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Large vessel occlusion (LVO) due to intracranial atherosclerosis (ICAS) is a common

cause of acute ischemic stroke (AIS) in Asians. Endovascular therapy (EVT) has been

established as the mainstay of treatment in patients with AIS and LVO. However, only a

few patients of Asian descent with ICAS-related LVO (ICAS-LVO) were included in recent

randomized controlled trials of EVT for AIS. Therefore, the findings of these trials cannot

be directly applied to Asian patients with ICAS-LVO. In embolic LVO due to thrombus

from the heart or a more proximal vessel, rapid, and complete recanalization can be

achieved in more than 70–80% of patients, and it is important to exclude patients with

large cores. In contrast, patients with ICAS-LVO usually have favorable hemodynamic

profiles (good collateral status, small core, and less severe perfusion deficit), but poor

response to EVT (more rescue treatments and longer procedure times are required for

successful recanalization due to higher rates of reocclusion). Patients with ICAS-LVO

may have different anatomic (plaque, angioarchitecture), hemodynamic (collateral status),

and pathophysiologic (thrombus composition) features on neuroimaging compared to

patients with embolic LVO. In this review, we discuss these neuroimaging features, their

clinical implications with respect to determination of EVT responses, and the need for

development of specific EVT devices and procedures for patients with ICAS-LVO.
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INTRODUCTION

Large vessel occlusion (LVO), thought to originate from intracranial atherosclerosis (ICAS), is a
common cause of acute ischemic stroke (AIS) in Asians (1). Embolic LVO due to thrombus from
the heart or a more proximal vessel and ICAS-related LVO (ICAS-LVO) both show similar luminal
changes and are treated with endovascular therapy (EVT) in acute settings. However, recent clinical
studies suggest that treatment responses may differ between these two types of LVO (2–10). Patients
with ICAS-LVOmay have different anatomic (plaque, angioarchitecture), hemodynamic (collateral
status), and pathophysiologic (thrombus composition) features on neuroimaging compared to
patients with embolic LVO.
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In this review, we discuss these features, their clinical
implications with respect to determination of EVT responses,
and the need for development of specific EVT devices and
procedures for patients with ICAS-LVO.

SEARCH STRATEGY AND
SELECTION CRITERIA

We searched PubMed and ClinicalTrials.gov for articles
published in English up to September 2018 using the following
search terms: stroke, cerebrovascular disease, endovascular
therapy, and intracranial stenosis. We also searched references
from relevant articles and reviews. The final reference list was
generated based on originality and relevance to this topic. We
did not discuss individual imaging techniques or etiologies of
non-atherosclerotic intracranial arterial disease in depth, since
these topics are reviewed elsewhere (11–18).

ICAS-LVO IN RECENT RANDOMIZED
CONTROLLED TRIALS OF EVT FOR AIS

Phase III, randomized controlled trials (RCTs) conducted in
2015 demonstrated overwhelming evidence of the benefit of early
window EVT for treatment of AIS with small core and LVO
(19–23). More recently, the results of phase III RCTs of EVT
in extended time windows showed significant and remarkable
functional recovery after EVT compared to medical treatment
in carefully selected patients (24, 25). In individual patient data
meta-analyses of RCTs, the benefits of EVT were consistent in all
prespecified subgroups of age, sex, initial stroke severity score,
site of vessel occlusion, presence of tandem occlusion, extent of
initial early ischemic changes on computed tomography (CT),
intravenous tissue plasminogen activation (tPA), and onset-to-
randomization time (26, 27). However, the type of LVO was not
considered in the RCTs, and the number of patients with ICAS-
LVO was small considering that only few Asian patients were
enrolled in the 2 RCTs (20, 22).

The results of EVT in patients with ICAS-LVO are shown in
Table 1. Recanalization failure, residual stenosis, and reocclusion
were more frequently observed than embolic occlusion and
rescue therapy with permanent stent placement or adjuvant
antithrombotics are often required after EVT in ICAS-LVO
patients (2–4, 9). Consequently, longer procedure times were
required and higher complication rates and poorer long-term
outcomes were reported after EVT in patients with ICAS-LVO
than in those with embolic occlusion (5, 6, 8). Therefore, the
results of the phase III RCTs of EVT cannot be directly applied
to patients with ICAS-LVO.

DIAGNOSIS OF SUSPECTED ICAS-LVO

Differentiation of ICAS-LVO from embolic LVO is often
challenging, especially in cases without known ICAS and in the
setting of EVT for AIS when workups for potential sources
of cardioembolism cannot be performed (Figure 1). Several
clinical features may be helpful for differentiating ICAS-LVO

from embolic LVO (28). Although advanced magnetic resonance
imaging (MRI) techniques may provide information on the
ischemic zone, thrombus, blood-brain barrier, and vessel wall
pathology (29), only non-contrast brain CT and conventional
angiographic techniques are available to differentiate these two
types of LVOs in most centers.

As shown in Table 1, most investigators used angiographic
features for the diagnosis of ICAS-LVO. Baek et al. defined ICAS-
LVO as truncal-type occlusion when all major branches and their
bifurcation sites are clearly visible beyond the occlusion segment
(2, 3). Other investigators considered angiographic findings of
residual or fixed stenosis to be ICAS-LVO (4–8).

The prevalence of ICAS-LVO was reported to range from
5.5 to 25%. The prevalence of ICAS in EVT candidates varied
depending on the diagnostic methods for ICAS-LVO and race
or ethnicity (1, 9).

FEATURES OF ICAS-LVO

ICAS-LVO has more differentiating features than embolic LVO,
which are discussed below (Table 2).

Intracranial Plaque
The presence of intracranial plaques can influence endovascular
procedures and affect outcome. EVT for ICAS-LVO is associated
with residual stenosis or reocclusion, insufficient expansion
of devices, inadvertent detachment, arterial dissection, and
vasospasm (4, 5, 30). Therefore, repeat procedures and long
procedure times are often necessary for successful reperfusion.
They are also associated with poor clinical outcomes (2, 6).
Repeated stent retrieval attempts, especially in the presence of
a plaque at the LVO site, can further damage the fibrous cap
and lead to aggravation of in situ thrombosis. In western trials,
ICAS was less prevalent and early reocclusion after successful
reperfusion with EVT was rare (31).

Perforator
In preventive intervention for ICAS, the incidence of
symptomatic complications was high after intracranial stenting
for perforator-bearing segments or in patients with branch
occlusive disease (BOD) with subcortical infarcts caused
by occluding the perforator orifice (32–34). The involved
segment was more diffuse and positive remodeling was less
frequently observed in BOD-type ICAS than in non-BOD-type
ICAS (35, 36). The complication rates of EVT may also be
increased in patients with AIS and LVO in the perforator-
bearing segments, especially when permanent stent placement
is required. Therefore, increased complication rate with the
permanent placement of stent in the perforator bearing
segment should be considered, especially in the setting of
EVT for LVO when appropriate antiplatelet premedication
before the procedure is not possible. Further studies are
needed because a higher peri-procedural ischemic stroke rate
was reported in the treatment of perforator-bearing arteries,
and there was no difference between angioplasty alone and
balloon mounted/self-expandable stenting (33).
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TABLE 1 | Summary of literature on angiographic features suggesting large vessel occlusion of suspected intracranial atherosclerotic origin and outcomes after

endovascular therapy.

References Vascular

territory

Diagnosis of ICAS-LVO Main findings Implications

Baek et al. (2) Any Truncal-type occlusion Reocclusion

77% of ICAS (n = 22)

5% of Embolic (n = 202)

Reocclusion was common and additional modalities are

needed in ICAS

Baek et al. (3) Carotid Truncal-type occlusion mTICI 2b-3 (with stentriever)

29% of ICAS (n = 56)

94% of Embolic (n = 262)

ICAS showed a low recanalization rate with strentriever

and a similar rate with rescue therapy

Hwang et al. (4) Any Residual stenosis and tandem

occlusion

Residual stenosis

100% of ICAS (n = 40)

28% Embolic (n = 123)

54% of patients with residual stenosis had ICAS

Al Kasab et al. (5) Any Fixed stenosis Procedure time

99min in ICAS (n = 36)

37min in Embolic (n = 165)

Longer procedure time and poorer outcome in ICAS

Kim et al. (6) V-B Residual stenosis or reocclusion Procedure time

96min in ICAS (n = 19)

61min in Embolic (n = 32)

Longer procedure time and poorer outcome in ICAS

Kang et al. (7) Any Fixed stenosis or aggravation

after IA injection of vasodilator

mTICI 2b-3 in ICAS (n

= 140)

96% in angioplasty/stent

94% in IA GP inhibitor

Both angioplasty/stenting and IA GP inhibitor are

effective

Lee et al. (8) Carotid Residual stenosis >70%, or

stenosis ≤70% with a tendency

toward reocclusion and/or flow

impairment during the procedure

mTICI 2b-3

76.8% in ICAS (n = 99)

79.6% in Embolic (n = 421)

ICAS showed similarly successful reperfusion rates but

poorer functional outcome with EVT than embolic

occlusion

Gascou et al. (9) Any Not specified ICAS in 8 Embolic in 136 ICAS was associated with recanalization failure and

higher rates of complication and mortality

Yang et al. (10) Carotid Fixed stenosis or retrospective

analysis of the TOAST

classification

Favorable outcome at 90

days in ICAS (n = 302)

48% in stentriever group

70% in angioplasty and/or

stenting group

Angioplasty and/or stenting as first-line therapy may be

superior to thrombectomy in ICAS

ICAS, intracranial atherosclerosis; V-B, vertebrobasilar; mTICI, modified treatment in cerebral ischemia score; IA, intra-arterial; GP, glycoprotein IIb/IIIa; EVT, endovascular therapy;

TOAST, Trial of Org 10172 in Acute Stroke Treatment.

Arterial Diameter
ICAS-LVO often involves smaller-sized vessels than clots that
originated from the heart (such as red clots in atrial fibrillation
occluding the distal internal carotid artery). Moreover, the ring
finger protein 213 (RNF213) gene variant, the most susceptible
gene for moyamoya in Asians, was found in 1 in 4 Japanese
and Korean patients with non-moyamoya intracranial stenosis
(37, 38). Hongo et al. reported that patients with ICAS and
RNF213 variants had middle cerebral arteries with relatively
smaller outer diameter (2.09 ± 0.32mm) (39). The results of
the RCT of the Stenting and Aggressive Medical Management
for Preventing Recurrent Stroke in Intracranial Arterial Stenosis
showed that treating very small vessels (<2.5–2.75mm diameter)
was associated with higher complication rates, because small
vessels are more likely to have restenosis or acute thrombosis and
they may also be more prone to injury with stenting (32).

Calcification And Tortuosity
Patients with ICAS may have stiff, calcified, and tortuous
vessels. In these patients, a longer time may be required
to reach the target site and incomplete recanalization and

poor functional outcomes were reported (40). A post-hoc
analysis of a RCT showed that the type of intracranial
arterial calcification determined the effect of EVT for
AIS (41).

Thrombus
Blood flow affects thrombus composition, with “red clots”
or erythrocyte-rich thrombi found in low-pressure systems
(heart or venous system), and “white clots” or platelet-
rich thrombi found in high pressure systems (e.g., arteries)
(42). The composition and burden of clot correlate with
revascularization rate in EVT. Fibrin-rich thrombi have higher
coefficients of static friction with the vessel walls, and larger
thrombi have larger surface areas of thrombus-vessel interaction
(43). Treatment response to medical treatment (such as tPA
and glycoprotein IIb/IIIa inhibitors) and EVT may vary for
ICAS-LVO and embolic occlusion. The thrombus size is
usually smaller in ICAS-LVO than in embolic LVO, but the
recanalization rates with EVT or tPA were lower in the
former than in the latter (43–46). A histopathologic analysis of
retrieved thrombi showed that atheromatous gruel (cholesterol
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FIGURE 1 | Illustrated case for the management of acute stroke due to intracranial atherosclerosis. (A) CT angiography performed 2 years ago revealed focal stenosis

on right mid-MCA (Arrow). (B) Initial internal carotid angiography showed truncal-type occlusive lesion on right mid-MCA with minimal blood flow across the occlusive

lesion. (C,D) Roadmap images during solitaire stent (4 × 20mm) placement (C) and after retrieval (D). Pre-existing stenotic lesion still be seen. (E) Balloon angioplasty

using Gateway TPA balloon (2 × 15mm; Boston scientific) was performed. (F) Delayed carotid angiography 30min after permanent solitaire stent placement. Despite

residual stenosis, improved distal flow can be seen.

clefts, form cells, or fibrous caps) was associated with failed
recanalization, and erythrocyte-rich thrombi were associated
with successful recanalization (45). In ICAS-LVO cases, adjuvant
glycoprotein IIb/IIIa inhibitors for in situ thrombosis or
angioplasty with/without permanent stent placement may

be helpful (2, 3). However, beside stroke subtypes, other
factors also influence the characteristics of thrombi, such
as collaterals and angioarchitecture (44, 47). In addition,
in patients with coronary atherosclerotic plaques, growing
thrombi consist of both platelet-rich and erythrocyte-rich
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TABLE 2 | Neuroimaging features and specific considerations in endovascular therapy for large vessel occlusions of intracranial atherosclerotic origin.

Differential neuroimaging

features in ICAS (vs. embolic)

Impacts on efficacy and strategies in EVT Specific requirements for

ICAS-LVO EVT equipment

Assessment tools

1. Intracranial plaque Residual stenosis/reocclusion, insufficient

expansion of devices, intimal damage, arterial

dissection, and vasospasm

Long procedure time

Permanent stenting

Avoid repeat procedures

HR-MRI

Catheter-based imaging (IVUS, OCT)

2. Erythrocyte-poor thrombus Low recanalization rate with EVT in the

presence of fibrin-rich clots

Lower recanalization rate with intravenous

thrombolysis in ICAS than in embolic stroke

Lower recanalization rate with EVT due to

reocclusion than red clot

Adjuvant antithrombotics

Antiplatelet strategy other than

fibrinolytics for in situ thrombosis

Thrombus images

Pathology of retrieved clot

3. Angioarchitecture

Calcification and tortuosity Long procedure time

Incomplete recanalization and poor

functional outcome

Intermediate catheter* Luminal images

Non-contrast CT

Perforator-bearing segment A higher stroke rate after preventive ICAS

intervention

Not available HR-MRI

DWI lesion pattern

Diameter of artery Increased hemorrhagic complications after

preventive ICAS intervention

Intermediate catheter

Appropriately sized devices and

Solumbra technique*

Luminal images

4. Preexisting collaterals Slower growing and less severe hypoperfusion

Higher recanalization rates

Better outcome

A longer time window for EVT Collateral images

DWI and PWI pattern

5. Non-atherosclerotic diseases High restenosis rates in MMD

Stent placement may be the preferred

treatment in ICAD

Stent placement should be avoided in

MMD, but may be considered in ICAD

Detailed clinical and luminal images

HR-MRI

Catheter-based images

ICAS, intracranial atherosclerosis; EVT, endovascular therapy; LVO, large vessel occlusion; HR-MRI, high-resolution magnetic resonance imaging; IVUS, intravascular ultrasound;

OCT, optical coherence tomography; CT, computed tomography; DWI, diffusion-weighted image; PWI, perfusion-weighted image; MMD, moyamoya disease; ICAD, intracranial

arterial dissection.

*Theoretical suggestion, not based on the results of clinical studies.

clots, and thrombus stability also determines the response to
revascularization therapy (48).

Collaterals
The importance of collateral status has been reported in
preventive RCTs of ICAS patients and in acute interventional
RCTs (49–52). Although the individual patient data meta-
analysis of RCTs of LVO for AIS showed that early treatment
with EVT was associated with improved outcomes (53), a
recent meta-analysis showed that good collateral status is
associated with better clinical responses to EVT even in later
time windows, suggesting that collateral status can extend
the time window for EVT (54). A retrospective multicenter
study of 720 patients showed that while the probability of
good outcomes in patients with embolic occlusion declined
as onset-to-puncture time increased, the probability of good
outcomes in patients with ICAS-LVO did not decline but tended
to increase with increase in onset-to-puncture time (8). The
incidence of slow progressors may be <30% of patients with
anterior circulation LVO in large referral centers (55), but
may be higher in ICAS-LVO because collateral circulation in
patients with ICAS was better than in those with other stroke
subtypes (56).

Non-atherosclerotic Origin
In addition to ICAS, non-atherosclerotic intracranial arterial
diseases, such as moyamoya disease or intracranial arterial
dissection, may also cause LVO. Careful evaluation of clinical
and luminal studies (such as healthy risk factor profiles and no
tandem stenosis or calcification in intracranial arterial dissection,
and the presence of family history and basal collaterals in
moyamoya disease) may provide clues for the diagnosis of these
non-atherosclerotic diseases. However, it is often difficult to
differentiate them in clinical practice. Prospective observational
high-resolution MRI (HR-MRI) studies of non-stroke subjects
(57), young stroke patients (58), and acute stroke patients (59)
showed that non-atherosclerotic intracranial large artery disease
is prevalent across a wide range of atherosclerosis risk groups.
Therapeutic strategies used in intracranial atherosclerosis may
not be helpful or may even be detrimental in some patients
with non-atherosclerotic LVO (18). For example, stent placement
should be avoided in moyamoya disease (60–62), but stent
placement (especially, closed cell-type stent) may be considered
in intracranial arterial dissection. A recent study showed that
endovascular thrombectomy is an effective in selected patients
with acute ischemic stroke associated with cervical artery
dissection (63), but further studies are needed in patients with
acute infarcts due to intracranial non-atherosclerotic occlusion.
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SPECIFIC DIAGNOSTIC AND
THERAPEUTIC CONSIDERATIONS IN EVT
FOR ICAS-LVO

Assessment Tools for Underlying Features
of ICAS
Plaque Images
HR-MRI may provide information on arterial wall pathology,
such as plaque characteristics and arterial remodeling. Recently,
the imaging findings of intracranial plaques were verified with
histopathology (64, 65). A HR-MRI study showed that EVT
causes post-recanalization changes of affected arterial segments,
which correlated with thrombectomy procedural factors such
as number of procedures and type of device used, and was
associated with poor outcomes (66, 67). HR-MRI studies
conducted after various modes of EVT demonstrated vessel
damage related to stentriever process and may be useful for
the development of optimal endovascular therapeutic strategies
or devices with minimal intimal injury (66, 67). HR-MRI
can also provide information on angioarchitecture. Data on
the presence and location of perforators in relation to the
plaque, in patients with ICAS-LVO, can be useful when
considering stent placement in perforator-bearing segments.
Lastly, HR-MRI can be used to differentiate non-atherosclerotic
intracranial large vessel disease from ICAS in patients. Although
concerted efforts have been made to increase signal-to-
noise and contrast-to-noise characteristics and to shorten the
scanning time, routine use of HR-MRI is not feasible in
clinical practice. Like in coronary heart disease, catheter-
based imaging can be an alternative modality for use in EVT
settings. Intravascular ultrasound (IVUS) and optical coherence
tomography (OCT, the light analog of IVUS) are intravascular
imaging techniques used in interventional cardiology (68). A
meta-analysis of RCTs comparing IVUS- and angiographic-
guided percutaneous coronary interventions showed that IVUS
guidance was associated with significantly lower rates of
angiographic restenosis, repeat revascularization, and overall
occurrence of major cardiac events (69). The results of several
case reports suggest that these techniques may provide useful
information for the selection of patients with ICAS who
may benefit from stent placement therapy (16). In addition,
IVUS can be used during the EVT procedure to differentiate
ICAS-LVO from embolic LVO by visualization of calcified
plaque in ICAS. IVUS may help differentiation of intracranial
arterial dissection from ICAS and identification of the most
distal and proximal extent of arterial dissection, so that the
entire length of the dissection could be covered with stent
(70). These techniques can also provide virtual histology to
characterize plaques in large intracranial vessels. An in vitro
study of intracranial arterial segments with atherosclerotic
plaques demonstrated a strong correlation between virtual
histology using IVUS and 7T MRI and histopathologic analysis
(71). Gounis et al. recently introduced the high-frequency
OCT device for the highly tortuous cerebrovasculature that
provides good quality imaging of vessel wall layers, the ostium
of small branches/perforators, and the relationship between
neurovascular devices and vessel wall (17).

Thrombus Images
Identifying the characteristics of a thrombus in AIS may
provide vital information for the determination of the optimal
strategy for revascularization therapy and for the choice of
antithrombotics for the secondary prevention of stroke. The
characteristics of a thrombus (size and composition) may
determine the recanalization rate, time required for re-opening,
and the response to acute and preventive treatment in patients
with AIS. Therefore, it is extremely useful to know the
thrombus characteristics before initiating recanalization therapy.
A thrombus can be detected on a non-contrast CT image
as a hyperdense artery sign or a blooming artifact on T2∗-
weighted gradient-recalled image. Details on the methods to
measure thrombus size and burden are presented elsewhere (14).
Thrombus size determines the response to revascularization.
Although thrombus length is strongly associated with successful
recanalization with intravenous tPA therapy, the predictive
power of thrombus size in determining successful reperfusion
in EVT appears to be diminished (14). The results of recent
RCTs showed that there was no correlation between the clot
burden score (using clot volume and length) and the effects
of EVT (72, 73). Thrombus composition and its associated
pathogenesis can be visualized by CT or MRI. The density on CT
may reflect the thrombus composition. Erythrocytes in thrombi
increase attenuation on CT, and the hyperdense artery sign is
more commonly seen in erythrocyte-dominant thrombi than
in fibrin-rich thrombi. For example, thrombus permeability, as
measured by thrombus density on thin-slice non-contrast CT
imaging, was found to correlate with the histological components
of retrieved thrombi and permeable thrombi were associated
with cardioembolic occlusion in patients with AIS (74). However,
a recent systematic analysis showed a lack of association
between a CT-based clot image (e.g., Hounsfield units) and
histopathology of thrombi or stroke etiology (75). Similarly, an
erythrocyte component in thrombi induces ferromagnetic field
distortion, which results in a blooming artifact on gradient-
recalled echo or susceptibility-weighted imaging. The presence
of a blooming artifact on MRI is associated with cardioembolic
stroke (76, 77). Pathological studies of thrombi retrieved via
EVT showed that the presence and absence of blooming
artifacts were found to be due to erythrocyte- and fibrin-
predominant occlusive thrombi, respectively, and erythrocyte-
rich thrombi were associated with successful recanalization of
EVT and cardioembolic stroke (78, 79). Lastly, direct thrombus
imaging targeting fibrinogen can determine the initial burden
and location of thrombi and may also help visualize residual
thrombi or distal thromboembolism. Kim et al. investigated
hyperacute direct thrombus imaging techniques and monitored
the therapeutic efficacy of thrombolysis using fibrin-targeted gold
nanoparticles and CT imaging (80). Various MRI probes, such as
fibrin-binding gadolinium-labeled peptides, have been used for
the evaluation of acute thrombosis after plaque rupture in animal
models (81–83).

Collateral Images
Conventional angiographic evaluation is the gold standard for
collateral assessment (84). However, more time is needed to
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include the venous phase and contralateral or vertebrobasilar
views. In using EVT in clinical settings, most interventionalists
perform angiography of the affected territory and open the
occluded vessel without performing angiography of unaffected
territories in a bid to shorten the puncture-to-reperfusion time.
Both multiphase CT angiography and perfusion MRI-based
collateral maps can be performed in acute settings (85–87), and
they showed a good correlation with conventional angiography
for leptomeningeal collateral grading in AIS (87–89). These
non-invasive collateral assessments are particularly important in
ICAS-LVO, because pre-procedure CT or MRI data can be used
for selecting slower infarct progressors presented at a later time.
CT angiography shows the anatomical configuration of collateral
vessels and its use is becoming more routine. However, there
is no consensus on the best method for evaluating and grading
collaterals and various CT angiography techniques and grading
systems are used (90–92). Other imaging techniques, such as
CT perfusion and arterial spin labeling MRI, may also provide
information on collateral status (15).

EVT Devices and Techniques for ICAS-LVO
Stentrievers were the main devices described for use in
EVT in the RCTs, and the current guidelines recommend
mechanical thrombectomy with a strentriever in conjunction
with intravenous tPA as the standard of care in anterior
circulation stroke caused by LVOs (93). Owing to the
aforementioned characteristics of ICAS-LVO, better tools and
techniques are needed for smaller and/or tortuous arteries, the
minimization of vessel damage, and the facilitation of rescue
therapies. For these purposes, detachable stents with radio-
opaque markers for visualizing residual stenosis are required.
Stents with radiopaque design can provide better visualization of
stent-thrombus interaction during stentrieval process, and also
provide additional information on the nature of thrombus as
atherosclerotic lesion may appear as an area of strut compression
or waist. Permanent stent placement may be required in case of
residual stenosis or re-occlusion. In this situation, radiopaque
stent strip is informative in stent placement and detachability
is essential. However, no radiopaque detachable stentriever is
available until now; radiopaque trevo stent is not detachable while
solitaire AB is not radiopaque.

In cases in which the relevant artery is tortuous, a large bore
balloon guide catheter is preferred, and the stenotic segment of
the intracranial artery is crossed with microwire as distally as
possible to ensuremaximal support while allowing tracking of the
balloon guide catheter. To overcome vascular tortuosity, coaxial
double-guiding catheter technique, or double-wire technique
could be considered (94–96).

In addition, distal access catheters (such as intermediate
catheter) provide support and stability for microcatheters and
are also suitable for aspiration. The ability to deliver intermediate
catheters to the vicinity of the thrombus ensures the generation
of greater effective retrieval force by the device especially in
cases with significant vessel tortuosity. It also provides a strong
enough suction force to remove soft thrombi without using a
stent retriever (ADAPT, a direct aspiration first pass technique)
(43). Theoretically, this approach is ideal as it results in lesser
damage to vessels and underlying plaques, and it may prevent

the distal migration of clots to a greater extent than possible
with stentrievers. However, the contact aspiration technique
requires optimal contact between the aspiration catheter tip
and the thrombus, which depends on the location of the
thrombus and the tortuosity of the vessel (97). In some cases,
the contact aspiration technique may not be effective due to
imprecise positioning of the aspiration catheter tip relative
to the thrombus. The results of a recent RCT showed no
significant differences in the primary outcome of final successful
recanalization rates between ADAPT and stentrievers (98).
Stentrievers can also be used in conjunctionwith direct aspiration
at the face of a thrombus during thrombectomy (Solumbra
technique) (99, 100).

Rescue treatments, including balloon angioplasty, rescue
stenting, and intra-arterial glycoprotein IIb/IIIa inhibitor
infusion, can be considered for ICAS-LVO refractory to
stentriever (3). On the contrary, Yang and the ACUAL
investigators studied 302 patients with ICAS-LVO and reported
that patients who received angioplasty and/or stenting as
first-line therapy showed favorable outcome and lower rate of
intracranial bleeding than those received stentriever (10). Further
studies are needed in patients with ICAS-LVO to determine the
first-line device and technique for thrombectomy (stentriever,
ADAPT, or Solumbra), pharmacological adjunct (intravenous
tPA or intra-arterial antithrombotics), and cessation time for
procedures in cases of repetitive reocclusion.

CONCLUSIONS

Despite the recent success of EVT, there are still numerous
challenges with respect to management of ICAS-LVO.
Studies discussed herein suggest that there are more diverse
neuroimaging features in ICAS-LVO than in embolic occlusion.
While recent RCTs of EVT showed that appropriate selection is
important in AIS, selection of appropriate EVT procedures may
be more important in patients with ICAS-LVO. Patients with
ICAS-LVO usually have favorable hemodynamic profiles but
demonstrate poor response to EVT. Though ICAS-LVO requires
more complex and technically demanding recanalization
strategies than embolic occlusion, good outcomes are attainable
with the application of appropriate therapeutic strategies.

Future studies should focus on investigating reliable imaging
predictors related to response to EVT in ICAS-LVO patients,
and on developing and evaluating thrombectomy approaches
to overcome the characteristic drawback of reocclusion in
ICAS-LVO. Advanced neuroimaging of plaques, thrombi, and
collaterals could not be performed in the EVT setting. However,
post-EVT analysis may be useful for the characterization
of patients with ICAS-LVO, clearer understanding of the
pathophysiology of ICAS-LVO, and future guidance for optimal
therapeutic strategies for ICAS-LVO. For clinical use of
advanced neuroimaging techniques for patients with AIS,
fast, and safe assessment tools that can visualize individual
features of ICAS, automated software that allows fast post-
processing is mandatory, and is increasingly being used
in clinical trials (17, 29). In addition, optimal tools and
techniques for ICAS-LVO are not settled yet. Most of the
studies presented here were retrospective studies conducted
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in East Asian countries. It is necessary to conduct RCTs of
acute interventions for ICAS-LVO in diversified populations to
reach recommendations.
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