movement disorders, such as
familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2 (EA2), as well as a
more recently discovered class of more severe disorders, which are characterized by
ataxia, hypotonia, cerebellar atrophy, and cognitive/developmental delay. Heterologous
expression of CaV2.1 channels has allowed for an understanding of the consequences
of CACNA1A missense mutations on channel function. In contrast, a mechanistic
understanding of how specific CACNA1A mutations lead in vivo to the resultant
phenotypes is lacking. In this review, we present the zebrafish as a model to
both study in vivo mechanisms of CACNA1A mutations that result in synaptic and
behavioral defects and to screen for effective drug therapies to combat these and other
CaV2.1 channelopathies.

Keywords: CaV2.1, α1A, P/Q-type, channelopathy, familial hemiplegic migraine type 1, episodic ataxia type 2,
vertebrate models, zebrafish

INTRODUCTION

P/Q-type CaV2.1 channels are the predominant voltage-gated Ca2+ channel isoform present
at the neuromuscular junction (NMJ) and most central synapses. Since Ca2+ flux via these
channels is critical for neurotransmitter release (Llinás et al., 1981; Turner et al., 1992; Uchitel
et al., 1992; Dunlap et al., 1994, 1995; Ludwig et al., 1997), mutations in the CaV2.1 α1A
subunit would be expected to impact synaptic efficacy. However, as discussed in sections
‘‘CaV2.1 Channel Composition’’ to ‘‘The Expanding Spectrum OF CaV2.1-α1A Channelopathies’’
the direct consequences of mutations on channel function and the resultant neurologic phenotypes
vary significantly. For example, two well-studied channelopathies—episodic ataxia type 2
(EA2) and familial hemiplegic migraine type 1 (FHM1)—arise from point mutations in
the CACNA1A gene that encodes the α1A subunit (Jen et al., 2007; Pietrobon, 2007, 2010).
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The mutations that lead to EA2 tend to be loss-of-function
mutations, while gain-of-function mutations usually underlie
FHM1 (Jen et al., 2001; Tottene et al., 2002; Kaja et al., 2005, 2010;
Mantuano et al., 2010; Rajakulendran et al., 2010b; Di Guilmi
et al., 2014; Rose et al., 2014; Brusich et al., 2018). However,
some ataxic cases have paradoxically been linked to gain-of-
channel function mutations (e.g., van den Maagdenberg et al.,
2010; Knierim et al., 2011; Gao et al., 2012; Bahamonde et al.,
2015; Jiang et al., 2019). These latter examples underscore the
diversity of channel dysfunction in this expanding spectrum of
ataxic disorders and highlight the need for a model system to
rapidly and effectively identify pathological phenotypes.

In this article, we review the: (1) basic information
about the CaV2.1 channel heteromultimer; (2) two relatively
well-characterized diseases caused by mutation of the CaV2.1
α1A subunit—EA2 and FHM1; (3) the emerging full spectrum
of CaV2.1 α1A channelopathies; and (4) the potential that the
zebrafish model holds for understanding disease mechanisms
and discovering potential therapeutics. Sections ‘‘Introduction’’
to ‘‘Familial Hemiplegic Migraine Type 1’’ are intended to
provide sufficient background for the more profound discussion
of the more severe neurodevelopmental disorders, which are
caused by point mutations in CACNA1A in section ‘‘The
Expanding Spectrum OF CaV2.1-α1A Channelopathies.’’ It
is important to note that the pathology of this unnamed
class of disorders resembles that of spinocerebellar ataxia
type 6 (SCA), which is caused by the addition of excess
CAG polynucleotide repeats to the CACNA1A transcript
(Jodice et al., 1997).

CaV2.1 CHANNEL COMPOSITION

High voltage-activated Ca2+ channels, such as the
CaV2.1 heteromultimer, are composed minimally of a principal
α1 subunit (α1A) and auxiliary β and α2δ subunits (Volsen et al.,
1997; Catterall, 2010; Dolphin, 2016). For CaV2.1, an interaction
with a γ2 subunit (a.k.a., stargazin) was also reported (Letts et al.,
1998; Kang and Campbell, 2003). Like the other nine members of
the CaV family, α1A subunits have four transmembrane repeats
(I–IV), each with six membrane-spanning α-helices (S1–S6;
Mori et al., 1991; please see Figure 1). Of these, the S4 α-helices
are thought to be the primary voltage-sensing elements of the
channel, a function which is conferred by five to six positively
charged amino acids lining a face of the α-helix (Aggarwal
and MacKinnon, 1996). The S1–S3 helices form an aqueous
conduit that enables passage of the S4 α-helix through the
membrane field by facilitating interactions with residues of the
‘‘charge transfer center’’ (formed by conserved negative, polar
and hydrophobic residues on the S2 segment and an invariant
aspartate residue on the S3 helix; Tao et al., 2010); the S5 and
S6 helices line the conventional channel conduction pore (Neely
and Hidalgo, 2014; Hering et al., 2018). The relatively long
extracellular segment linking the S5 and S6 helices (a.k.a., the
P-loop) contains a highly conserved glutamate residue in all
four repeats. These four glutamates form the selectivity filter
(Yang et al., 1993).

EPISODIC ATAXIA TYPE 2

EA2 is a rare neurological disease characterized by paroxysmal
attacks of ataxia, nystagmus, and vertigo. The majority of
CACNA1A mutations that lead to EA2 result in CaV2.1 loss
of function by premature termination of the open reading
frame, resulting in rapid degradation of truncated protein
products (Jen et al., 2001; Pietrobon, 2010; Sintas et al.,
2017). Indeed, over 40 pathogenic missense mutations were
identified (Pietrobon, 2010; Sintas et al., 2017; see Figure 1).
Most of these amino acid substitutions reside in the P-loop
or the S5 and S6 helices, themselves, suggesting that impaired
ability to form a fully functional channel pore is the likely
pathophysiological mechanism of the resultant phenotype for the
majority of EA2 missense cases (Jen et al., 2007; Sintas et al.,
2017). In some cases, a complete loss of function was observed
with missense mutants, likely attributable to ER-associated
degradation of the mutant channel and subsequent lack of
trafficking to the surface membrane (Page et al., 2004).
In addition, some EA2 mutants (e.g., E1761K, F1406C)
seem to exert a dominant-negative effect since coexpression
of mutant channels with wild-type channels in Xenopus
oocytes diminished the amplitude of Ca2+ current elicited
by depolarization (Jeng et al., 2006, 2008; Mezghrani et al.,
2008). In these latter cases, it was postulated that misfolded
mutant channels bound wild-type channels and subsequently
induced degradation (Page et al., 2010; Rajakulendran et al.,
2012; Dahimene et al., 2016) or competed successfully with
the wild-type channel for a limited number of ‘‘slots’’ reserved
for CaV2.1 channels at the plasma membrane (Cao et al.,
2004; Cao and Tsien, 2010; but see below). In addition,
some mutations (e.g., H1736L, A1293D/delY1294, G293R)
do not completely abolish channel activity but rather shift
the voltage-dependence of CaV2.1 activation to somewhat
more positive potentials, thereby decreasing channel open
probability (Po; Wappl et al., 2002; Spacey et al., 2004;
Pietrobon, 2010).

In a minority of cases, EA2 is precipitated by gain-of-channel
function mutations, which suggests that a critical bandwith of
Ca2+ flux is required to avoid pathogenicity (e.g., Mantuano
et al., 2010; Knerim et al., 2011; Gao et al., 2012; Carreño et al.,
2013; Bahamonde et al., 2015). For many yet-to-be characterized
Cav2.1 EA2 mutations, whether the mutation produces gain-
or loss-of-channel function remains to be seen. Still, these
findings underscore the need to resist generalization regarding
pathological mechanisms without rigorous investigation of
each mutation.

FAMILIAL HEMIPLEGIC MIGRAINE TYPE 1

FHM1 is an inheritedmigraine condition that results in weakness
of half the body for prolonged periods of time. Patients afflicted
with FHM1 often display cerebellar degeneration (Elliot et al.,
1996). As noted above, FHM1 is most often linked to gain-of-
function point mutations in CACNA1A (Tottene et al., 2002;
Pietrobon, 2007; see Figure 2). These substitutions occur at a
variety of loci within the channel but most commonly in residues
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FIGURE 1 | Schematic representation of human CaV2.1 mutations causing episodic ataxia type 2 (EA2). Please note that residue numbering varies between studies
due to the existence of multiple CACNA1A splice variants; residue numbers indicated reflect those stated in the original report. Citations to the indicated mutations
are listed as follows: E147K—Imbrici et al., 2004; G162V—Maksemous et al. (2016); R192W—Soden et al. (2014); R198Q—Indelicato et al. (2019);
Y248C—Zafeiriou et al. (2009); Y248N—Choi et al. (2017); H253Y—van den Maagdenberg et al. (2002); C256R—Mantuano et al. (2004); R279C—Maksemous
et al. (2016); C287Y—Jen et al. (2004); G293R—Yue et al. (1997); G297R—Tantsis et al. (2016); D302N—Maksemous et al. (2016); R387G—Maksemous et al.
(2016); E388K—Nikaido et al. (2011); L389F—Mantuano et al. (2010); G411W—Maksemous et al. (2016); A454T—Cricchi et al. (2007); R455Q—Isaacs et al.
(2017); T501M—Mantuano et al. (2010); G533K—Scoggan et al. (2006); G540R—Rajakulendran et al. (2010a); L621R—Rajakulendran et al. (2010a);
G638D—Cuenca-León et al. (2009); I712V—Guerin et al. (2008); M798T—Mantuano et al. (2010); P897R—Mantuano et al. (2010); F1404C—Jen et al. (2001);
R1433Q—Pietrobon (2010); G1483R—Mantuano et al. (2004); F1491S—Guida et al. (2001); V1494I—Mantuano et al. (2004); R1662H—Friend et al. (1999);
R1665Q—Tonelli et al. (2006); R1680C—Mantuano et al. (2010); H1737L—Spacey et al. (2004); L1749P—Maksemous et al. (2016); R1751W—Bertholon et al.
(2009); E1757K—Denier et al. (2001); S1799L—Ohba et al. (2013); C1870R—Mantuano et al. (2010); R2090Q—Melzer et al. (2010); R2136C—Mantuano et al.
(2004); P2222L—Sintas et al. (2017). The CaV2.1 schematic was modified from Tyagi et al. (2019) with permission of the authors.

thought to line the pore, the S3–S4 or S5–S6 linkers, or the
S4 voltage sensor. Even though the locations of the mutations
within the channel are variable, analysis in heterologous systems
revealed a hyperpolarizing shift in channel activation for most
studied mutants (Hans et al., 1999; Tottene et al., 2002,
2005; Adams et al., 2009; Serra et al., 2009). Since these
channels open at more hyperpolarizing potentials, channel
Po is enhanced, and an FHM1 mutant CaV2.1 channel can
carry greater Ca2+ influx than its wild-type counterpart at
physiologically relevant membrane potentials. This process may
be further facilitated by a reduction in the direct Gβγ-mediated
inhibition of presynaptic FHM1mutant CaV2.1 channels (Melliti
et al., 2003; Weiss et al., 2008; Serra et al., 2009; Garza-
López et al., 2012, 2013). Mouse knock-in models carrying
FHM1-causing CaV2.1 mutations display the migraine aura,
cortical spreading depression characteristic of human FHM1

(van den Maagdenberg et al., 2004, 2010). While these gain-
of-function biophysical effects of FHM1 mutations are fairly
consistent, it is important to state that FHM1 pathology is
inarguably a reflection of the balance of the relative manifestation
of the mutations between excitatory and inhibitory circuits
(Vecchia et al., 2015).

THE EXPANDING SPECTRUM OF
CaV2.1-α1A CHANNELOPATHIES

EA2 and FHM1 have long been known to be caused primarily
by point mutations in CaV2.1 in addition to a few variants
that carry deletions or insertions (Jen et al., 2001; Pietrobon,
2007, 2010). However, the biophysical effects of these mutations
on channel function are often subtle, and the manifestations
of ataxia are paroxysmal (Elliot et al., 1996; Jen et al., 2007;
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FIGURE 2 | Schematic representation of human CaV2.1 mutations causing familial hemiplegic migraine type 1 (FHM1). Please note that residue numbering varies
between studies due to the existence of multiple CACNA1A splice variants; residue numbers indicated reflect those stated in the original report. Citations to the
indicated mutations are listed as follows: R192Q—Ophoff et al. (1996); R195K—Ducros et al. (2001); S218L—Kors et al. (2001); P225H—Stuart et al. (2012);
G230V—Yang et al. (2014); F363S—Riant et al. (2010); V581M—Cuenca-León et al. (2008); V581L—Freilinger et al. (2011); R583Q—Battistini et al. (1999);
T666M—Ophoff et al. (1996); V714A—Ophoff et al. (1996); D715E—Ducros et al. (2001); E1015K—Grieco et al. (2018); Y1245C—Cuenca-León et al. (2008);
K1336E—Ducros et al. (2001); R1347Q—Alonso et al. (2004); C1370Y—Thomsen et al. (2007); Y1385C—Vahedi et al. (2000); V1457L—Carrera et al. (1999);
F1506S—Riant et al. (2010); F1506Y—Pelzer et al. (2018); I1512T—Grieco et al. (2018); C1535S—Dichgans et al. (2005); F1609L—Pelzer et al. (2018);
R1668W—Ducros et al. (2001); K1670R—Riant et al. (2010); L1682P—Weiss et al. (2007); W1684R—Ducros et al. (2001); V1696I—Ducros et al. (2001);
I1710T—Kors et al. (2004); D1725N—Riant et al. (2010); I1811L—Ophoff et al. (1996); A2006T—Wilson (2014); R2157G—Grieco et al. (2018). The
CaV2.1 schematic was modified from Tyagi et al. (2019) with permission of the authors.

Sintas et al., 2017). With the innovative whole-exome sequencing
approach, a new, but yet-to-be-named, class of CaV2.1-linked
disorders with developmental components was identified and
linked to point mutations in CaV2.1 (Tonelli et al., 2006;
Blumkin et al., 2010; Romaniello et al., 2010; Epi4K Consortium
and Epilepsy Phenome/Genome Project, 2013; Damaj et al.,
2015; Jiang et al., 2016; Weyhrauch et al., 2016; Luo et al.,
2017; Travaglini et al., 2017). These disorders represent the
far end of the CaV2.1 channelopathy spectrum, which includes
FHM1 and EA2. As is the case with spectrum disorders,
these more severe disorders often share the characteristics
of migraine and ataxia with FHM1 and EA2, respectively.
However, the more severe disorders display cognitive deficits,
epilepsies, and neurodegeneration that are infrequently observed
with FHM1 and EA2 patients. Though similar in presentation,
disorders resulting from CaV2.1 missense mutations differ in
etiology from SCA6, which is caused by increasing polyglutamine
expansions on the channel carboxyl-terminus (Jodice et al., 1997;
Frontali, 2001). Moreover, the scattering of mutations within

the channel suggests that there are a variety of mechanisms for
channel dysfunction underlying this class of disorders (Figure 3).
For example, Romaniello et al. (2010) described an A405T
substitution in a 12-year-old girl with a family history of
CaV2.1 mutation-linked disorders. The patient presented with
persistent cerebellar signs (i.e., ataxia, dysmetria, hypotonia) and
developmental delay. A405T represents a non-polar to polar
substitution in the Repeat I–II linker region of CaV2.1 (Figure 1).
The Repeat I–II linker is putatively the site where the auxiliary β

subunit interacts with the α1A subunit (Campiglio and Flucher,
2015). A reasonable, but yet-to-be-tested, hypothesis is that
the A405T substitution disrupts the α1A-β subunit interaction
in much the same way as does an engineered Y392S swap
in the I–II loop (Pragnell et al., 1994). Such a disruption
would substantially decrease surface expression of the channel
by impeding trafficking and, given reduced production of the
wild-type protein, would likely result in haploinsufficiency. An
alternate explanation is that the A405T substitution that impacts
neurotransmitter release, similar to another ataxic variant in the
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I–II linker, A454T, was demonstrated to curb modulation of
CaV2.1 by SNARE proteins via a mechanism involving the β

subunit (Cricchi et al., 2007; Serra et al., 2010, 2018).
Blumkin et al. (2010) reported a R1350Q substitution in a

7-year-old male patient that also presented with cerebellar ataxia,
developmental delay, and nonspecific dyskinesia. Although
the outward presentation was similar to the patient carrying
the A405T substitution, the R1350Q swap inserted a neutral
glutamine in place of a basic arginine in the S4 voltage-sensing
α-helix of Repeat III (Figure 1). An arginine to glutamine
substitution at this position was also reported with a patient
exhibiting tremor that was alleviated by a Ca2+ channel blocker
(R1345Q in Jiang et al., 2016). Based on the observation that the
equivalent substitution in the tottering mutant mouse causes a
∼12-mV hyperpolarizing shift in activation (Miki et al., 2008),
it is likely that neutralization of this basic residue may have
facilitated the movement of the voltage sensor through the
membrane field. Such gain of function contrasts with the findings
of Weyhrauch et al. (2016), who also described a mutation in
the S4 voltage sensor of Repeat III (P1353L) found in a child
with developmental delay, gross motor delay, and congenital
hypotonia (Figure 1). Electrophysiological analysis of mutant
channels expressed heterologously in HEK293 cells revealed near
100% ablation of CaV2.1-mediated Ca2+ current, suggesting that
either dominant-negative effects or haploinsufficiency underlies
the phenotype. The first possibility was proposed on the basis that
mice with only one CACNA1A allele seems normal (Jun et al.,
1999). However, the ability of CaV2.1P1353L to out-compete
endogenously wild-type channels was not investigated in a
neuronal context.

Travaglini et al. (2017) reported a pair of mutations, I1342T
and V1396M, in two patients with similar clinical phenotypes
involving congenital ataxia, hypotonia, and intellectual disability.
The I1342T mutation resides in the extracellular loop between
the S3 and S4 helix of α1A in close proximity to the beginning
of the Repeat III S4 helix (Figure 1). A reasonable hypothesis
for the dysfunction of the I1342T mutant channel is that
this substitution alters the conformation of the S4 helix and
affects its mobility, though speculation on its relationship
to ataxia, hypotonia, and intellectual disability is unfounded
without more biophysical information regarding mutant channel
dysfunction. The V1396M mutation is found in the proximal
S5 pore-forming domain of Repeat III of α1A, a region of
the channel that is also predicted to interact with the α2δ

subunit on the basis of CaV1.1 cryo-EM structure (Wu et al.,
2016). The idea that V1396M facilitates channel expression
through an α2δ-mediated mechanism (see Dolphin, 2016,
for a review) is particularly intriguing since the current
density for the mouse equivalent of Cav2.1 V1396M expressed
in HEK293 cells was shown to be nearly double that of
wild-type Cav2.1 (Jiang et al., 2019). Though less striking, the
introduction of methionine also causes a hyperpolarization in
the voltage dependence of activation suggesting the disruption
of an inter-helical interaction that restricts voltage-sensor
translocation. Three other CaV2.1mutants, which were linked
to Lennox–Gastaut epileptic encephalopathy were examined
in the same study and were found to have polar effects

(Jiang et al., 2019). The A715T mutation at the base of
RIIS6 displayed a ∼10-mV hyperpolarizing shift in activation,
smaller but reminiscent of the ∼20-mV hyperpolarizing shift
observed in Purkinje cells of CaV2.1 S218L EA2 model mice
(Gao et al., 2012). On the other hand, G232V and I1357S,
at the bases of RIS5 and RIIS4 helices, respectively, reduced
channel plasma membrane expression in both HEK293 and in
cortical neurons.

Seminal work from Richard Tsien’s laboratory in the early
1990s revealed that four highly conserved glutamate residues
within the P-loop are the structural basis of Ca2+ selectivity
among all CaV channels (Yang et al., 1993). Two such mutations
in α1A are known to occur at the same glutamate in Repeat IV.
Mutation of this residue to glycine causes ataxia and cognitive
deficits running through three generations of the Slovak family
(E1755G in Petrovicova et al., 2017), and as noted above, a
reversal of charge via substitution of a lysine for the glutamate
causes EA2 (E1761K in Denier et al., 2001). The glutamate to
lysine mutation ablates inward Ba2+ flux via the channel in
Xenopus oocytes (Jeng et al., 2006). Since coexpression of the
CaV2.1 E1761K mutant with the wild-type channel reduced the
amplitude of the current in an RNA dose-dependent manner,
the authors postulated that the E1761K resulted in a dominant-
negative effect. While this mechanism could certainly underlie
this particular channelopathy, conversion of any one of the
glutamates in the selectivity filter to lysine effectively transforms
CaV channels into non-specific monovalent ion channels that are
subject to block by divalent ions (Yang et al., 1993). In this regard,
Jeng et al. (2006) used a concentration of Ba2+ (40 mM) in their
experiments showing the ablation of inward current via E1761K
channels, which most likely would have blocked the mutant
channel. At more physiological divalent ion concentrations
(i.e., <2 mM Ca2+), currents carried by Na+ and K+ might
be visible and pathogenic. Indeed, aberrant Na+ and K+ flux
via CaV1.2 Repeat III glutamate to lysine mutant channels can
prolong action potential duration in cardiac-like iPSCs (Ye et al.,
2019), while the equivalent mutation in CaV1.1 is postulated
to cause K+ accumulation in the transverse tubules (Beqollari
et al., 2018) and to accelerate muscle fatigue in mice (Lee et al.,
2015). Thus, the possibility that the E1761K mutation augments
neurotransmitter release by prolonging neuronal action potential
duration is not unreasonable, nor is the idea that excessive
K+ secretion into restricted extracellular compartments may
excite neighboring neurons or vascular smooth muscle cells
(see Filosa et al., 2006).

Recently, Luo et al. (2017) described an 8-year-old female
patient with congenital ataxia, hypotonia, cerebellar atrophy, and
global developmental delay. The trio-based exome sequencing
of this patient revealed a de novo missense mutation (R1673P)
in the gene for CaV2.1. The mutation resulted in an arginine
to proline substitution within the Repeat IV S4 voltage-
sensing helix of CaV2.1. The R1673P mutation was predicted
to be ‘‘probably damaging’’ by PolyPhen-2, a protein structure
prediction software. As a means to identify the molecular
mechanism by which R1673P precipitates the clinical phenotype,
transgenic flies expressing theDrosophila equivalent of wild-type
CaV2.1 and CaV2.1 R1673P in a CaV2.1-deficient Drosophila
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(i.e., cacophony mutants) background were generated. In these
experiments, the mutant CaV2.1 R1673P was able to rescue the
photoreceptor response in 3-day-old larvae to a greater extent
than the wild-type channel suggesting a gain-of-function effect.
At 30 days, the rescue of the electroretinogram had dissipated,
but substantial photoreceptor degeneration was observed in the
R1673P line but not in wild-type or CaV2.1-deficient flies. It is
possible that the early effects of gain-of-function Ca2+channel
activity triggered neurodegeneration secondary to Ca2+ toxicity.
In contrast, however, voltage-clamp experiments showed that
the R1673P mutation causes a profound loss-of-function for
channels expressed heterologously in tsA-201 cells (Tyagi
et al., 2019). Specifically, the rat ortholog of R1673P (R1624P)
displayed a∼25-mVdepolarizing shift in activation and resultant
weak activation at physiologically relevant membrane potentials.
Further work is needed to understand how the loss of function
at the molecular level leads to neurodegeneration at the
systemic level.

ZEBRAFISH AS A MODEL SYSTEM FOR
THE STUDY OF SEVERE
CaV2.1 CHANNELOPATHIES

Heterologous expression systems are the industry standard for
the identification of pathogenic channel dysfunction. However,
it is often difficult to extrapolate information gleaned using
this approach to neurological dysfunction in patients. To
bridge this gap, animal models are employed. Mice carrying
FHM1 or EA2 mutations were very useful in understanding
the pathophysiology underlying these disorders. However, no
mouse line yet exists that models the more severe developmental
disorders discussed above. The paucity of such models may
be due to the uncertain viability or breeding capability of
mice with grave developmental defects and the monetary risk
associated with this endeavor. By contrast, simpler organisms
like Drosophila have rapid propagation, are relatively easy
to manipulate genetically, and lack the burden of cost.
The obvious shortcoming of Drosophila is that insects are
both phylogenetically and physiologically far removed from
humans. A notable shortcoming is that Drosophila lack a true
CaV2.1 channel (Smith et al., 1996).

Zebrafish—Danio rerio—offers a unique complement to
the strengths of flies and mice as models for the study
of severe CaV2.1 channelopathies. The zebrafish is useful
to investigate mechanisms because of the conservation of
most fundamental physiology processes (e.g., neurotransmitter
release) with mammals with a reduced risk of embryonic
lethality. Similar to many zebrafish genes, the gene encoding the
CaV2.1 α-subunit is duplicated, yielding cacna1aa and cacna1ab.
Two zebrafish loss-of-function cacna1ab mutants, tb204a (Wen
et al., 2013) and fakir (Low et al., 2012), were studied previously.
For both mutations, the loss-of-channel function was sizable,
but incomplete. The tb204a mutation results in a tyrosine-to-
asparagine substitution (Y1662N) within the carboxyl terminus
of CaV2.1a and a depolarizing shift in channel activation, similar
to what was found for the rat cognate of CaV2.1 R1673P (Tyagi

et al., 2019). Homozygous cacna1abtb204a-/- larvae were viable
and had reduced motility. Moreover, there was an increased
incidence of synaptic failure at the NMJ due to reduced Ca2+

flux into the presynaptic NMJ, as detected by imaging of
presynaptic intracellular Ca2+ (Wen et al., 2013). While this
defect accurately predicted reduced motor function, neither
sensory nor central effects of the mutation were assessed so
their potential contribution to the behavioral phenotype cannot
be excluded. Interestingly, both swimming behavior and NMJ
synaptic transmission were rescued in cacna1abtb204a-/- larvae by
3,4-diaminopyridine (a K+ channel blocker) and Roscovitine (a
P/Q-type channel agonist; Yan et al., 2002; Buraei et al., 2007;
Tarr et al., 2013).

The fakir cacna1ab mutation results in a L356V substitution
in the S6 helix of Repeat I (Figure 1). Like the tb204a larvae,
fakir mutants display reduced locomotor behavior compared to
wild-type siblings. In addition, heterologously expressed fakir
and tb204 mutant channels had reductions in current amplitude
and similar depolarizing shifts in channel activation properties
(Low et al., 2012; Wen et al., 2013). a priori, L356V would appear
to be a conservative amino acid change. However, L356 (located
at the cytoplasmic side of S6 in RI) is highly conserved across
species. Interestingly, the tb204a mutation (Y1662N) resides in
an analogous location in S6 of RIV. While no disease-causing
mutations have yet been identified in RIS6, human pathogenic
point mutations were detected in the S6 helices of Repeats II–IV
(Figures 1–3). Two of the mutations in S6 domains, V1494I
and I1811L, would, similar to fakir, also be considered to be
conservative substitutions. Overall, despite the identification of
several S6 mutations, how L356V or other S6 mutations lead to
perturbed channel function remains unknown. However, the fact
that this is a highly conserved region across species suggests that
mutations, even conservative ones, would be of consequence.

Despite the somewhat similar effects on channel activity
produced by the two different cacna1ab mutations, substantially
different mechanisms were proposed for how channel
dysfunction leads to abnormal locomotor behavior. Consistent
with the behavioral immotility, Low et al. (2012) found that
rigorous swimming could be evoked in wild-type, but not fakir
mutant, slow-twitch muscle by tactile stimulation. However,
examination of responses to direct application of acetylcholine
as well as miniature end plate current properties revealed
little differences in transmission between motor neurons and
slow-twitch fibers in fakir vs. wild-type larvae, nor were defects
detected in evoked transmission between CaP motor neuron
and fast-twitch muscle fibers. On this basis and consistent with
the initial identification of fakir as a reduced touch-sensitive
mutant (Granato et al., 1996), Low et al. (2012) proposed that
fakir mutants have defective swimming responses to tactile
stimulation because the relevant sensory neuron Rohon–Beard
cell required cacna1ab for function. However, this hypothesis
was not tested directly by recording from Rohon–Beard neurons
or their post-synaptic partners. In contrast, a study of the tb204
allele provided strong evidence to support defective transmission
at the NMJ (Wen et al., 2013). Supporting evidence was provided
by paired recordings between one type of motor neuron, CaP,
and its fast-muscle target cell. Whether similar transmission
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FIGURE 3 | Missense CaV2.1 mutations leading to neurodevelopmental disorders. The zebrafish fakir and tb204a mutants are also depicted as yellow circles. Red
circles indicate a loss-of-function human mutation. Blue circles indicate a gain-of-function human mutation. Magenta circles indicate a yet-to-be functionally
characterized human mutation. Specific references are indicated below. As in Figures 1, 2, please note that residue numbering varies between studies due to:
(1) the existence of multiple known CACNA1A splice variants; and (2) species differences between humans and zebrafish. The CaV2.1 schematic was modified from
Tyagi et al. (2019) with permission of the authors. These mutations are discussed in sections “The Expanding Spectrum OF CaV2.1-α1A Channelopathies” and
“Zebrafish as a Model SYSTEM for the Study of Severe CaV2.1 Channelopathies.”

defects occur at the NMJs formed between other motor neurons
and muscle targets has not been studied. Thus, the mechanistic
bases for the reducedmotility defects of fakir and tb204amutants
have not been resolved.

Despite this impasse, the viability of both the fakir and the
tb204 mutant lines bodes well for the potential usefulness of
zebrafish larvae carrying missense mutations corresponding
to those which cause severe human CaV2.1 channelopathies
(e.g., CaV2.1 R1673P). The generation of such models
through CRISPR-Cas9 technology would enable the study
of individual mutations with approaches encompassing the
molecular, systemic, and behavioral levels. In particular, via
paired CaP motor neuron—muscle recordings and imaging of
depolarization-induced Ca2+ flux into presynaptic terminals
allow assessment of whether impairments in locomotor function
result from NMJ defects.

Since zebrafish were successfully used to screen for
compounds for the treatment of Dravet syndrome, a
SCNA1ANa+ channelopathy (Griffin et al., 2017), one
can envision that this approach could be used to identify
and/or refine small molecules to combat both CaV2.1 gain-

and loss-of-function disorders. Compounds that partially
counteract channel gain of function, notably gabapentin and
pregabalin, were available for clinical use for sometime (Sills,
2006). However, a need for alternatives arose as both the
aforementioned compounds were shown to have some addictive
capability (Bonnet et al., 2018; Althobaiti et al., 2019). In
regard to loss-of-function disorders, 3,4-diaminopyridine was
approved for acute treatment of Lambert—Eaton syndrome,
a condition secondary to an aggressive lung cancer in which
autoantibodies to CaV2.1 are generated (García and Beam,
1996; Maddison, 2012). Unfortunately, the arrhythmogenic
potential of this compound precludes its long-term use in other
contexts including the neurodevelopmental disorders discussed
above. By contrast, derivatives of Roscovitine, such as those
pioneered by the Meriney group, are logical candidates for
further development (Tarr et al., 2013; Wu et al., 2018). Another
possibility, which may not be a stretch given nascent cryo-EM
images and the increasingly frequent implementation of deep
learning approaches, is the modification of the L-type channel
agonist (-)Bay K 8644 for use as a specific P/Q-type channel
agonist (Zhao et al., 2019).
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Despite these advantages, the zebrafish model system does
pose some challenges. The fact that gene duplication endowed
teleosts with two cacna1a genes can be problematic, even
though the characterization of the tb204a mutant revealed that
cacna1aa channel isoform makes little, if any, contribution to
neurotransmission at the NMJ (Wen et al., 2013). However,
sequence similarity between the isoforms may complicate
knockdown experiments using antisense strategies and the
production of reliable antibodies. Finally, zebrafish, like flies
and mice, are not human. Nonetheless, the flexibility of the
fish model makes it potentially useful as a first-line indicator
of individual mutations and a vehicle for the development of
personalized therapies.

CONCLUSIONS

Whole-exome sequencing is bringing new CaV2.1 mutations
out of the woodwork (see Damaj et al., 2015; Jiang et al.,
2016; Weyhrauch et al., 2016; Luo et al., 2017; Travaglini
et al., 2017). Many of the syndromes caused by these point
mutations are more severe than the typical EA2 and FHM1 in

that they present with not only ataxia or migraine but also
with neurodevelopmental delay, nystagmus, epilepsy, cerebellar
degeneration, hypotonia, and cognitive dysfunction. Modeling
these more severe disorders is problematic because of the
heterogeneous effects on channel function and the limitations
intrinsic to flies and mice. Although not without some
disadvantages, zebrafish present a useful model system for
the timely characterization of pathological phenotypes and
pharmacological correction.
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