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Background-—Few previous studies used information on changes in fasting plasma glucose (FPG) assessed at multiple points in
time in relationship to cardiovascular disease (CVD) incidence. The present study aimed to identify subgroups of FPG trajectories
with assessing CVD incidence.

Methods and Results-—The present study was based on the Suita study, a population-based cohort study in Japan. The primary
outcome was incidence of the first CVD events consisting of stroke and coronary heart diseases between 1989 and 2013. The
main exposure was FPG assessed every 2 years. We used joint latent class mixed models to derive FPG trajectories over time while
evaluating cumulative incidence of CVD, and categorized participants into several subgroups based on those trajectories and
cumulative incidence. We observed 356 and 243 CVD events during the median follow-up of 17.2 and 20.2 years among 3120
men and 3482 women, respectively. The joint latent mixed models found 3 subgroups in men and 2 subgroups in women. Of the 3
subgroups in men, 1 subgroup had FPG levels that increased sharply (96.5–205.0 mg/dL from aged 40 to 80 years) and higher
CVD cumulative incidence. Of the 2 subgroups in women, 1 subgroup had FPG levels that increased sharply (97.7–190.5 mg/dL
from aged 40 to 80 years) and tended to have slightly higher CVD incidence compared with the other subgroup.

Conclusion-—It can be important to manage CVD risk factors especially for people whose FPG trajectories sharply increased to
prevent CVD. ( J Am Heart Assoc. 2019;8:e010628. DOI: 10.1161/JAHA.118.010628.)
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H igh blood glucose level can influence several etiologies
of cardiovascular diseases (CVD) such as atherosclero-

sis and oxidative stress.1–3 Previous studies showed that
people with high blood glucose had higher CVD incidence
than those without,2,4–10 and our cohort, the Suita Study,
showed similar results.6–8

Many previous studies did not investigate longitudinal
changes (ie, trajectories) of fasting plasma glucose (FPG) in
relationship to CVD incidence. In previous studies, FPG was
usually used one point in time but not for multiple points in
time (during the follow-up period), even though trajectories of

FPG may be useful to identify and prevent CVD incidence
early. Types of FPG trajectories were significantly associated
with incident myocardial infarction.11 In this study, compared
with people with a moderate-stable trajectory of FPG (4.9–
5.1 mmol/L for 4 years), people with an elevated-stable
trajectory of FPG (6.1–6.3 mmol/L for 4 years) developed
more myocardial infarction (hazard ratio=1.53).11

However, in this previous study, the types of FPG
trajectories were based only on FPG values assessed before
the baseline, which encouraged us to use all of the available
FPG values before CVD incidence to trajectory types. This can

From the Center for Cerebral and Cardiovascular Disease Information (S.O., M.N., E.K., Y.M.), Departments of Preventive Cardiology (M.W., Y.K., A.H., Y.M.N., Y.M.) and
Preventive Medicine and Epidemiology Informatics (Y.M.N., M.T., K.N.), and Division of Endocrinology and Metabolism (K.H.), National Cerebral and Cardiovascular
Center, Suita, Japan; Faculty of Nursing, School of Health Science, Fujita Health University, Toyoake, Japan (S.O.); Department of Health Science, Osaka University
Graduate School of Medicine, Suita, Japan (E.K.); Department of Preventive Medicine and Public Health, Keio University, Tokyo, Japan (T.O.).

Accompanying Tables S1, S2 and Figures S1, S2 are available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.118.010628

Correspondence to: Soshiro Ogata, RN, PhD, 5-7-1 Fujishirodai, Suita, Osaka, Japan. E-mail: s_ogata@ncvc.go.jp

Received August 14, 2018; accepted December 19, 2018.

ª 2019 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-
commercial and no modifications or adaptations are made.

DOI: 10.1161/JAHA.118.010628 Journal of the American Heart Association 1

ORIGINAL RESEARCH

info:doi/10.1161/JAHA.118.010628
https://www.ahajournals.org/doi/suppl/10.1161/JAHA.118.010628
mailto:
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


be conducted by joint latent class mixed models.12,13 The
joint latent class mixed models were used to identify long-
term trajectories of blood pressure and to assess stroke
incidence within those trajectories.14

The present study aimed to identify common subgroups of
FPG trajectories by using all of the available FPG values before
CVD incidence and to assess the cumulative incidence of CVD
within those subgroups. The present study was based on the
Suita study that is an ongoing cohort in a Japanese urban city
since 1989 and has assessed CVD onset and those risk
factors biennially. We believe that the description of FPG
trajectories in relationship to CVD incidence is possibly able
to improve guidelines for FPG controls to prevent CVD.

Methods

Data, Materials, and Code Disclosure Statement
Data are available on request from the authors. The data that
support the findings of this study are available from the
corresponding author and Yoshihiro Miyamoto (s_oga-
ta@ncvc.go.jp, miyamoty@ncvc.go.jp) upon reasonable
request.

Study Design and Participants
The present study was based on the Suita Study that is a
currently ongoing (in 2018) population-based cohort study in

Suita city as a Japanese urban city.15–17 The details of the
Suita study have been reported elsewhere.15–17 The present
paper used longitudinal data based on the Suita study
between 1989 and 2013. As the baseline, 12 200 and 3000
citizens, who lived in Suita city and were between age 30 and
79 years, were randomly selected in 1989 and 1996,
respectively, from municipality population registry of Suita
city and were stratified into groups by sex and age in 10-year
increments. Of the 12 200 citizens, 6485 participated in the
baseline examination between 1989 and 1996. Of the 3000
citizens, 1329 participated in the baseline examination
between 1996 and 1998. The Suita study was approved by
the Institutional Review Board of the National Cerebral and
Cardiovascular Center in Suita, Japan. All participants in the
study provided written informed consent.

The exclusion criteria of the present analyses were as
follows. We excluded people who had CVD histories before the
first assessment (n=355), were unable to be followed up
(n=282), moved into other cities before the first assessment
(n=21), had a history of transient ischemic attack at the
baseline (n=1), had an event before the first assessment (n=1),
and had no FPG values (n=378). Of the 6776 eligible
participants, 174 participants had missing values of covariates.
Thus, 6602 participants were analyzed in the present study.

Ascertainment of CVD
Detailed ascertainment of the outcome has been previously
described elsewhere.15–17 The main outcome was the
incidence of the first CVD events consisting of stroke and
coronary heart diseases. The health status of each participant
was assessed by physicians or nurses on biennial health
checkups at the National Cerebral and Cardiovascular Center.
Additionally, all participants completed questionnaires annu-
ally by mail or telephone. The patients suspected of CVD
onset were confirmed by a review of medical records
performed by either registered hospital or research physi-
cians. Furthermore, we performed a systematic search of
death certificates for fatal CVD. In Japan, all death certificates
are forwarded to the Ministry of Health, Welfare, and Labor
and coded for the National Vital Statistics.

In the Suita study, the definition of stroke is based on the
criteria used by the US National Survey of Stroke.18 Stroke
subtypes consisted of ischemic stroke, intracerebral hemor-
rhage, and subarachnoid hemorrhage, which were determined
by the examination of computed tomographic scans, magnetic
resonance images, or autopsies. Definite and probable
myocardial infarctions were defined according to the criteria
by the Monitoring Trends and Determinants in Cardiovascular
Disease (MONICA) project.19 In the Suita study, the criteria
for the diagnosis of CHD were initial acute myocardial
infarction, coronary intervention, and sudden cardiac death.

Clinical Perspective

What Is New?

• Many previous studies did not investigate longitudinal
changes (ie, trajectories) of fasting plasma glucose (FPG)
in relationship to incidence of cardiovascular diseases
(CVD); thus, the present study aimed to identify common
subgroups of FPG trajectories by using all of the available
FPG values before CVD incidence and to assess the
cumulative incidence of CVD within those subgroups.

What Are the Clinical Implications?

• The present study showed that a high risk of CVD incidence
was observed in people whose FPG trajectories sharply
increased, especially in men, and the present study also
suggested that management of multiple CVD risk factors
over time could be important to prevent CVD incidence,
especially in middle-aged men with high CVD risk factors.

• The present study warrants that FPG should be measured at
multiple points in time rather than at 1 point to understand
the association of FPG with CVD incidence and to predict
and prevent CVD incidence.
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Measured FPG and Potential Confounders
We performed routine fasting blood collection and immedi-
ately measured serum glucose and total cholesterol levels in
the same laboratory of the National Cerebral and Cardiovas-
cular Center. In the present analyses, we used FPG levels
measured after the participants had fasted for at least
8 hours.

The present study considered baseline body mass index
(BMI, kg/m2), systolic blood pressure (SBP, mm Hg), non-
high-density-lipoprotein cholesterol (non-HDL-c, mg/dL),
smoking status (ever [current or past]/never as the
reference), alcohol drinking status (ever/never as the
reference), and medication uses for diabetes mellitus,
hypertension, or dyslipidemia (yes/no as the reference) as
potential confounders on considering previous studies that
investigated risk scores of diabetes mellitus20 and associ-
ation of glycemic status and CVD incidence.21 Height and
weight were measured in light clothing, and BMI was
calculated as weight (kg) divided by the square of height
(m2). BP was measured 3 times in a sitting position after
5 minutes of rest by well-trained physicians using a
standard mercury sphygmomanometer. The average of the
second and the third measurements was used for the
analyses. Non-HDL-c was calculated by subtracting HDL-c
from the total cholesterol. Participants reported smoking
status, alcohol drinking status, and medication uses for
hypertension, diabetes mellitus, and dyslipidemia in the
questionnaires.

Statistical Analyses
Baseline characteristics of the present study were summarized
by means and standard deviations for continuous variables and
by n and percent for categorical variables. Joint latent class
mixed models were conducted to identify common subgroups
of FPG trajectories overage and to assess risks of CVD within
those subgroups. Joint latent class mixed models aim to
describe associations between longitudinal trajectories of
exposure (eg, FPG) assessed at multiple points in time and
incidence of an outcome (eg, CVD).12,13 Joint latent class mixed
models also aim to categorize participants into several
unmeasured subgroups (ie, latent classes) that are assumed
to be mutually exclusive. Joint latent class mixed models
assume that the population of participants is heterogeneous
while consisting of several homogeneous unmeasured sub-
groups (ie, latent classes) where participants within a subgroup
share the same mean longitudinal trajectories of exposure and
incidence of the outcome. Thus, joint latent class mixed
models can find common subgroups of FPG trajectories over
age and assess risks of CVD within those subgroups. We used
Jointlcmm function from the R package lcmm22 in the
statistical software R.23

For longitudinal trajectories function, we modeled FPG over
age from 30 years old by a class-specific mixed model with
age as time with spline link function, and random intercepts
and slopes of age with adjusting for age, BMI, SBP, non-HDL-c,
smoking status, alcohol drinking status, and medication uses
for diabetes mellitus, hypertension, or dyslipidemia at base-
line. We determined the optimal number of spline nods based
on the lowest Bayesian Information Criterion (BIC) among
models with 1 latent class. A smaller BIC indicates a better
balance of the model fit to the observed data while
considering the simplicity of the model. The optimal numbers
of splines were 7 for men and 9 for women. For survival
function, we used dates of CVD incidence as the main
outcome, dates of CVD-free deaths as the competing risk, and
the last date of the follow-up or December 31, 2013, as the
censored, among which came first. CVD-free mortality was
modeled as the competing risk because this could be 1 of the
major competing risks for the CVD incidence. Thus, the
survival functions were set by a 2-parameter Weibull distri-
bution with class-specific baseline risk functions for CVD as
the primary outcome and CVD-free mortality as the competing
risk.13 Linearity assumptions of the covariates in the Weibull
models were checked by plotting log survival time versus log
[�log(Kaplan–Meier)] that shows linear and parallel lines if the
models are adequate (Figure S1). The linearity assumptions
were satisfied in all covariates except medication use for
dyslipidemia. Thus, for the survival function, all models were
adjusted for age, BMI, SBP, non-HDL-c, smoking status,
alcohol drinking status, and medication uses for diabetes
mellitus, or hypertension at baseline. Additionally, all analyses
were stratified by sex because FPG levels and its changes
over time could largely differ between men and women.

We determined the optimal number of subgroups (ie, latent
classes)12 by the smallest BIC for men and women. A smaller
BIC indicates a better balance of the model fit to the observed
data while considering the simplicity of the model. Addition-
ally, we divided the present data set into 10 data sets for
sensitivity analyses to determine the optimal number of the
subgroups. From the 10 data sets, we excluded 1 data set,
used the remaining 9 data sets to perform the joint latent
class mixed models with 1 to 4 subgroups for men and 1 to 3
subgroups for women, and obtained BICs of those models. We
repeated this procedure 10 times for both men and women.
The BICs were summarized (Tables S1 and S2).

Furthermore, we used a score test method to check an
assumption of joint latent class mixed models, the conditional
independence between the time to event (ie, CVD onset in the
present study) and the repeated risk factors (ie, FPG
trajectories in the present study) given the latent classes.24

The null hypothesis of the score test is that independence
between the repeated risk factors and the outcome onset
given the latent classes; thus, no significant P-values show
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that the assumption is satisfied.24 Finally, we checked
residuals of the best models in men and women by plotting
residuals versus fitted values, and by plotting fitted values
versus actual observed values (Figure S2).

We used Monte Carlo method to calculate and plot
predicted values of trajectories of FPG and predicted values of
cumulative incidences of CVD in each latent class for the
following specified profile of covariates: the mean value for
BMI, SBP, and non-HDL-c at baseline, people without med-
ication uses for diabetes mellitus, hypertension, and dyslipi-
demia at baseline (because almost all people did not use
those medications), women with never smoking and never
alcohol drinking at baseline (because almost all women had
never smoking and never alcohol drinking), and men with ever
(ie, current or past) smoking and ever alcohol drinking at
baseline (because almost all men had ever smoking and ever
alcohol drinking). The 95% CI of those predicted values was
computed by a Monte Carlo approximation of the posterior
distribution of the predicted values, and the median, 2.5% and
97.5% percentiles were obtained.22 Models with different
random starting values were analyzed to ensure convergence
to the global maximum of the model.12

We summarized the baseline characteristics of the present
study by means and SD for continuous variables and by n and
percent for categorical variables according to the estimated
subgroups.We also calculated differences between the first and
last assessments of the continuous variables and n and percent
for the categorical variables at the last assessment of each
participant. Themean differences and 95%CIs in SBP, BMI, non-
HDL-c, and FPG at baseline among the estimated subgroups
were obtained by regression analyses with adjusting for age,
BMI, SBP, non-HDL-c, smoking status, alcohol drinking status,
and medication uses for diabetes mellitus, hypertension, or
dyslipidemia at baseline. Additionally, mean differences and
95% CIs among the estimated subgroups in differences of SBP,
BMI, non-HDL-c, and FPG between the first and last assess-
ments were estimated by regression analyses with adjusting for
those covariates.We also obtained odds ratios (OR) and 95%CIs
for smoking and alcohol drinking status at baseline and the last
assessment among the estimated subgroups by multinomial
logistic regression with adjusting for those covariates.

Results
The baseline characteristics of the present participants were
summarized in Table 1 for men and Table 2 for women. During
the median (interquartile range) follow-up of 17.2 (12.2) years
and 20.2 (8.8) years, we observed 356 (11.4%) and 243 (7.0%)
CVD events among 3120 men and 3482 women, respectively.

To decide the optimal number of subgroups (ie, latent
classes) for men, we compared BICs obtained by joint latent
class mixed models. The BICs were 118 521.5, 118 375.1,

118 321.1, and 118 360.2 for models with 1 to 4 subgroups.
Based on the lowest BIC, the optimal number of subgroups
was 3 for men. Sensitivity analyses also showed that the
optimal number of subgroups was 3 for men based on BIC in
Table S1. The model with 3 subgroups showed means of
posterior class membership probabilities (ie, the probability
that a person most likely belongs to his class): 74.4%, 91.0%,
and 73.0% for the first, second, and third subgroups,
respectively.

Additionally, the score test showed conditional indepen-
dence between repeated measurements of FPG and the CVD
onset (P=0.120). Thus, we selected themodel with 3 subgroups
as the best model. Characteristics of men according to the 3
subgroups were summarized in Tables 1 and 3.

Among the best model for men, longitudinal trajectories of
FPG and CVD cumulative incidence in the 3 subgroups were
shown in Figure 1. The estimated median values of FPG levels
in the major subgroup (ie, the second class) started from
91.76 (90.98, 92.46) mg/dL at age 40 years and gradually
increased to 106.54 (104.54, 108.79) mg/dL at age
80 years, which was associated with CVD cumulative inci-
dence that increased gradually (the cumulative incidence rate
[95% CI]: 0.46 [0.15, 1.18] % at age 40 years and 13.10 [6.70,
22.90] % at 80 years). Compared with the major group, the
third subgroups had sharply increasing FPG levels associated
with higher cumulative incidences of CVD. In the first class,
higher FPG levels at middle age and stable over time were
observed, which was associated with low CVD cumulative
incidence (Table 4).

To select the optimal number of subgroups for women,
BICs of models were compared as follows. The BICs were
127 647.7, 127 514.4, and 127 555.0 for models with 1 to 3
subgroups in women, showing that the model with 2
subgroups was the best model by the lowest BIC among the
3 models. Sensitivity analyses also showed that the optimal
number of subgroups was 2 for women based on BIC in
Table S2. The model with 2 subgroups showed means of
posterior class membership probabilities (ie, the probability
that a person most likely belongs to her class): 80.4% and
96.7% for the first and second subgroups, respectively.
Additionally, the score test showed conditional independence
between repeated measurements of FPG and the CVD onset
(P=0.503). Thus, we selected the model with 2 subgroups as
the best model. Tables 2 and 5 show characteristics for
women stratified by the 2 subgroups.

Longitudinal trajectories of FPG and CVD cumulative
incidence in the 2 subgroups of the best model for women
were shown in Figure 2. The estimated median values of FPG
levels in the major subgroup (ie, the second class) started from
87.96 (87.48, 88.43) mg/dL at age 40 years, and gradually
increased to 101.35 (100.44, 102.24) mg/dL at age 80 years,
which was associated with CVD cumulative incidence that
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increased gradually (the cumulative incidence rate [95% CI]: 0.1
[0.0, 0.2] % at age 40 years and 4.6 [2.4, 8.4] % at age
80 years). Compared with the major group, the first subgroup
had sharply increasing FPG levels (97.65 [94.80, 100.87]
mg/dL and 190.45 [170.16, 218.15] mg/dL for ages 40 and

80 years, respectively). The higher cumulative incidence of
CVD was also observed (0.2 [0.0, 1.5] % and 8.9 [3.9, 17.6] % at
ages 40 and 80 years, respectively) in the first subgroup
compared with the major subgroup. For the details, please see
Table 6.

Table 1. Baseline Characteristics of the Male Participants, and Mean Differences and ORs in CVD Risk Factors According to
Subgroups Estimated by Joint Latent Class Mixed Models in the Suita Study

Subgroups (Classes) First Second Third All

n (%) 101 (3.2) 2766 (88.7) 253 (8.1) 3120 (100)

Baseline continuous variables, mean (SD)

Age at baseline, y 54.51 (10.87) 55.84 (13.43) 53.49 (11.37) 55.60 (13.21)

Body mass index, kg/m2 23.27 (3.01) 22.74 (2.83) 23.59 (3.00) 22.83 (2.86)

Systolic blood pressure, mm Hg 129.77 (18.82) 127.92 (21.02) 127.76 (19.19) 127.97 (20.81)

Diastolic blood pressure, mm Hg 81.17 (10.18) 79.56 (12.05) 79.74 (12.65) 79.63 (12.04)

Non-HDL cholesterol, mg/dL 156.49 (32.57) 150.72 (35.00) 152.32 (36.16) 151.04 (35.03)

Fasting plasma glucose, mg/dL 143.59 (41.57) 97.75 (12.70) 118.04 (29.43) 100.88 (18.97)

Baseline categorical variables, n (%)

Medication use for diabetes mellitus 5 (5.0) 60 (2.2) 7 (2.8) 72 (2.3)

Medication use for hypertension 13 (12.9) 320 (11.6) 25 (9.9) 358 (11.5)

Medication use for dyslipidemia 2 (2.0) 31 (1.1) 3 (1.2) 36 (1.2)

Smoking status

Never 13 (12.9) 542 (19.6) 45 (17.8) 600 (19.2)

Past 33 (32.7) 860 (31.1) 60 (23.7) 953 (30.5)

Current 55 (54.5) 1364 (49.3) 148 (58.5) 1567 (50.2)

Alcohol drinking status

Never 10 (9.9) 608 (22.0) 55 (21.7) 673 (21.6)

Past 3 (3.0) 93 (3.4) 10 (4.0) 106 (3.4)

Current 88 (87.1) 2065 (74.7) 188 (74.3) 2341 (75.0)

Mean differences (95% CIs) in baseline CVD risk factors compared with the second subgroup (ie, the major subgroup)*

Body mass index, kg/m2 0.29 (�0.24, 0.81) Ref. 0.75 (0.41, 1.1) ���
Systolic blood pressure, mm Hg 1.30 (�2.18, 4.78) Ref. 0.75 (�1.51, 3.01) ���
Non-HDL cholesterol, mg/dL 4.96 (�1.71, 11.62) Ref. �1.18 (�5.51, 3.15) ���
Fasting plasma glucose, mg/dL 43.88 (41.1, 46.66) Ref. 19.71 (17.9, 21.51) ���

ORs (95% CIs) for smoking and alcohol drinking compared with the second subgroup (ie, the major subgroup)†

Smoking status

Past (vs never) 1.6 (0.83, 3.1) Ref. 0.95 (0.63, 1.43) ���
Current (vs never) 1.7 (0.92, 3.16) Ref. 1.44 (1.01, 2.05) ���

Alcohol drinking status

Past (vs never) 1.83 (0.49, 6.88) Ref. 1.36 (0.66, 2.79) ���
Current 2.4 (1.23, 4.67) Ref. 0.91 (0.66, 1.26) ���

CVD, cardiovascular diseases; non-HDL cholesterol, non-high-density-lipoprotein cholesterol; OR, odds ratio.
*Mean differences were adjusted for baseline age, body mass index, systolic blood pressure, non-HDL cholesterol, smoking status, alcohol drinking, and medication uses for diabetes
mellitus, hypertension, and dyslipidemia by multiple regression analyses.
†ORs were adjusted for baseline age, body mass index, systolic blood pressure, non-HDL cholesterol, smoking status, alcohol drinking, and medication uses for diabetes mellitus,
hypertension, and dyslipidemia by multinomial logistic regression analyses.
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Discussion

The present study showed that men and women were
categorized into 3 and 2 subgroups, respectively, based on
the trajectories of FPG and CVD incidence by joint latent

mixed models. Of the 3 subgroups in men, 1 subgroup had
FPG levels that increased sharply and higher CVD cumu-
lative incidence than the other groups (8.1% of men). Of
the 3 subgroups in men, the other subgroups had low CVD
cumulative incidence with high FPG levels at middle age

Table 2. Baseline Characteristics of the Female Participants, and Mean Differences and ORs in CVD Risk Factors According to
Subgroups Estimated by Joint Latent Class Mixed Models in the Suita Study

Subgroups (Classes) First Second All

n(%) 185 (5.3) 3297 (94.7) 3482 (100)

Baseline continuous variables, mean (SD)

Age at baseline, y 52.97 (11.37) 54.00 (12.98) 53.95 (12.90)

Body mass index, kg/m2 23.49 (3.90) 22.12 (3.23) 22.20 (3.28)

Systolic blood pressure, mm Hg 128.03 (20.84) 124.45 (21.96) 124.64 (21.91)

Diastolic blood pressure, mm Hg 78.46 (12.11) 75.45 (11.96) 75.61 (11.98)

Non-HDL cholesterol, mg/dL 161.36 (44.04) 154.00 (38.73) 154.39 (39.06)

Fasting plasma glucose, mg/dL 126.41 (42.06) 94.20 (11.24) 95.91 (16.29)

Baseline categorical variables, n (%)

Medication use for diabetes mellitus 4 (2.2) 42 (1.3) 46 (1.3)

Medication use for hypertension 26 (14.1) 346 (10.5) 372 (10.7)

Medication use for dyslipidemia 4 (2.2) 94 (2.9) 98 (2.8)

Smoking status

Never 153 (82.7) 2784 (84.4) 2937 (84.3)

Past 10 (5.4) 122 (3.7) 132 (3.8)

Current 22 (11.9) 391 (11.9) 413 (11.9)

Alcohol drinking status

Never 129 (69.7) 2181 (66.2) 2310 (66.3)

Past 1 (0.5) 49 (1.5) 50 (1.4)

Current 55 (29.7) 1067 (32.4) 1122 (32.2)

Mean differences (95% CI) in baseline CVD risk factors compared with the second subgroup (ie, the major subgroup)*

Body mass index, kg/m2 1.04 (0.59, 1.5) Ref. ���
Systolic blood pressure, mm Hg 1.84 (�0.77, 4.44) Ref. ���
Non-HDL cholesterol, mg/dL 4.29 (�0.94, 9.52) Ref. ���
Fasting plasma glucose, mg/dL 30.68 (28.79, 32.58) Ref. ���

ORs (95% CI) for smoking and alcohol drinking compared with the second subgroup (ie, the major subgroup)†

Smoking status

Past (vs never) 1.63 (0.83, 3.20) Ref. ���
Current (vs never) 1.06 (0.66, 1.69) Ref. ���

Alcohol drinking status

Past (vs never) 0.35 (0.05, 2.58) Ref. ���
Current 0.80 (0.57, 1.12) Ref. ���

CVD, cardiovascular diseases; non-HDL cholesterol, non-high-density-lipoprotein cholesterol; OR, odds ratio.
*Mean differences were adjusted for baseline age, body mass index, systolic blood pressure, non-HDL cholesterol, smoking status, alcohol drinking, and medication uses for diabetes
mellitus, hypertension, and dyslipidemia by multiple regression analyses.
†ORs were adjusted for baseline age, body mass index, systolic blood pressure, non-HDL cholesterol, smoking status, alcohol drinking, and medication uses for diabetes mellitus,
hypertension, and dyslipidemia by multinomial logistic regression analyses.
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and stable over time (3.2% of men) and with low FPG levels
at middle age and stable over time (88.7% of men). In
women, 1 subgroup had low FPG levels that were stable
over time (94.7% of women), and the other subgroup had
FPG levels that increased sharply (5.3% of women).

Although the 2 subgroups had similar CVD cumulative
incidence, the subgroup with FPG levels that increased
sharply tended to have a little higher CVD incidence. To our
best knowledge, the present study was the first study that
identified common subgroups of FPG trajectories with

Table 3. Descriptive Statistics of Differences in Continuous CVD Risk Factors Between the First and Last Assessments With Mean
Differences, and Descriptive Statistics of Categorical CVD Risk Factors at the Last Assessment With ORs According to Subgroups
Estimated by Joint Latent Class Mixed Models in Men of the Suita Study

Subgroups (Classes) First Second Third All

n (%)* 89 (3.5) 2248 (88.5) 203 (8.0) 2540 (100)

Differences between the first and last assessments of each participant, mean (SD)

Body mass index, kg/m2 �0.85 (1.98) 0.03 (1.90) 0.05 (2.15) 0.00 (1.93)

Systolic blood pressure, mm Hg 1.86 (19.65) 2.78 (19.90) 5.51 (21.67) 2.97 (20.05)

Non-HDL cholesterol, mg/dL �18.51 (31.81) �9.99 (32.42) �6.40 (42.09) �10.00 (33.31)

Fasting plasma glucose, mg/dL �0.34 (61.77) 4.02 (14.18) 35.73 (41.62) 6.40 (22.88)

Categorical variables at the last assessment, n (%)

Treatment for diabetes mellitus 46 (51.7) 105 (4.7) 69 (34.0) 220 (8.7)

Treatment for hypertension 32 (36.0) 697 (31.0) 67 (33.0) 796 (31.3)

Treatment for dyslipidemia 15 (16.9) 233 (10.4) 30 (14.8) 278 (10.9)

Smoking status

Never 14 (15.7) 547 (24.4) 36 (17.7) 597 (23.5)

Past 47 (52.8) 1027 (45.7) 100 (49.3) 1174 (46.3)

Current 28 (31.5) 672 (29.9) 67 (33.0) 767 (30.2)

Alcohol drinking habit

Never 18 (20.2) 706 (31.4) 62 (30.5) 786 (31.0)

Past 8 (9.0) 153 (6.8) 10 (4.9) 171 (6.7)

Current 63 (70.8) 1387 (61.8) 131 (64.5) 1581 (62.3)

Mean differences (95% CIs) in the differences in the CVD risk factors between the first and last assessments compared with the second subgroup (ie, the
major subgroup)†

Body mass index, kg/m2 �0.81 (�1.20, �0.42) Ref. �0.03 (�0.30, 0.23) ���
Systolic blood pressure, mm Hg 0.40 (�3.24, 4.05) Ref. 2.57 (0.08, 5.07) ���
Non-HDL cholesterol, mg/dL �6.46 (�12.44, �0.48) Ref. 5.15 (1.06, 9.24) ���
Fasting plasma glucose, mg/dL �4.71 (�9.14, �0.28) Ref. 29.77 (26.74, 32.80) ���

ORs (95% CIs) for smoking and alcohol drinking at the last assessment compared with the second subgroup (ie, the major subgroup)‡

Smoking status

Past (vs never) 1.33 (0.59, 3.00) Ref. 1.44 (0.79, 2.62) ���
Current (vs never) 1.07 (0.40, 2.81) Ref. 1.08 (0.54, 2.15) ���

Alcohol drinking habit

Past (vs never) 1.53 (0.60, 3.88) Ref. 0.90 (0.42, 1.93) ���
Current 1.23 (0.62, 2.44) Ref. 1.13 (0.71, 1.82) ���

CVD indicates cardiovascular diseases; non-HDL cholesterol, non-high-density-lipoprotein cholesterol; OR, odds ratio.
*Of the 3120 men, 580 did not have values of those variables at >1 point in time (ie, they had those values at baseline only and dates of CVD onset).
†Mean differences were adjusted for baseline age, body mass index, systolic blood pressure, non-HDL cholesterol, smoking status, alcohol drinking, and treatment for diabetes mellitus,
hypertension, and dyslipidemia by multiple regression analyses.
‡ORs were adjusted for baseline age, body mass index, systolic blood pressure, non-HDL cholesterol, smoking status, alcohol drinking, and treatment for diabetes mellitus, hypertension,
and dyslipidemia by multinomial logistic regression analyses.
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calculating cumulative incidence of CVD within those
subgroups and showed that high risk of CVD incidence
was observed in people whose FPG trajectories sharply
increased.

FPG trajectory types can be important to predict and/or
prevent CVD incidence considering previous and present
studies. In a previous study investigating associations of
FPG trajectories with MI incidence, compared with people
in a moderate-stable trajectory of FPG (4.9–5.1 mmol/L)
during 4 years before the baseline, MI incidence during
4 years after the baseline was much observed (hazard
ratio=1.53) in an elevated-stable trajectory of FPG

(6.1–6.3 mmol/L), and less observed (hazard ratio=0.61)
in an elevated-decreasing trajectory (6.0–5.4 mmol/L).11

This previous study derived FPG trajectories based only on
FPG values assessed before the baseline. Thus, the present
study has newly shown associations between types of FPG
trajectories and the CVD cumulative incidence by utilizing
all of the available FPG values before CVD incidence in the
joint latent class mixed models. Both the previous and
present studies showed importance to assess FPG levels at
multiple points in time to predict and prevent CVD
incidence. Note that FPG measured at one point in time
is still a significant risk factor.25,26

Figure 1. Trajectories of fasting plasma glucose (mg/dL) and cumulative incidence of cardiovascular
diseases in men. The best-fitted model of the joint latent mixed model shows 3 subgroups based on
trajectories of fasting plasma glucose and cumulative incidence of cardiovascular diseases. The solid
line represents the average fasting plasma glucose in each of the 3 classes for the mean of baseline
age, body mass index, systolic blood pressure, non-high-density-lipoprotein cholesterol in people with
smoking (current or past) and alcohol drinking (current or past), and people without medication uses for
diabetes mellitus, hypertension, and dyslipidemia at baseline. Dotted lines represent 95% CIs obtained
by the Monte Carlo method. The right figure shows the average cumulative incidence of cardiovascular
diseases in each of the 3 classes for the mean of baseline age, body mass index, systolic blood
pressure, non-high-density-lipoprotein cholesterol in people with smoking (current or past) and alcohol
drinking (current or past), and people without medication uses for diabetes mellitus and hypertension at
baseline.
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Interestingly, the present study suggests that manage-
ment of multiple CVD risk factors over time could lead to
the prevention of CVD incidence. The present study showed
the cumulative CVD incidence in the first subgroup of men,
although FPG levels were higher and stable over time, was
as low as that of the second subgroup with relatively lower
risk. In the first group, levels of CVD risk factors decreased
more (�0.34 mg/dL for FPG, �18.51 mg/dL for non-HDL-c,
and �0.85 kg/m2 for BMI) or increased less (1.86 mm Hg
for SBP) between the first and the last assessments compared
with the other subgroups (Table 3). The proportions of
medication uses for hypertension, diabetes mellitus, and
dyslipidemia were also highest at the last assessment. The
first subgroup of men may have been well intervened with
medication uses or lifestyle modification and succeeded in
improvement. In fact, previous studies showed that CVD was
prevented in patients with type 2 diabetes mellitus by a
multifactorial intervention that aims to decrease multiple CVD
risk factors at the same time such as levels of blood glucose,
blood pressure, and cholesterol.27,28 Thus, continuous man-
agement of multiple CVD risk factors could be important in
preventing CVD in middle-aged men at higher risk from
increased FPG, though further research is necessary for a
conclusive statement.

In the present study, the number of subgroups based on
trajectories of FPG and CVD incidence by joint latent mixed
models was 3 in men, but 2 in women. This sex difference
could be explained by sex differences of CVD risk profiles.
Women, especially middle-aged women, have been reported
to have better CVD risk profiles compared with men such
as lower prevalence of obesity, diabetes mellitus, hyperten-
sion, and dyslipidemia, and lower levels of SBP, FPG, and
triglyceride.29,30 In the present study, compared with men,
women had lower levels of the baseline SBP (124.6 mm Hg
for women and 127.97 mm Hg for men) and FPG
(95.9 mg/dL for women and 100.9 mg/dL for men). In
the present study, women also had lower prevalence of the

baseline current smoking (11.9% for women and 50.2% for
men) and current alcohol drinking (32.2% for women and
75.0% for men) compared with men. However, as the
present study was observational, it was unable to reveal the
sex differences.

The present results could be supported by the following
possible biological mechanisms. Insulin resistance in pre-
diabetes mellitus and diabetes mellitus can promote
atherogenesis by influencing endothelium, vascular wall,
smooth muscle cells, and so on, which likely contributes to
the elevated risk of CVD.1 Additionally, a possible mech-
anism for the association can be oxidative stress, 1 of the
risk factors for CVD.2 Insulin resistance, hyperglycemia, and
glycemic variability can increase oxidative stress by over-
production of reactive oxygen species, and activate path-
ways leading to diabetes mellitus complications such as
microvascular and macrovascular complications, including
CVD.1–3 Furthermore, coexisting risk factors may cause
CVD incidence in people with elevated FPG. People with
high prediabetes mellitus usually have hypertension, dys-
lipidemia, obesity, and metabolic syndrome as classic CVD
risk factors.31 However, the present study used an
observational design and was unable to reveal mechanisms
of the association between FPG trajectories and CVD
incidence.

The present study has the following strengths. First, we
measured FPG at multiple points in time during long-term
follow-up. This allowed us to find subgroups based on FPG
trajectories and CVD incidence by latent class joint mixed
models. Second, our participants were randomly selected
from the municipality population registry of Suita City, an
urban city in Japan. Thus, the present results can be
generalized to Japanese people living in urban cities corre-
sponding to two thirds of the Japanese population.

The present study was limited by the following points.
First, the outcome of the present study was all CVD
combining stroke and CHD because the number of incident

Table 4. Estimation of FPG Levels and CVD Cumulative Incidence (95% CI) According to Subgroups and Age Estimated by Joint
Latent Class Mixed Models in Men

Subgroups (Classes) First Second Third

n (%) 101 (3.2) 2766 (88.7) 253 (8.1)

FPG (mg/dL) at 40 y 142.26 (127.23, 163.11) 91.76 (90.98, 92.46) 96.54 (93.07, 100.41)

FPG (mg/dL) at 60 y 127.60 (120.68, 135.61) 97.65 (96.89, 98.30) 121.25 (115.76, 128.10)

FPG (mg/dL) at 80 y 120.86 (110.11, 137.57) 106.54 (104.54, 108.79) 204.99 (182.64, 226.64)

CVD cumulative incidence (%) at 40 y 0.00 (0.00, 0.78) 0.46 (0.15, 1.18) 0.62 (0.10, 2.88)

CVD cumulative incidence (%) at 60 y 0.06 (0.00, 4.91) 3.39 (1.51, 7.16) 9.39 (3.16, 20.46)

CVD cumulative incidence (%) at 80 y 2.68 (0.21, 17.68) 13.10 (6.70, 22.90) 39.81 (22.24, 56.29)

Note that this table corresponds to Figure 1. CVD indicates cardiovascular diseases; FPG, fasting plasma glucose.

DOI: 10.1161/JAHA.118.010628 Journal of the American Heart Association 9

FPG Trajectories and CVD Incidence Ogata et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



CVD was too small to evaluate CVD types. Second, the
median number of FPG measurements were 4 for men and 5
for women, which could imply that more FPG measurement
points in time allow us to obtain models more precisely and
to find different trajectories. However, we considered that

the present study could have a sufficient number of
measurement points in time to find subgroups with high
risks for CVD based on FPG trajectories. Additionally, the
present study can warrant further studies to assess
trajectories of CVD risk factors measured at more points

Table 5. Descriptive Statistics of Differences in Continuous CVD Risk Factors Between the First and Last Assessments With Mean
Differences, and Descriptive Statistics of Categorical CVD Risk Factors at the Last Assessment With ORs According to Subgroups
Estimated by Joint Latent Class Mixed Models in Women of the Suita Study

Subgroups (Classes) First Second All

n (%)* 141 (5) 2746 (95) 2887 (100)

Differences between the first and last assessments of each participant, mean (SD)

Body mass index, kg/m2 �0.23 (2.01) �0.04 (1.96) �0.05 (1.96)

Systolic blood pressure, mm Hg 3.07 (18.13) 3.77 (20.30) 3.74 (20.19)

Non-HDL cholesterol, mg/dL �5.01 (42.28) �4.56 (37.95) �4.59 (38.17)

Fasting plasma glucose, mg/dL 24.41 (35.70) 3.95 (12.21) 4.95 (14.94)

Categorical variables at the last assessment, n (%)

Treatment for diabetes mellitus 67 (47.5) 78 (2.8) 145 (5.0)

Treatment for hypertension 49 (34.8) 805 (29.3) 854 (29.6)

Treatment for dyslipidemia 24 (17.0) 544 (19.8) 568 (19.7)

Smoking status

Never 123 (87.2) 2353 (85.9) 2476 (86.0)

Past 7 (5.0) 181 (6.6) 188 (6.5)

Current 11 (7.8) 204 (7.5) 215 (7.5)

Alcohol drinking habit

Never 108 (76.6) 1996 (72.8) 2104 (73.0)

Past 3 (2.1) 59 (2.2) 62 (2.2)

Current 30 (21.3) 687 (25.1) 717 (24.9)

Mean differences (95% CI) in the differences in the CVD risk factors between the first and last assessments compared with the second subgroup
(ie, the major subgroup)†

Body mass index, kg/m2 �0.13 (�0.45, 0.20) Ref. ���
Systolic blood pressure, mm Hg �0.53 (�3.46, 2.39) Ref. ���
Non-HDL cholesterol, mg/dL 1.97 (�2.99, 6.92) Ref. ���
Fasting plasma glucose, mg/dL 19.77 (17.35, 22.19) Ref. ���

ORs (95% CI) for smoking and alcohol drinking at the last assessment compared with the second subgroup (ie, the major subgroup)‡

Smoking status

Past (vs never) 0.48 (0.17, 1.37) Ref. ���
Current (vs never) 0.57 (0.19, 1.71) Ref. ���

Alcohol drinking habit

Past (vs never) 0.83 (0.25, 2.82) Ref. ���
Current 0.67 (0.39, 1.14) Ref. ���

CVD, cardiovascular diseases; non-HDL cholesterol, non-high-density-lipoprotein cholesterol; OR, odds ratio.
*Of the 3482 women, 595 did not have values of those variables at >1 point in time (ie, they had those values at baseline only and dates of CVD onset).
†Mean differences were adjusted for baseline age, body mass index, systolic blood pressure, non-HDL cholesterol, smoking status, alcohol drinking, and treatment for diabetes mellitus,
hypertension, and dyslipidemia by multiple regression analyses.
‡ORs were adjusted for baseline age, body mass index, systolic blood pressure, non-HDL cholesterol, smoking status, alcohol drinking, and treatment for diabetes mellitus, hypertension,
and dyslipidemia by multinomial logistic regression analyses.
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in time to predict and prevent CVD events and to
understand associations of CVD risk factors’ trajectories
with CVD incidence. Third, the present study was unable to
reveal biological mechanisms associated with FPG trajecto-
ries and CVD incidence, and it was also unable to reveal sex
differences that may have been indicated in relation. This
was because the present study was an observational study.
Thus, we warrant future studies to investigate pathogenic
importance of FPG changes on CVD incidence, especially
because control of FPG elevation can be a new strategy to
prevent CVD events if biological mechanisms support
trajectories and/or change rates of FPG are causal risk
factors for CVD events (ie, not just a reflection of lifestyle

changes). Note that the aims of the present study were to
identify common subgroups of FPG trajectories and to
assess the cumulative incidence of CVD within those
subgroups, but were neither to develop nor optimize
prediction models for CVD. Thus, knowledge suggested by
the present study may not be useful to improve the
prediction models for CVD.

In conclusion, the present study showed that a high risk
of CVD incidence was observed in people whose FPG
trajectories sharply increased, especially in men. We also
suggested that management of multiple CVD risk factors
over time could be important to prevent CVD incidence,
especially in middle-aged men with high CVD risk factors.

Figure 2. Trajectories of fasting plasma glucose (mg/dL) and cumulative incidence of cardiovascular
diseases in women. The best-fitted model of the joint latent mixed model shows 2 subgroups based on
trajectories of fasting plasma glucose and cumulative incidence of cardiovascular diseases. The solid line
represents the average fasting plasma glucose in each of the 2 classes for the mean of baseline age, body
mass index, systolic blood pressure, non-high-density-lipoprotein cholesterol in people without smoking and
alcohol drinking, and people without medication uses for diabetes mellitus, hypertension, and dyslipidemia
at baseline. Dotted lines represent 95% Cis obtained by the Monte Carlo method. The right figure shows the
average cumulative incidence of cardiovascular diseases in each of the 2 classes for the mean of baseline
age, body mass index, systolic blood pressure, non-high-density-lipoprotein cholesterol in people without
smoking and alcohol drinking, and people without medication uses for diabetes mellitus and hypertension
at baseline.
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The present study warrants that FPG should be measured
at multiple points in time rather than at one point to
understand the association of FPG with CVD incidence and
to predict and prevent CVD incidence.
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Tables S1 and S2. Sensitivity analyses for model selection (i.e., the number of the subgroups) 

We divided the original dataset of the present study into ten datasets for sensitivity analyses to determine the optimal 

number of the subgroups in the joint latent class mixed models. From the ten datasets, we excluded one dataset and used 

the remaining nine datasets to perform the joint latent class mixed models with one to four subgroups for men and one to 

three subgroups for women, and obtained BICs of those models. We repeated this procedure ten times for both men and 

women. The BICs were summarized (Tables S1 and S2) showing that the models with three subgroups for men and two 

subgroups for women were the best.  

  



Table S1. BICs obtained by joint latent class mixed models for men based on 

data randomly derived from the original dataset. 

Models Model 1 Model 2 Model 3 Model 4 

First dataset 105375.4 105246.8 105201 105236.2 

Second dataset 106298.7 106176.1 106133 106173.2 

Third dataset 107398.3 107282.5 107229 107268.1 

Fourth dataset 106629.6 106491.3 106444 106485.4 

Fifth dataset 106727.3 106601.4 106553 106592.8 

Sixth dataset 107071.7 106928.9 106871 106910 

Seventh 

dataset 
107137.8 107000.4 106962 107001.8 

Eighth dataset 107060 106919 106893 106938.5 

Ninth dataset 106425.1 106323.5 106275 106316.3 

Tenth dataset 106796.9 106659.6 106613 106652.3 

Note that the best models were bold based on the lowest BIC.  

Bayesian Information Criterion (BIC). 

 

  



Table S2. BICs obtained by joint latent class mixed models for women based 

on data randomly derived from the original dataset.  

Models Model 1 Model 2 Model 3 

First dataset 114730.8 114632.1 114667.0 

Second dataset 115055.6 114938.9 114995.5 

Third dataset 115162.8 115057.0 115081.3 

Fourth dataset 115042.8 114929.6 114961.4 

Fifth dataset 114885.8 114772.1 114710.8 

Sixth dataset 114924.5 114768.2 114814.9 

Seventh dataset 114883.7 114762.0 114830.8 

Eighth dataset 114811.5 114686.9 114726.9 

Ninth dataset 115052.3 114909.6 114953.0 

Tenth dataset 114623.1 114496.9 114529.6 

Note that the best models were bold based on the lowest BIC. 

Bayesian Information Criterion (BIC). 

 

  



Figures S1-1. Assumption checks for the Weibull models in men. 

 

The linearity assumptions of covariates in the Weibull models was checked by plotting log survival time versus log[-

log(Kaplan-Meier)] that shows linear and parallel lines if the models are adequate. We considered that the linearity 

assumptions were satisfied in almost all of the covariates (i.e., age, BMI, SBP, non-HDL-c, smoking status, alcohol drinking 

status, and medical uses for diabetes or hypertension), especially after log(3) years, except for medication use for 



dyslipidemia. Thus, we excluded the medication use of dyslipidemia in the Weibull models. The plot between log survival 

time and log[-log(Kaplan-Meier)] for tertiles of body mass index (BMI, left) and non-high-density lipoprotein cholesterol (non-

HDL-c, right) in men. 

  



 

The plot between log survival time and log[-log(Kaplan-Meier)] for tertiles of systolic blood pressure (SBP, left) and 

categoris of alcohol drinking (right) in men. 

  



 

The plot between log survival time and log[-log(Kaplan-Meier)] for categories of smoking status (left) and use of medication 

for hypertension (right) in men. 

  



 

The plot between log survival time and log[-log(Kaplan-Meier)] for categories of medication for diabetes (left) and 

dyslipidemia (right) in men. 

  



Figure S1-2. Assumption checks for the Weibull models for women. 

The linearity assumptions of covariates in the Weibull models was checked by plotting log survival time versus log[-

log(Kaplan-Meier)] that shows linear and parallel lines if the models are adequate. We considered that the linearity 

assumptions were satisfied in almost all of the covariates (i.e., age, BMI, SBP, non-HDL-c, smoking status, alcohol drinking 

status, and medical uses for diabetes or hypertension), especially after log(3) years, except for medication use for 

dyslipidemia. Thus, we excluded the medication use of dyslipidemia in the Weibull models. 

  



 

The plot between log survival time and log[-log(Kaplan-Meier)] for tertiles of body mass index (BMI, left) and non-high-

density lipoprotein cholesterol (non-HDL-c, right) in women. 

  



 

The plot between log survival time and log[-log(Kaplan-Meier)] for tertiles of systolic blood pressure (SBP, left) and 

categoris of alcohol drinking (right) in women. 

  



 

The plot between log survival time and log[-log(Kaplan-Meier)] for categories of smoking status (left) and use of medication 

for hypertension (right) in women. 

  



 

The plot between log survival time and log[-log(Kaplan-Meier)] for categories of medication for diabetes (left) and 

dyslipidemia (right) in women. 

  



Figure S2. Plotting residuals, fitted values, and actual observation values for the 

trajectories of FPG. 

We checked model fitting to the present data by plotting residuals vs fitted 

values, and plotting fitted values vs actual observation values for the trajectories 

of FPG. Based on those plots, we considered that the best models for men and 

women were relatively well fitted to the data. 

  



 

Figure S2-1. The plot between actual observed mean values and fitted values of 

fasting plasma glucose according to age in the best model for men. Note that 

fasting plasma glucose was displayed in standardized scale (mean equaled 0, 

and standard deviation equaled 1).   

  



 

Figure S2-2. The plot between fitted values and residuals of fasting plasma 

glucose in the best model for men. 

  



 

Figure S2-3. The plot between actual observed mean values and fitted values of 

fasting plasma glucose according to age in the best model for women. Note that 

fasting plasma glucose was displayed in standardized scale (mean equaled 0, 

and standard deviation equaled 1).   

  



 

Figure S2-4. The plot between fitted values and residuals of fasting plasma 

glucose in the best model for women. 


