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Abstract: A histidine-based gemini cationic lipid, which had already demonstrated its efficiency
as a plasmid DNA (pDNA) nanocarrier, has been used in this work to transfect a small interfering
RNA (siRNA) into cancer cells. In combination with the helper lipid monoolein glycerol (MOG),
the cationic lipid was used as an antiGFP-siRNA nanovector in a multidisciplinary study. Initially,
a biophysical characterization by zeta potential (ζ) and agarose gel electrophoresis experiments was
performed to determine the lipid effective charge and confirm siRNA compaction. The lipoplexes
formed were arranged in Lα lamellar lyotropic liquid crystal phases with a cluster-type morphology,
as cryo-transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS) studies
revealed. Additionally, in vitro experiments confirmed the high gene knockdown efficiency of the
lipid-based nanovehicle as detected by flow cytometry (FC) and epifluorescence microscopy, even
better than that of Lipofectamine2000*, the transfecting reagent commonly used as a positive control.
Cytotoxicity assays indicated that the nanovector is non-toxic to cells. Finally, using nano-liquid
chromatography tandem mass spectrometry (nanoLC-MS/MS), apolipoprotein A-I and A-II followed
by serum albumin were identified as the proteins with higher affinity for the surface of the lipoplexes.
This fact could be beyond the remarkable silencing activity of the histidine-based lipid nanocarrier
herein presented.

Keywords: Non-viral gene delivery; gene knockdown efficiency; small interfering RNA; amino
acid-based gemini cationic lipids; protein expression; protein corona

1. Introduction

The use of nucleic acids as therapeutic agents offers a wide range of possibilities with regard to
the treatment of diseases at the molecular genetic level [1,2]. Specifically, the discovery of interference
RNA (RNAi) and the development of siRNA molecules have allowed the possibility of controlling
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a specific and unique mechanism of action in the regulation of genes [3,4]. This has been translated into
better results in terms of selectivity and efficiency compared to other therapeutic agents used in gene
therapy, such as pDNA and oligonucleotides [5,6]. The siRNA molecules can block specific regions in
the messenger RNA (mRNA) sequence through the formation of a RNA-induced silencing complex
(RISC), thus suppressing the synthesis of the target pathogenic protein. However, this powerful and
selective method for gene silencing can be limited or may even not take place if the siRNA molecules
do not reach the cell cytoplasm. The degradation by nucleases present in the bloodstream and their
inefficiency to cross the negatively charged cellular membrane are some of the limitations that make
the vectorization of nucleic acids necessary.

Bioinspired non-viral vectors, which came to replace viral vectors that often suffer from limitations
related to the immune response [7,8], can be functionalized with amino acids components or made of
oligopeptides sequences. Cell-penetrating peptides are one of the best examples of a short peptide
sequence that can pack and unpack nucleic acids into cells in a non-toxic manner [9,10]. However,
efficiency achieved in in vivo experiments is not high enough provided that these peptide-based
complexes possess low cell specificity [11]. Dendrimers [12,13], polymers [14,15] and lipids [16,17]
are other nanocarriers among non-viral vectors that may incorporate natural amino acids in their
structures to reduce cytotoxicity and improve cellular uptake. Lysine, arginine and histidine are
some of the most commonly used amino acids because of their positive charge at physiological pH,
which enables electrostatic interactions with the anionic nucleic acids and the negatively charged cellular
membranes [16–20]. In particular, the histidine group also offers a mechanism for endosomal scape,
known as the “proton sponge effect” [21–23]. This strategy has been used as a source of inspiration
for histidine-based nanocarriers in the last decade [21], specifically in the case of cationic lipids (CL),
which have received much attention as non-viral gene vectors thanks to their structural similarities with
the cell membrane. The insertion of amino acid moieties, bare or functionalized, in their structure has
been generally more used in pDNA transfection [18,20,22,24–28] than in siRNA vectorization [29–32],
despite the fact that amphiphilic imidazolium salt has already been physico-chemically presented
as a new generation of reagents for RNAi [33]. Additionally, gemini cationic lipids (GCL) have
demonstrated to be efficient gene nanovectors [34–36], especially when an imidazolium group was
included in their structure [37,38]. Both synthetic strategies are focused on overcoming the biological
barriers that the nanocarrier encounters once it enters the bloodstream [39], as well as on improving
the endocytosis pathway [40]. In this regard, the inclusion of a co-adjuvant lipid in the formulation is
a common approach for enhancing the fusogenic properties of the complex formed by lipids and nucleic
acids (lipoplex) with the cell membrane. The helper lipid habitually used in the gene-knockdown field
is the 1-(cis-9-octadecenoyl)-rac-glycerol (MOG). Its biocompatibility and ability to induce different
lyotropic liquid crystal phases make it a safe option in gene therapy [38,41–43].

However, when a nanocarrier is introduced in the body, a journey through biological fluids starts
where a wide variety of molecules can interact with it, conditioning the success in achieving its target.
Particularly, proteins tend to adsorb onto the nanovector surface in a dynamic process [44,45], forming
a new biological entity, which is what cells firstly see. That protein corona (PC) can either trigger
an immune response or favor the absorption of the nanoagent by the cell membrane [46–48], and,
ultimately, it is thought that it largely decides the successful or, on the contrary, defective end of the
gene nanocarrier. Nowadays, many studies are focused on an extensive characterization of the PC of
non-viral gene nanocarriers with the aim of gaining a better understanding of its effect on the efficiency
of the transfection process, which is one of the bottlenecks in in vivo treatments [49–52].

Following this strategy, and taking into account previous studies of cationic lipids (CLs)
incorporating amino acid derivatives in their structures such as lysine [18,53] and arginine
derivatives [43], we have worked in this study with a nanovector based on a gemini cationic lipid
with functionalized histidine residues on the head groups, the bis(N(τ),N(π)-bis(methyl)-histidine
hexadecyl amide) propane—abbreviated as C3(C16His)2 (see Scheme 1a). This GCL has already been
used as an interesting nanoplatform for pDNA delivery [26]. These previous promising data allowed
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us to hypothesize that this modified lipid can be also used to effectively transport and deliver siRNA
molecules and, therefore, to enable the configuration of a versatile non-viral gene nanocarrier. Thus,
a lipid mixture that contained this histidine-based GCL and the neutral lipid MOG was used to
compact antiGFP-siRNA molecules. The lipoplexes formed were physico-chemically characterized
by agarose gel electrophoresis, ζ potential, cryo-TEM, and SAXS techniques. The gene knockdown
activity was evaluated by measuring the fluorescence signal of the green fluorescent protein (GFP)
overexpressed in HeLa and T731 cancer cells through flow cytometry and epifluorescence microscopy.
The cytotoxicity of lipoplexes was analyzed by the CCK-8 assay, whilst nanoLC-MS/MS experiments
were performed to examine the proteomic profile of the protein corona surrounding the lipoplexes in
physiological-mimicking conditions. Altogether, these in vitro experiments could confirm the potential
utility of the histidine-based nanocarrier for gene knockdown therapy.
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Scheme 1. Molecular structure of the histidine-based gemini cationic lipid C3(C16His)2 (a) and the
neutral lipid MOG (b).

2. Materials and Methods

2.1. Materials

The synthesis of C3(C16His)2 has been previously reported [26]. The helper lipid MOG (see
Scheme 1b) and Pluronic F127 (10% w/v in water) were supplied by Sigma-Aldrich (St. Louis, MO,
USA) and ThermoFisher (Waltham, MA, USA), respectively. For cell culturing, Dulbecco’s Modified
Eagle Medium (DMEM) was supplied by Hyclone-ThermoFisher (Waltham, MA, USA) while Fetal
Bovine Serum (FBS), antibiotics, sodium pyruvate, and non-essential amino acids (NEAAs) were
provided by Gibco-ThermoFisher (Waltham, MA, USA). Human Serum (HS) was used as received
from Sigma-Aldrich. The in vitro evaluation was done using an antiGFP-siRNA and a non-targeting
control siRNA (also known as scrambled siRNA, i.e., without functional activity) supplied by
Ambion-ThermoFisher and Invitrogen-ThermoFisher, respectively. Finally, the commercial control
Lipofectamine2000* Transfection Reagent (Lipo2000*) was also obtained from Invitrogen-ThermoFisher.

2.2. Preparation of Lipoplexes

Appropriate amounts of C3(C16His)2) and MOG (at a molar fraction with respect to C3 (C16His)2),
α = 0.2) were mixed to obtain dry lipid films by evaporation of chloroform under high vacuum.
These dry films were afterwards hydrated with HEPES (40 mM, pH = 7.4) and further homogenized
by using a procedure fully detailed elsewhere [54]. Subsequently, a sequential extrusion procedure,
fully detailed elsewhere [55], was used to favor a population of unilamellar liposomes with low
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polydispersities [56,57]. Finally, Pluronic F127 (10% in mass of GCL) was added to the lipid mixture to
provide colloidal stability. A certain amount of siRNA was added to each stabilized lipid mixture to
form lipoplexes with fixed compositions, and the whole mixtures were incubated at room temperature
for at least 30 min to form the C3 (C16His)2/MOG-siRNA lipoplexes. The concentration of siRNA
in the stock solution was: 0.1 mg/mL for ζ, 0.2 µg/well (0.1 mg/mL) for agarose gel electrophoresis,
50 µg/capillary (10 mg/mL) for SAXS, 0.2 mg/mL for cryo-TEM and protein corona studies, and
5 nmol/mL (antiGFP-siRNA) or 1 nmol/mL (non-targeting siRNA) for biological experiments.

2.3. Electrochemical study. Z Potential and Agarose Gel Electrophoresis

The ζ potential was determined at 25 ◦C through electrophoretic mobility measurements using the
phase analysis light scattering technique (Zeta PALS, Brookhaven Instruments Corp., Holtsville, USA),
fully detailed elsewhere [57,58]. ζ values of C3(C16His)2/MOG-siRNA lipoplexes were collected in a
sigmoidal curve as a function of the mass ratio between the lipid mixture and the siRNA, mL/msiRNA:

mL/msiRNA= (m GCL+ mL0)/msiRNA (1)

where mL, mGCL, mL0 , and msiRNA are the masses of the total mixed lipid, the GCL (C3(C16His)2),
the neutral lipid (MOG), and siRNA, respectively. Each value in the graph is the average of 50
independent measurements.

Furthermore, the capacity of the lipid mixtures to complex and compact siRNA molecules
was determined by a compaction assay with agarose gel electrophoresis. Free siRNA and
C3(C16His)2/MOG-siRNA lipoplexes at different compositions were included in a 0.8% (w/v) agarose
gel in 1X TAE buffer, and 0.7 µL of GelRed probe added. Electrophoresis was run at room temperature
(around 25 ◦C) at 70 mV for 1 h. Gels were visualized using a Gel Doc XR instrument (Bio-Rad)
under Quantity One software; probe emission was excited at 302–312 nm and recorded at 600 nm.
The presence of free or uncompacted siRNA is detected by a characteristic fluorescent band of the
probe intercalated within the siRNA double helices, while its absence denotes full siRNA compaction
by the lipid mixture.

2.4. Structure Study. SAXS and Cryo-TEM

SAXS experiments were carried out at ALBA Synchrotron (Barcelona, Spain, beamline BL11) with
an incident beam energy of 12.6 KeV (λ = 0.995 Å) and a Quantum 210r CCD detector. Diffractograms
collected the scattered X-rays signal, converted into one-dimensional scattering by radial averaging,
as a function of the momentum transfer vector (q). The lipoplexes were incubated and analyzed in
the absence and presence of human serum, HS (10% v/v). Samples were measured in duplicate for
each composition.

C3(C16His)2/MOG-siRNA lipoplexes were also deposited for cryo-TEM experiments on perforated
Holey Carbon on a 400-mesh copper grid. Following a previously reported protocol [59–61], samples
were observed using a JEOL JEM 2011 microscope at 200 kV under low-dose conditions and with
different degrees of defocus (500–700 nm). The micrographs were collected with a Gatan 794 Multiscan
digital camera, and the digital Micrograph software was used to analyze the CCD images.

2.5. In Vitro Evaluation

2.5.1. Cell Culturing

Two cancer cell lines overexpressing the green fluorescent protein, GFP, were used: cancer cervical
HeLa-GFP and mouse astrocytes T731-GFP, which were obtained from Cell Biolabs (San Diego, CA,
USA) and kindly donated by Prof. J. A. Costoya (Univ. of Santiago, Spain) [62], respectively. Cells
were cultured at standard conditions (37 ◦C, 5% CO2) in Dulbecco’s Modified Eagle Medium, DMEM,
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supplemented with 10% (v/v) FBS or HS and 1% (v/v) of penicillin/streptomycin, sodium pyruvate and
nonessential amino acids (NEAAs).

2.5.2. Cytotoxicity, Epifluorescence Microscopy and Flow Cytometry

For the in vitro evaluation of the developed lipid-based nanocarriers, cells were seeded as follows:
in 96-well plates (100 µL, 1 ×104 cells/well) for cytotoxicity assays; on poly-L-lysine-coated glass
coverslips (76 mm × 26 mm) placed inside 6-well plates (3 mL, 1 × 105 cells/well) for epifluorescence
microscopy measurements; and in 12-well plates (2 mL, 4 × 104 cells/well) for flow cytometry
experiments, respectively.

After 24 h of cell seeding, C3(C16His)2/MOG-siRNA lipoplexes were administered to cells in
culture medium supplemented with 10% (v/v) HS instead of FBS. Then, lipoplexes formed at a
concentration of 5, 40, and 100 pmol/well of antiGFP-siRNA were incubated with the cells for 48 and/or
72 h and cytotoxicity assays, flow cytometry and epifluorescence microscopy experiments performed.
Lipo2000* at 0.25, 2, and 5 µL/well and non-treated GFP-overexpressing cells were used as positive and
negative controls, respectively. For flow cytometry experiments, non-targeting siRNA encapsulated in
lipoplexes at a concentration of 2 µL/well of Lipo2000*, and free added antiGFP-siRNA were used as
additional controls.

The cytotoxicity of C3(C16His)2/MOG-siRNA lipoplexes were quantified by a colorimetric assay
with the Cell Counting Kit-8 (CCK-8) proliferation assay. After 48 and 72 h of incubation, cells were
washed with PBS and new medium without FBS or HS added containing 10% (v/v) of the CCK-8
reagent. After 2 h of incubation, absorbance at 450 nm was measured with an UV−vis microplate
absorbance reader (Bio-Rad, model 689). For calculation of the % of cell viability, absorbance of the
treated cells was normalized regarding the absorbance of non-treated ones.

For epifluorescence microscopy measurements, cells were incubated with lipoplexes for 72 h.
After washing with PBS twice, cells were fixed with 200 µL of 4% (w/v) paraformaldehyde for 10 min.
Afterwards, the cell membrane was permeabilized with 200 µL of 0.2% (w/v) Triton X-100. Then, the cells
were washed again, stained firstly with DAPI (Invitrogen-ThermoFisher) for nuclei for 10 min; washed
again, and next the cell cytoplasm stained with Alexa FluorTM 647 (Invitrogen-ThermoFisher) for 20 min
following an additional washing step. Finally, the cell-covered coverslips were mounted on glass slides
and visualized after storage for 24 h at -20 ◦C with an epifluorescence Leica DMI6000B microscope
equipped with a Leica AF6000 modular system and a DFC3665FX camera (Leica Microsystems GmbH,
Heidelberg, Mannheim, Germany). An oil objective of 63X, and blue channel for DAPI (λex = 350 nm;
λem = 460 nm), far red channel for Alexa FluorTM 647 (λex = 650 nm; λem = 668 nm) and transmitted
light in differential interference contrast (DIC) mode were used to capture the images. The % of GFP
expression was obtained by the analysis of the fluorescence intensities using LAS X Life Science and
ImageJ softwares following an established methodology previously detailed [63]. Briefly, the selection
of regions of interest (ROIs) considering well-defined cells was done in several microscopic images,
and the fluorescent signal was normalized and quantified regarding the signal background.

Finally, in flow cytometry experiments, harvested cells after 48 and 72 h of incubation were
washed and resuspended in 200 µL of PBS three times (1,200 rpm for 4 min). The analysis of GFP
down-regulation was done in terms of the percentage of GFP cells observed (% GFP), and the average
of the fluorescence intensity per cell (mean fluorescence intensity, MFI). At least 5000 events were
counted using a Guava® easyCyte HT System flow cytometer and GuavaSoft™ software.

2.6. Protein Ccorona Studies

The proteomic profile of proteins surrounding the surface of C3(C16His)2/MOG-siRNA lipoplexes
was analyzed through nanoLC-MS/MS. The procedure followed was fully detailed in a previous
work [43]. Briefly, the lipoplexes formed were incubated for 1 h at 37 ◦C in the presence of
HS. After dithiothreitol reduction, iodacetamide alkylation and a recombinant trypsin digestion
treatment overnight at 37 ◦C, peptides were eluted, concentrated and desalted in C18 reverse
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phase chromatography columns with acetonitrile/trifluoroacetic acid (ACN/TFA). Peptides are
affinity-retained on C18 chains and recovered with 50% (v/v) ACN and 0.1% TFA (v/v). The samples
were dried by vacuum centrifugation (SpeedVac, Savant) and reconstituted in 20 µL of formic acid
for analysis by RP-LC-ESI-MS/MS in an EASY-nLC 1000 System coupled to the Q-Exactive HF mass
spectrometer through the Nano-Easy spray source. There, samples were loaded into an Acclaim
PepMap 100 Trapping pre-columm, separated and eluted on a NTCC C18 resin analytical column
at a constant flow rate of 250 nL/min. Data acquisition was performed with a Q-Exactive HF mass
spectrophotometer using an ion spray voltage of 1.8 kV. Then, the peptide identification from raw data
was carried out using Sequest search engine through the Protein Discoverer 2.2 Software (Thermo
Scientific). The percolator algorithm was used to estimate FDR <1% for proteins identified with
high confidence, and only protein identification based on mass spectra related to at least two unique
peptides was considered. In the quantitative analysis of the proteins, the mean value of peptide to
spectrum matches (PSMs) was normalized to the protein molecular weight in kDa (MW) and expressed
as the relative percentage of proteins.

3. Results and Discussion

3.1. Electrochemical Study. Z Potential and Agarose Gel Electrophoresis

In the present work, the GCL C3(C16His)2 was used in combination with the helper lipid MOG as
a nanoplatform to introduce gene material into HeLa and T731 cancer cells in an efficient and safe
manner. A molar fraction (α) with respect to the GCL of 0.2, which implies a larger content of the
neutral helper lipid (MOG) in the mixture, was chosen since it was revealed as optimal in previous
works with similar siRNA nanocarriers [38,43]. The efficiency of the siRNA nanovector relies on
a siRNA packing-unpacking mechanism conducted by the lipid mixture, which is responsible for the
compaction of siRNA and its subsequent delivery inside the cells. The net charge of the lipoplex and
the capacity of the nanocarrier to compact the siRNA molecule are probably among the most decisive
factors to favor the transfection process.

With respect to the electric charge, the anionic character of siRNA molecules is an important
drawback to overcome since the cellular membrane is also negatively charged. The composition of the
lipoplex at which its net charge changes from negative to positive, the so-called electroneutrality value,
is a key information, since it marks the lower limit from which a lipoplex is potentially a suitable vector,
strictly speaking from the point of view of the charge. Probably, the physico-chemical properties that
allow us to obtain the electroneutrality value more accurately are either the electrophoretic mobility
or the ζ potential, measured as a function of the mL/msiRNA ratio (at constant siRNA concentration),
as reported in Figure 1a for C3(C16His)2/MOG-siRNA lipoplexes. These plots usually show a sigmoidal
profile with three zones (see schemes included in Figure 1a): (i) the zone of net negative charge,
where there is an excess of anionic siRNA molecules; (ii) the electroneutrality region that contains the
electroneutrality ratio, i.e., the mL/msiRNA value in which lipoplexes have a net ζ (and, accordingly,
the surface charge) equal to zero; and (iii) the zone of net positive charge, where there are cationic
lipoplexes with the siRNAs already compacted, and usually in the presence of an excess of cationic
liposomes when the ratio mL/msiRNA is high. A Boltzmann-type fit of the data in Figure 1a allowed
us to determine the electroneutrality ratio of the lipoplexes at a mL/msiRNA= (5.7 ± 0.3). Using
the protocol fully described previously [56,64], the electroneutrality ratio was used to determine
the effective charge of C3(C16His)2, which was q+

eff, GCL= (1.4± 0.1), a 30% lower than the nominal
one (+2). This decrease has been attributed to the delocalization of the electric charge along the
aromatic rings of the functionalized histidine residues, although other factors such as the packing
density of the lipid chains have been reported to influence on the protonation state of the lipid [65].
This effect has also been observed in lipoplexes formed by the lipid mixture C3(C16His)2/DOPE and
pDNA [26] and in others lipoplexes that contain GCL lipids bearing the imidazolium ring in their
structure [56,66]. By contrast, the effective charge of siRNA is considered to be the same as its nominal
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one (q−eff, siRNA= −2/bp), as reported in the literature for either linear DNA (with thousands of base
pairs, as calf thymus or salmon sperm DNA) [56–58] or short RNAs (with 19–25 bp) [38,67]. Considering
these results, it can be concluded that the formation of lipoplexes is mainly driven by electrostatic
forces between the oppositely charged cationic lipid and the anionic siRNA molecules. There is also an
important entropic factor associated with the release of Na+ counterions to the bulk solution when the
lipoplex is formed [58,67,68]. The values of the effective charges allow us to work with effective charge
ratios (ρeff) in the subsequent experiments:

ρeff =
n+

n−
=

q+
eff, GCL(mGCL/MGCL)

q−eff, siRNA(msiRNA/MsiRNA)
(2)

where n+, n−, q+
eff, GCL, q−eff, siRNA, MGCL, and MsiRNA are the number of moles of positive (GCL) and

negative (siRNA) charges, effective charges of GCL and siRNA per bp, and the molecular weight of
GCL and siRNA per bp, respectively.
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Figure 1. (a) Plot of the ζ vs. mass ratio (mL/msiRNA) of C3(C16His)2/MOG-siRNA lipoplexes at α = 0.2.
(b) Agarose gel electrophoresis of the lipoplexes formed at selected mL/msiRNA (or ρeff) and α = 0.2
(2–4 lanes). Used as control: free siRNA (lane 1).

With regard to the efficiency of C3(C16His)2/MOG mixed lipids to compact the nucleic acid,
Figure 1b reports the results of the agarose gel electrophoresis experiment performed. In this
experiment, the GelRed probe, which is present in the agarose gel, gets intercalated within the
hydrophobic environment that represents the double-stranded helix of unprotected siRNA, increasing
the probe quantum emission yield and, in turn, the intensity of its fluorescence emission. Thus, the
characteristic fluorescent band seen in the first lane of the agarose gel, where the free siRNA was
loaded as a control, helps to identify the uncompacted siRNA. Another fluorescent band is also visible
in the second lane where the mass ratio mL/msiRNA is 2.7 (ρeff = 0.5). At higher lipid mixture contents
(third and fourth lanes), the siRNA fluorescence band disappears, confirming the total compaction of
siRNA by the C3(C16His)2/MOG lipid mixture once the electroneutrality ratio is overcome (ρeff > 1),
which is in remarkably good agreement with ζ results.
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3.2. Structural Study. Cryo-TEM and SAXS

Once the C3(C16His)2/MOG mixture was confirmed to compact adequately siRNA molecules, it
was convenient to gain insight into the structure and aggregation pattern of the lipoplexes, another
factor of critical importance for a successful transport, cell uptake, and delivery of the cargo materials
inside the cells. In this regard, SAXS and cryo-TEM techniques have already revealed their power,
mostly when they are used together. SAXS diffractograms (plots of intensities vs. the momentum
transfer vector, q) were obtained for C3(C16His)2/MOG-siRNA lipoplexes at ρeff = 4 and 10, and are
collected in Figure 2a. These ρeff values were chosen to assure a good compaction level of the siRNA
(ρeff > 1, see Figure 1b) and also because they were tested with successful results in other nanocarriers
of pDNA or siRNA previously reported by us [26,43]. As can be observed in Figure 2a, the Bragg peaks
can be correlated with the Miller indexes of a lamellar Lα lyotropic liquid crystal phase ((hkl) = (100),
(200) and (300)) in both conditions (blue labels in Figure 2a). This multilamellar arrangement can be
interpreted as a sandwich-type structure with alternating bilayers of C3(C16His)2/MOG mixed lipid and
an aqueous layer between each pair of lipid bilayers, where the siRNA molecules with their counterions
are located. Cryo-TEM experiments, also run for the lipoplexes at ρeff = 10, confirmed the multilamellar
arrangement found in SAXS diffractograms, as shown in the micrograph reported in Figure 2b as an
example. One can observe in this micrograph an appreciable population of nanostructures with the
walls clearly thickened and deformed (see arrows in the figure), revealing how the presence of siRNA
induces liposome aggregation to form cluster-type lipoplexes. Figure 2c shows a chart of a zoom view
of this aggregation pattern and a scheme of the overall lamellar Lα phase. The same multilamellar
pattern was found in a previous study where C3(C16His)2 was combined with DOPE to transfect
pDNA [26]. However, this contrasts with the bicontinuous lyotropic liquid crystal cubic phases found
by us for lipoplexes constituted by siRNA and a lipid mixture of an arginine-based cationic lipid and
MOG [43]. Nanotube- or ribbon-type structures, found in some lipoplexes constituted by pDNAs and
a lipid-based nanovector with amino acid residues in its structure [17,53] associated with low or zero
levels of transfection, were not observed herein. As indicated in the scheme included in Figure 2c,
the interlamellar distance (d) of the Lα phase (also known as the periodicity of the structure) can be
expressed as the sum of the thicknesses of the lipid bilayer (dm) and the aqueous layer (dw). SAXS
experiments allowed us to determine d from the q factors at which the Bragg peaks are found in the
diffractograms (d = 2πn/qhkl, where n is the scattering order), as summarized in Table 1. As seen in
this table, the interlamellar distance is not affected by the lipoplex composition (ρeff). Thus, an average
value of (6.1 ± 0.3) nm has been obtained, in agreement with those found for other multilamellar
lipoplexes previously reported [18,26]. On the other hand, dm was estimated around 4.5 nm from
cryo-TEM micrographs where liposomes were found (see Figure 2d, as an example) and also with
Tanford’s model [69–71]. Thus, dw was calculated (= d − dm) around 1.6 nm, a thickness suitable for
the accommodation of siRNA in between cationic lipid bilayers [38,72].

SAXS experiments were also carried out in the presence of HS (indicated with +PC in the
diffractograms), with the aim of studying how the protein corona that surrounds the lipoplexes in a
biological medium affects their structures. It is noticeable that the presence of proteins did not modify
the original Lα lamellar structure (shown also in blue in Figure 2a), but favored the formation of an
additional Lα lamellar phase at lower q values (shown in black in Figure 2a). Table 1 also reports the
values of the interlamellar distance for these two structures. As can be noticed, d is not affected by the
presence of proteins in the original Lα phase (d = 6.2 ± 0.3) nm), while it is longer for the secondary
Lα structure (d = (10.8 ± 0.5) nm), corroborating that the proteins are most likely surrounding the
lipoplex surface. It has been already reported in the literature that the incubation of lipoplexes in
plasma or serum produces extra peaks in the SAXS diffractograms of pDNA-lipoplexes [73] and
siRNA-lipoplexes [43], which were also explained in terms of the coexistence of more than one lyotropic
liquid crystal phases, with different levels of compaction.
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Figure 2. (a) SAXS diffractograms of the C3 (C16His)2/MOG-siRNA lipoplexes at α = 0.2 and ρeff = 4
and 10 in the absence and presence of human serum (+ PC). (b) Cryo-TEM micrograph of the lipoplexes
at ρeff = 10 and α = 0.2. (c) Scheme included the multilamellar structure of lipoplexes aggregated
in cluster-type shapes. (d) Cryo-TEM micrograph of C3(C16His)2/MOG lipid mixture. Scale bars of
micrographs at 200 nm.

Table 1. Values of the periodic distance of the lamellar structure, d, for C3(C16His)2/MOG-siRNA
lipoplexes at α = 0.2 and ρeff = 4 and 10 in the absence and presence of human serum (+ PC). The
primary Lα structure is in blue, and the secondary Lα structure is in black, the same color codes as in
diffractograms (Figure 2). Values of qhkl (nm −1) and dhkl (nm) are estimated with a 5% error.
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3.3. In Vitro Studies

To consider whether the formed lipoplexes can be useful as nanovectors for siRNA delivery
into cells and their use in prospective in vivo applications, they must fulfill a series of conditions
such as biocompatibility with cells and tissues, and controlled release of their cargo at the site of
action, among others. In order to test the potential cytotoxicity of the present lipid-based nanocarriers,
a preliminary evaluation of the in vitro cell viability of two different cancer cell lines in the presence of
C3(C16His)2/MOG-siRNA lipoplexes at ρeff = 4 and 10 was done by means of the CCK-8 proliferation
assay. Figure 3 shows the % of cell viability of HeLa-GFP (a) and T731-GFP (b) cells after 48
(unstriped bars) and 72 h (striped bars) of incubation in the presence of the different formed lipoplexes.
Non-treated cells were considered as the negative control (100% of cell viability), and cells treated with
the commercial transfecting reagent Lipo2000* were considered as the positive ones.
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Figure 3. Percentage of cell viability of HeLa-GFP (a) and T731-GFP (b) cell lines in the presence of
C3(C16His)2/MOG-siRNA lipoplexes (pink bars) at α= 0.2 and ρeff = 4 and 10. The % of cell viability was
normalized to those obtained for untreated cells. Unstriped and striped bars correspond to 48 and 72 h
of incubation, respectively. The blue bar corresponds to commercial control Lipo2000*-antiGFP-siRNA,
used here as positive control. The experiments were performed with 10% (v/v) of HS, the data represent
the mean of three wells, and errors are within ±5%.

Viabilities above 80% for both types of lipoplexes (pink bars) were found in both cell lines,
corroborating the excellent biocompatibility of the present lipid-based nanocarriers. This small
cytotoxicity agrees with that typically found for other lipid nanostructures containing histidine and
other amino acid-based moieties [18,26,43,74–76], an advantage that prompts the consideration of
using these nanovectors in future in vivo applications. It is important to notice that viabilities of
T731-GFP cells were slightly larger than those obtained for HeLa-GFP ones, in agreement with previous
works [43]. This can be a consequence of the faster cell division cycle of T731 cells and the phenotype
differences between both types of cell lines herein used [77,78].

Additionally, with the aim of assessing the potential gene knockdown activity of these cell-friendly
gene nanocarriers, epifluorescence microscopy was used to monitor the fluorescence signal changes
from overexpressed GFP in both cancer cell lines (HeLa-GFP and T731-GFP) upon 72 h of incubation of
the lipoplexes in HS-supplemented culture medium, which favors the PC formation around lipoplexes.
For HeLa-GFP cells (Figure 4a), green channel and merged (green and bright field channels) images
were used to locate and analyze the GFP expression. From these images, no significant differences in
the GFP fluorescence levels between the positive control Lipo2000*-antiGFP-siRNA (row 2) and the
lipoplexes formed at ρeff = 4 (row 3) were detected; moreover, relevant decreases in GFP fluorescence



Pharmaceutics 2020, 12, 791 11 of 22

were observed (higher knockdown activity) for those lipoplexes formed at ρeff = 10 (row 4). ImageJ
software was used to make a semi-quantitative estimation of the silencing activity of the lipid-based
nanocarriers by measuring the remaining GFP fluorescence intensity after treatment. In this regard,
values of 57, 68 and 12% of the initial fluorescence shown by non-treated cells were obtained for the
Lipo2000*-antiGFP-siRNA control and lipoplexes formed at ρeff = 4 and 10, respectively. Similar %
GFP values were found in additional images analyzed (Figure S1).
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Figure 4. (a) Epifluorescence microscopy images: Merged images (bright field (BF) + green
fluorescence channel (left)) and green fluorescence channel (right) for HeLa-GFP cells treated with
C3(C16His)2/MOG-siRNA lipoplexes (α = 0.2; ρeff = 4 and 10) and Lipo2000*-antiGFP-siRNA as positive
control, after 72 h of incubation. Scale bars are 50 µm, except untreated cells which are 10 µm. GFP
knockdown levels expressed as MFI (unstriped bars) and % GFP (striped bars) for HeLa-GFP cells at
48 (b) and 72 h (c) of incubation. Cells treated by the lipoplexes were collected at α = 0.2 and ρeff = 4
(light pink bars) and 10 (dark pink bars). Untreated cells were used as a reference of the highest MFI
and % GFP value. Free siRNA and Lipo2000*-non-targeting siRNA were used as negative controls
(gray and purple bars, respectively) while Lipo2000*-antiGFP-siRNA was used as positive control (blue
bars). All experiments were performed with 10% (v/v) of HS. The data represent the mean ± SD of three
independent wells.

Flow cytometry analysis was carried out to make a quantitative analysis that confirms the trends
observed with epifluorescence images. Figure 4 shows MFI (unstriped bars) and % GFP (striped
bars) values of HeLa-GFP cells obtained at 48 (Figure 4b) and 72 h (Figure 4c) post-incubation
with Lipo2000*-antiGFP-siRNA (positive control, blue bars) and C3(C16His)2/MOG-antiGFP-siRNA
lipoplexes (at ρeff = 4, light pink bars, and ρeff = 10, dark pink bars). Free added antiGFP-siRNA
(gray bars) and a non-targeting siRNA sequence compiled to Lipo2000* (Lipo2000*-non, purple bars)
were used as additional controls. From Figure 4, it is clear that there was need for a vector-assisted
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delivery strategy to protect siRNA from nuclease degradation in the biological environment in order
to exert its knockdown activity, as confirmed by the absence of any sign of decrease in MFI and %
GFP values in these GFP-overexpressing HeLa cells (untreated cells, green bars) after administration
of free antiGFP-siRNA. Also, the reduction of the MFI (or % GFP value) was a consequence of
the antiGFP-siRNA sequence, since the cells treated by the non-targeting siRNA showed the same
values of MFI or % GFP as the untreated ones. It is also remarkable in Figure 4 that there is a
relatively noticeable knockdown activity of C3(C16His)2/MOG-siRNA lipoplexes formed at ρeff = 10
after 48 h of incubation, with decreases of ca. 33 and 20% in MFI and % GFP, respectively (Figure 4b),
which are rather similar to those obtained with the standard Lipo2000* control. Conversely, the
inhibitory effect of lipoplexes formed at ρeff = 4 was less intense, with reductions around 8–12% for
both quantities. At longer incubation times (72 h), the gene silencing effect was much more intense
(Figure 4c). Silencing activities of ca. 25 and 17% in MFI and % GFP, respectively, were detected for
C3 (C16His)2/MOG-siRNA lipoplexes formed at ρeff = 4, while these values increase to 66 and 57% at
ρeff = 10. For the latter, the achieved knockdown activity is almost two-fold larger compared to that of
the Lipo2000* positive control.

On the other hand, the gene knockdown activity of the developed lipid-based nanocarriers was
additionally tested in the T731-GFP mice astrocyte cell line (Figure 5). Firstly, % GFP values were
obtained from epifluorescence microscopy images using ImageJ to have a better definition of the protein
signal distribution inside the cells, as mentioned previously. In this case, different channels were used
to define the signals from several cell components, that is, the GFP signal appeared in the green channel
(Figure 5a, first column), cell nuclei in the blue one (Figure 5a, second column), the actin filaments of
the cell cytoplasm in the red one (Figure 5a, third column), and the complete cell morphology in bright
field (Figure 5a, forth column). Calculated % GFP values were 87, 69 and 40% for cells treated with
Lipo2000*-antiGFP-siRNA and C3(C16His)2/MOG-siRNA lipoplexes at ρeff = 4 and 10, respectively.
Similar percentages were obtained in additional analyzed images (Figure S2). These results corroborate
the observed clear existence of an effective knockdown activity of C3(C16His)2/MOG-siRNA lipoplexes,
especially when compared to the commercial Lipo2000* transfecting reagent.

According to flow cytometry analysis, and in contrast to the observations with HeLa-GFP
cells, no apparent decreases in GFP fluorescence (neither in MFI or % GFP) were observed for
Lipo2000*-antiGFP-siRNA when compared to untreated T731-GFP cells after 48 h of incubation.
Conversely, the % GFP signal was largely reduced for C3(C16His)2/MOG-siRNA lipoplexes at
ρeff = 4 and 10 in ca. 25 and 37%, respectively (Figure 5b), thanks to the silencing activity of siRNA in an
important number of cells, although those still fluorescently active have large amounts of overexpressed
GFP. However, at longer incubation times (Figure 5c), the opposite trend was noted: MFI signals
decreased in the presence of C3 (C16His)2/MOG-siRNA lipoplexes (at both conditions ρeff = 4 and 10)
by ca. 24%, but not for the Lipo2000*-antiGFP-siRNA control, whereas % GFP kept constant at ca.
99% in all cases. This trend may arise from a balance between the well-sustained knockdown activity
of the siRNA complexed in the nanovectors and the faster division cycle of T731-GFP cells, which
favors a progressive increment in the number of fluorescently-active cells bearing a lower intensity,
a consequence of the splitting of the active siRNA between the dividing cells. This behavior, already
observed in previous works using this cell line [43] clearly reveals the role played by cell phenotype
in cell viability (see Figure 3b), nanovector uptake and internalization, and subsequent therapeutic
efficiency [79].

In conclusion, considering all the in vitro results above presented, it can be remarked the noticeable
gene knockdown capacity of the C3(C16His)2/MOG-siRNA lipoplexes herein studied, particularly
at ρeff = 10 in both cancer cell lines, is in agreement with what we have recently published for an
arginine-based siRNA nanocarrier [43]. Therefore, it seems there is a correlation between larger GFP
expression inhibition and higher lipid content in the siRNA nanocarrier, without this implying an
enhancement in its cytotoxicity, as herein demonstrated. Furthermore, it is worth noting that the
C3(C16His)2 gemini cationic lipid used in this work mixed with MOG also demonstrated high efficiency
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in transfecting a pDNA, which in that case mixed with DOPE [26]. These two evidences support the
GCLs or CLs functionalized with histidine-based head groups a compelling and striking versatility in
the gene therapy field. Certainly, the delocalized cationic charge in both head groups of the GCL can
promote strong electrostatic interactions with the anionic nucleic acids, enabling effective compaction
and protection of the cargo by the lipid-based nanocarrier. Undoubtedly, the fusogenic properties
of either MOG or DOPE (the helper lipids) are also key to facilitating the endocytic entry of the
genetic material into the cell. However, the present satisfactory results obtained in vitro might not
necessarily translate to an in vivo environment since its biological complexity can affect the capabilities
and properties of the nanocarrier. In fact, many nanosystems with promising in vitro outcomes, then
fail in in vivo tests because the conditions of the biomimicked physiological environment are different
from those of the real physiological environment, being the high presence of proteins one of its most
outstanding peculiarities. For this reason, the last part of this study will be focused on the identification
of the proteins with higher affinity for the surface of C3(C16His)2/MOG-siRNA lipoplexes.
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Figure 5. (a) Epifluorescence microscopy images for T731-GFP cells treated with C3(C16His)2/MOG-siRNA
lipoplexes (α = 0.2; ρeff = 4 and 10) and Lipo2000*-antiGFP-siRNA as control, after 72 h of treatment.
Images were collected in different channels of fluorescence signals and the overlapping of them. Scale
bars are 75 µm. GFP knockdown levels expressed as MFI (unstriped bars, left y-axis) and % GFP (striped
bars, right y-axis) in T731-GFP cells at 48 (b) and 72 h (c) of incubation. Cells treated by the lipoplexes
were collected at α = 0.2 and ρeff = 4 (light pink bars) and 10 (dark pink bars). Untreated cells were used
as a reference of the highest MFI and % GFP value. Free siRNA and Lipo2000*-non-targeting siRNA were
used as negative controls (gray and purple bars, respectively) while Lipo2000*-antiGFP-siRNA was used
as positive control (blue bars). All experiments were performed with 10% (v/v) of HS. The data represent
the mean ± SD of three independent wells.
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3.4. Protein Corona Characterization

As already commented, once the lipoplexes are in contact with human plasma, the proteins
attached to the surface will strongly influence their biological behavior. After all, what cells firstly
see is not the lipoplex surface but the PC adsorbed on it (see scheme on Figure 6a). As a result, it
becomes of utmost importance the analysis of the protein corona (PC) to determine its nature and
composition. The C3(C16His)2/MOG-siRNA lipoplexes were thus analyzed by nanoLC-MS/MS at the
most promising gene knockdown condition found in vitro, ρeff = 10, after 1 h of incubation with HS.
The relative percentages of the distinct proteins were determined and, in turn, proteins were classified
according to their molecular weight (MW), isoelectric point (pI), and physiological function, as shown
in Figure 6b, c and d, respectively (see also Table S1). Figure 6b indicates that proteins with low
molecular weight (<50 KDa) were preferentially adsorbed onto the nanocarrier surface (~70%), and
only ~9% of the total amount of adsorbed proteins presented molecular weights above 150 kDa. On
the other hand, C3 (C16His)2/MOG-siRNA lipoplexes exhibited strong affinities by proteins with a pI
below 7, as can be inferred in Figure 6c. The fact that about 70% of adsorbed proteins showed negative
charge at physiological pH is in agreement with the hypothesis that the PC formation is mostly driven
by electrostatic interaction between negatively charged proteins and cationic lipids, as observed in
previous PC studies [43,50].
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Figure 6. (a) Scheme depicting protein corona formation (PC). Percentage of the proteins found within
the protein corona (PC) of C3(C16His)2/MOG-siRNA lipoplexes at α = 0.2 and ρeff = 10, classified by
their molecular weight, MW in kDa (pie chart b), by their isoelectrical point, pI (pie chart c) and by
their physiological function (pie chart d).

Finally, the classification made according to the physiological function revealed that the PC formed
around the lipoplexes is mainly comprised of lipoproteins, acute phase, and immunoglobulins proteins
(35%, 21%, and 16% respectively). In contrast, tissue leakage, coagulation, and complement proteins
were found in a considerable minor proportion (3%, 7%, and 10%, respectively). Lipoproteins are
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involved in intracellular trafficking and can promote longer bloodstream circulation times, while
immunoglobulins and acute phase proteins are related to immune and inflammatory responses.
The complement proteins usually favor the elimination of nanocarriers from the systemic circulation,
while coagulation proteins are involved in the coagulation process [80,81]. A further classification based
on the percentage of total proteins identified for each functional class is displayed on Figures S3 and S4,
while the top 25 most-abundant corona proteins are collected in Table 2. Within the lipoproteins,
apolipoproteins A-I and A-II are the most abundant (13% and 7%, respectively), followed by serum
albumin (5%). Owing to their capacity to prolong the circulation time in the bloodstream and their
implication in the metabolism and transport of cholesterol, these proteins are recognized as dysopsonins.
Although factors governing protein corona composition are still under discussion, the composition
above described could help in explaining the notable knockdown silencing activity displayed by
C3(C16His)2/MOG-siRNA lipoplexes. Thus, the combination of a moderate content of lipoproteins
(ApoA-I and ApoA-II in particular) and a low content of complement proteins could be favoring a
longer circulation of the present lipid-based nanocarriers in the bloodstream and a lower interaction
with phagocytic cells [82], which could justify, at least in part, the good silencing outcomes herein
obtained; nevertheless, more specific studies in this regard would be necessary.

Additionally, it is remarkable the similarity between the global composition of the PC of
C3(C16His)2/MOG-siRNA lipoplexes studied in this work (reported in Figure 6) and that found
in a previous one reported by our group for an arginine-based lipid vector that, mixed with MOG and
siRNA, yielded C12ANHC18/MOG-siRNA lipoplexes [43]. In both cases, the cationic lipid (CL or GCL)
incorporated a functionalized amino acid residue in its structure, either arginine or histidine type.
In both cases, moderate or even high silencing efficiencies were found in the same cell lines (HeLa-GFP
and T731-GFP). What differs in these two systems is the structure that the lipid mixture adopted when
the siRNA was compacted to form the lipoplexes. In the case of C12ANHC18/MOG-siRNA lipoplexes,
two coexisting bicontinuos lyotropic liquid crystal cubic phases were found in SAXS experiments [43],
while in the present case, SAXS results have demonstrated that C3(C16His)2/MOG-siRNA lipoplexes
arranged in two coexisting Lα lamellar phases. Taking all these evidences into account, it could
be affirmed that, even assuming that the lipoplex structure could have an important weight in the
efficiency of the transfection and/or silencing process, as it has been admitted until now, the nature of
the proteins adsorbed on the surface lipoplex (i.e., PC composition) might have a critical influence
in their biological response, as demonstrated in previous works [83,84]. In addition, it seems that
the introduction of amino acid residues on the cationic head of the lipid-based nanovector somehow
conditions the adsorption of those proteins that tend to favor the permanence of the gene nanocarrier
in the bloodstream, thus promoting the transfection/silencing process, although more specific assays
would be necessary to affirm it unambiguously.
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Table 2. Top 25 most-abundant proteins present in the protein corona surrounding C3(C16His)2/MOG-siRNA
lipoplexes surfaces at α = 0.2 and ρeff = 10.

Protein Number Description %

1 Apolipoprotein A-I 12.85

2 Apolipoprotein A-II 7.39

3 Serum albumin 5.38

4 Ig kappa constant 3.73

5 Ig lambda constant 2 3.13

6 Alpha-1-antitrypsin SV = 3 2.97

7 Alpha-1-antitrypsin SV = 1 2.94

8 Apolipoprotein A-IV 2.90

9 Complement C3 2.89

10 Apolipoprotein E 1.99

11 Apolipoprotein C-III 1.81

12 Complement C4-B 1.72

13 Complement C4-A 1.67

14 Ig heavy constant mu 1.62

15 Trypsin 1.54

16 Apolipoprotein C-I 1.35

17 Retinol-binding protein 4 1.34

18 APOC4-APOC2 readthrough (NMD candidate) 1.31

19 Serotransferrin 1.25

20 Apolipoprotein B-100 1.22

21 SAA2-SAA4 readthrough 1.19

22 Haptoglobin 1.17

23 Vitronectin 1.10

24 Isoform 2 of Clusterin 1.09

25 Ig lambda-like polypeptide 5 1.05

4. Conclusions

The gemini cationic lipid with functionalized histidine groups in its structure, C3(C16His)2,
in combination with the neutral helper lipid MOG (α = 0.2), has demonstrated in this work its potential
to compact, protect and transfect siRNA in two GFP over-expressing cancer cell lines (HeLa-GFP and
T731-GFP), provoking in turn the GFP knockdown with efficiency and cell-safety. This affirmation
is based on the biophysical study herein presented that has combined both physicochemical and
biochemical experiments to understand the interactions between siRNA and the lipids; the structural
patterns of the resulting lipoplexes; and their capacity to cross the cellular membrane, deliver the
nucleic acid in the cellular cytoplasm, and knockdown the GFP expression. The histidine-based GCL
provided the necessary positive and delocalized charge to compact the anionic siRNA molecules by
means of a strong electrostatic interaction with an important entropic component associated with
the release of Na+ counterions to the bulk. It was also demonstrated that C3(C16His)2/MOG-siRNA
lipoplexes were arranged in a Lα lamellar lyotropic liquid crystal phase, in coexistence with an
additional Lα phase at lower q values when the lipoplexes were incubated with HS, this second
lamellar phase being compatible with a less compacted structure where the proteins of HS were
surface-adsorbed. This coexistence of phases could favor once again the uptake of the lipoplex by the
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cell, revealing a structure-activity relationship in the GFP knockdown evidences found. On the other
hand, C3(C16His)2/MOG-siRNA lipoplexes displayed an excellent biocompatibility in both HeLa-GFP
and T731-GFP cells. Moreover, they efficiently induced GFP knockdown in both cell lines, with even
better outcomes than those shown by the standard Lipo2000*-siRNA, ρeff = 10 being the most promising
lipoplex composition. The PC surrounding the lipoplex surface was confirmed to be mainly composed
by proteins with pI less than 7 (as expected for cationic nanoaggregates) and with MW lower than
50 kDa. Furthermore, it was found that the most abundant proteins were apolipoproteins (A-I and
A-II) and serum albumin, while complement proteins were found in low percentages. This particular
combination may help in explaining the remarkable knockdown activity of C3(C16His)2/MOG-siRNA
lipoplexes in terms of a longer circulation time of the nanocarrier in the bloodstream and a lower
interaction with phagocytic cells, although more specific studies would be required in this respect.
Finally, comparing the results herein obtained with previous studies (above referenced), it can be also
concluded that the GCL C3(C16His)2, with histidine-based polar heads, can be recommended as a
versatile and promising option in both gene transfection (pDNA) and gene silencing (siRNA) strategies.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/12/9/791/s1,
Figure S1: Epifluorescence microscopy images: Merged images (bright field (BF) + green fluorescence channel
(left)) and green fluorescence channel (right) for HeLa-GFP cells treated with C3(C16His)2/MOG-siRNA lipoplexes
(α = 0.2; ρeff = 4 and 10) in the presence of 10% (v/v) of HS, after 72h of incubation, Figure S2: Epifluorescence
microscopy images for T731-GFP cells treated with C3(C16His)2/MOG-siRNA lipoplexes (α = 0.2; ρeff = 4 and 10) in
the presence of 10% (v/v) of HS, after 72h of incubation, Table S1: Relative percentage of proteins classified by their
physiological function, by their MW in kDa and by their pI about pie charts in Figure 6, Figure S3: Classification
of the most abundant proteins (lipoproteins, acute-phase and immunoglobulins proteins) found in the protein
corona surrounding C3(C16His)2/MOG-siRNA lipoplexes surfaces, Figure S4: Classification of the proteins that
constitute a minor fraction (tissue leakage, coagulation, complement and other proteins) present in the protein
corona surrounding the C3(C16His)2/MOG-siRNA lipoplexes surfaces.
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