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Even before the COVID-19 pandemic, there was mounting interest in remote testing

solutions for audiology. The ultimate goal of such work was to improve access to hearing

healthcare for individuals that might be unable or reluctant to seek audiological help in a

clinic. In 2015, Diane Van Tasell patented amethod for measuring an audiogramwhen the

precise signal level was unknown (patent US 8,968,209 B2). In this method, the slope

between pure-tone thresholds measured at 2 and 4 kHz is calculated and combined

with questionnaire information in order to reconstruct the most likely audiograms from

a database of options. An approach like the Van Tasell method is desirable because

it is quick and feasible to do in a patient’s home where exact stimulus levels are

unknown. The goal of the present study was to use machine learning to assess the

effectiveness of such audiogram-estimation methods. The National Health and Nutrition

Examination Survey (NHANES), a database of audiologic and demographic information,

was used to train and test several machine learning algorithms. Overall, 9,256 cases were

analyzed. Audiometric data were classified using the Wisconsin Age-Related Hearing

Impairment Classification Scale (WARHICS), a method that places hearing loss into

one of eight categories. Of the algorithms tested, a random forest machine learning

algorithm provided the best fit with only a few variables: the slope between 2 and

4 kHz; gender; age; military experience; and self-reported hearing ability. Using this

method, 54.79% of the individuals were correctly classified, 34.40% were predicted

to have a milder loss than measured, and 10.82% were predicted to have a more

severe loss than measured. Although accuracy was low, it is unlikely audibility would

be severely affected if classifications were used to apply gains. Based on audibility

calculations, underamplification still provided sufficient gain to achieve ∼95% correct
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(Speech Intelligibility Index ≥ 0.45) for sentence materials for 88% of individuals. Fewer

than 1% of individuals were overamplified by 10 dB for any audiometric frequency. Given

these results, this method presents a promising direction toward remote assessment;

however, further refinement is needed before use in clinical fittings.

Keywords: audiology, remote audiology, machine learning, CDC, NHANES, centers for disease control and

prevention, national health and nutrition examination survey

INTRODUCTION

Several factors have been pushing audiologists toward telehealth,
the most obvious of which is the COVID-19 pandemic. The
pandemic closed the physical doors of audiology clinics around
the world, requiring healthcare professionals to come up
with alternatives to traditional in-person clinical approaches.
Regardless of the pandemic, a shift to telehealth is necessary to
reach underserved communities and individuals far away from
audiology clinics.

One way to provide more convenient, accessible care for
patients is to have them complete hearing tests in their own
home. Testing hearing in the home is not a new concept.
Computer-based or cellular phone-based hearing screenings (i.e.,
evaluating whether the participant can hear a preset level, and
referring for further testing if they cannot) have been used
successfully [e.g., (1–3)]. However, it is still more difficult to
estimate hearing thresholds outside of an audiology testing
center. Some at-home tests rely on a fairly traditional approach to
audiometric testing, examining thresholds at octave frequencies
between 250 and 8,000Hz by providing a calibrated tablet and
headphones. One such test, the Home Hearing Test, has been
shown to produce reliable results in the home (4, 5). For a more
thorough review of automated and in-home audiometric testing,
please see Pragt et al. (6).

It is difficult to devise at-home hearing testing when the

patient uses their own home computer or cell phone with
earphones because that equipment will produce unknown

presentation levels [for recent review of such approaches, see
(7)]. A method for determining a patient’s audiogram with

limited audiological information was patented by Diane Van

Tasell in 2015 (patent US 8,968,209 B2). In this method, pure-
tone thresholds are measured at 2 kHz and 4 kHz. Rather
than attempting to measure precise hearing thresholds at those
frequencies, the slope between 2 and 4 kHz is calculated and
combined with questionnaire information. Together, these data
are used to reconstruct the most likely audiogram for that
listener from a database of options. The method was intended
to overcome the limitations of presenting accurate signal levels
when using uncalibrated equipment. An approach like the Van
Tasell method is desirable because it is relatively quick (only two
thresholds in each ear are measured) and feasible to do in a
patient’s home on uncalibrated equipment where the exact levels
of presented stimuli are unknown.

A similar in-home test would also be useful for experimental
procedures. A large, diverse pool of subjects can be recruited
and tested quickly by using remote testing. If the population of

interest for a study is people with hearing impairment, it may be
important to apply gain to the stimuli being tested. In this case,
an estimate of the participant’s hearing loss is necessary. Because
a precise threshold cannot be guaranteed to be measured in the
home for the reasons listed above, a remote testing solution that
does not rely on precise threshold measurements is desirable.

Put plainly, the problem that needs to be solved is this: how
can a person’s audiometric thresholds be accurately predicted
with limited information? Machine learning excels when using
a set of features (variables) to categorize an unseen case. In order
to do this, a machine learning algorithm is trained on a set of
sample data, then it is asked to categorize a set of test data.
By way of example, suppose a machine learning algorithm were
trained to categorize objects as either an animal, a plant, or a
mineral based on the object’s features (e.g., shape, color, and
size). If the algorithm was asked to categorize a strawberry, it
would use the features it was trained on to make its best guess.
Then the algorithm would—hopefully—correctly categorize the
strawberry as a plant. The accuracy of any given machine
learning algorithm is dependent on the particular cases it receives
when it is being trained and how generally the algorithm is
able to apply what it “learned” during the training phase. A
large, diverse dataset tends to provide strong fits for a machine
learning approach.

Fortunately, a large, diverse dataset of audiologic information
exists in the public domain: the National Health and Nutrition
Examination Survey (NHANES). NHANES is a complex survey
that is collected biennially in the United States. Each survey
cycle examines roughly 10,000 individuals from the United States
civilian non-institutionalized population. Participants in the
survey are given questionnaires, some are interviewed, and
some receive medical examinations including audiometric
tests. The NHANES database provides a rich source of pure
tone audiometric and demographic data from individuals
in the United States.

Audiometric data were categorized in order to facilitate most
machine learning approaches (8). There are two major ways to
categorize hearing losses that the authors are aware of today: the
Wisconsin Age-Related Hearing Impairment Classification Scale
(WARHICS) (9) and the IEC 60118-15 standard audiograms
(10). Because the IEC standard audiograms are based on data
from Stockholm (10) and the WARHICS classes were based on
data collected in the United States (9), the WARHICS classes
were used in the present study.

The goal of the present study was to determine how accurately
a machine learning algorithm can predict a person’s audiometric
configuration given limited information about that person’s
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demographics, hearing loss, and self-reported difficulty hearing.
An additional goal was to apply this approach in a hypothetical
speech test remotely administered, and to quantify the degree
to which mismatches between the observed and predicted
audiometric configurations would affect speech intelligibility.
Three machine learning algorithms were trained using the
following features: age, gender, previous military experience, the
slope between 2,000 and 4,000Hz pure tone thresholds, and
self-reported amount of hearing difficulty.

MATERIALS AND METHODS

Procedure
All data preprocessing and analysis was done in R (11) using the
lattice (12), caret (13), Metrics (14), and tidyverse (15) packages.

Data were downloaded from the National Health
and Nutrition Examination Survey (NHANES) database
(https://www.cdc.gov/nchs/nhanes/index.htm). NHANES
is a complex survey that studies the United States civilian
non-institutionalized population. As a part of this survey,
participants in most survey cycles receive audiometric
evaluations. The large sample size and diverse population
make NHANES an excellent dataset for examining audiometric
patterns within the population surveyed. Because pure-tone
thresholds were necessary for the present analysis, sample
sets that did not include audiometric measurements were
excluded. The sample sets that included audiometric data are
those from 1999–2012 and 2015–2016. This span of years
resulted in 71,963 cases.

Because of the complex survey design, special care needs to
be taken when merging several datasets. These datasets were
merged following the procedures outlined on the NHANES
website in order to preserve sample weights. Sample weights
are an important part of a complex survey, as they account for
factors that make the selected sample more representative of the
targeted population. Sample weights in the NHANES database
take into account three major components. First, the sample
weights account for the probability that a particular individual
was selected to participate in the survey. Second, adjustments
are made for non-response rates. Third, adjustments are made to
account for oversampling of particular genders, age groups, and
ethnic backgrounds.

It is also important to choose the appropriate set of weights.
According to the NHANES site, a researcher must choose
the weight that includes the smallest possible subpopulation
that includes all of the variables of interest. The cases with
audiometric data are the smallest subpopulation in the present
study and the audiometric data were collected in the mobile
exam center (MEC). Therefore, the MEC weights were used for
the present study. Eight NHANES cycles were combined for
this dataset. Based on the guidelines laid out in the NHANES
tutorials, a combined weight was created by multiplying the
weights from 1999–2002 by 0.25 and the weights for all
other years by 0.125. These new weights were saved and used
in analysis.

The survey questions asked of participants also changed
over the years. The question of “General condition of hearing”

(Which statement best describes your hearing (without a hearing
aid)?) had six possible answers from 1999–2004 (AUQ130), eight
possible answers from 2005–2010 (AUQ131), and was given a
new designation starting in 2011 (AUQ054). The data needed
to be adjusted for these changes. From 1999–2004, participants
could answer: “Good,” “Little trouble,” “Lot of trouble,” “Deaf,”
“Don’t know,” or by refusing to answer the question. Starting in
2005, participants were given two new answers to the question:
“Excellent,” and “Moderate hearing trouble.” When the data were
merged, the class of answer from 1999–2004 was unchanged,
though it should be noted that some number of participants that
responded “Good” from 1999–2004 may have chosen “Excellent”
if it were an option for them. A similar argument applies to the
“Moderate hearing trouble” response added in 2005. For ease of
reading, all three versions of this question (AUQ130, AUQ131,
and AUQ054) will be referred to as “the question regarding
hearing condition.”

Next, data were cleaned to ensure all cases had the following
data: audiological thresholds for both ears at audiometric
frequencies between 0.5 and 8 kHz, military experience, age,
gender, and a response to the question regarding hearing
condition. Of those 72,509 cases, 62,087 cases (85.6%) did
not have audiological data because they did not participate
in the MEC portion of their NHANES cycle. In addition to
those missing audiological data, 1,164 cases (1.6%) were missing
military status data. Two cases were missing answers to the
question regarding hearing condition. All of these cases were
dropped from the analysis resulting in 9,256 individuals with
complete data for the variables listed above (12.8% of the
original sample). Wisconsin Age-Related Hearing Impairment
Classification Scale (WARHICS) classes were calculated for each
ear for each person and saved as a separate variable for the
two ears (WARHICS left and WARHICS right). The WARHICS
subcategories were not included in this analysis because the
subclasses were subsumed by the major classes in a previous
study (9), and because the main classes were sufficient for the
goals of the present study. See Figure 1 for a visualization of the
WARHICS classes as they would appear on an audiogram.

Demographics
Of the 9,256 valid cases from 1999–2012 and 2015–2016, 4,156
cases (44.9%) were male and 5,100 cases (55.1%) were female.
Eight hundred seventy-seven cases had military experience
(9.5%), 8,377 cases had no military experience (90.5%), one
refused to answer the question and one responded “I don’t
know.” Age ranged from 17 to 85 years. The distribution of ages
is plotted in Figure 2. See Table 1 for a breakdown of WARHICS
class for left and right ears. Table 2 shows the distribution of
answers to the question “Which statement best describes your
hearing (without a hearing aid)?”

ANALYSIS

Three machine learning algorithms were trained on the dataset
to predict WARHICS class: random forest (RF), support vector
machines with a radial kernel (SVM Radial), and k-nearest
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FIGURE 1 | WARHICS classes plotted on an audiogram. Shaded regions represent regions in which an individual’s audio must fall to be classified as that WARHICS

class. Gray dotted line is an example from WARHICS class 7 (not 1–6 and at least one threshold <= 80 dB). White dotted line is an example from WARCHIS class 8

(all thresholds >= 80 dB).

Frontiers in Digital Health | www.frontiersin.org 4 August 2021 | Volume 3 | Article 723533

https://www.frontiersin.org/journals/digital-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/digital-health#articles


Ellis and Souza Machine Learning Classifying Hearing Loss

neighbors (KNN). Accuracy was used to assess the efficacy of
the algorithms.

The 9,256 data points for the left ears were split into two sub-
datasets: one for training (80% of the data: 7,407 cases) and one
for validation (20% of the data: 1,849 cases). Only three cases
were classified as WARHICS class 8, so one of these cases was
forced into the validation dataset. The other two cases classified
as WARHICS class 8 were used in the training dataset. The right
ear data (N = 9,256) were used for a second round of validation
and testing.

RESULTS

The three machine learning algorithms were assessed based on
the time they took to run using a 2.8 GHz 11th Generation
Intel R© CoreTM i7 processor with no parallel processing, the
overall accuracy, and learning curves. See Table 3 for run
time, accuracy, and final parameters fit. Learning curves for
the three algorithms are plotted in Figure 3. WARHICS class
8 was excluded from the learning curves because that class
was rare.

FIGURE 2 | Histogram of ages examined. Data were obtained from the National Health and Nutrition Examination survey.
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TABLE 1 | Distribution of WARHICS classes in left and right ears.

WARHICS Frequency Percentage Frequency Percentage

class (L) (L) (R) (R)

1 3,761 40.62% 3,955 42.72%

2 1,754 18.95% 1,711 18.48%

3 1,505 16.26% 1,499 16.19%

4 931 10.06% 822 8.88%

5 760 8.21% 781 8.44%

6 210 2.27% 177 1.91%

7 334 3.61% 313 3.38%

8 3 0.03% 0 0.00%

TABLE 2 | Distribution of responses to the question “Which statement best

describes your hearing (without a hearing aid)?”

Response Frequency Percentage

Excellent 5,027 54.30%

Good 3,103 33.52%

A little trouble 769 8.31%

Moderate hearing trouble 251 2.71%

A lot of trouble 100 1.08%

Deaf 5 0.05%

Refused 0 0.00%

Don’t Know 1 0.01%

TABLE 3 | Run time, accuracy, and the final fit parameters for a random forest

(RF), support vector machines with a radial kernel (SVM Radial), and k-nearest

neighbors.

Algorithm Run Time Accuracy Parameters

RF 224.91 s 0.54 mtry = 2

SVM Radial 460.99 s 0.51 sigma = 0.23, C = 1

KNN 3.69 s 0.45 k = 9

Run time is included here for completeness, but a machine learning algorithm could be

implemented for the purposes discussed in this paper using a remote server to bypass

the run time.

The learning curves and accuracy indicate that the random
forest algorithm is the best algorithm among the three. Although
run time is another typical metric for measuring machine
learning algorithms, it is not an important factor here. Run time
information is only relevant for assessing the algorithms if they
needed to be run each time they had to categorize a new case.
In the applications discussed in the present study, this would not
be the case because the chosen algorithm could be implemented
on a remote server and called when needed. The run time is
reported here for completeness. The learning curves show a
normal pattern of results and a good fit for both the RF and
KNN algorithms. The large jump in performance around 3,500
trials and the wide gap in performance at the end of the training
indicate that the SVM Radial model is not a good fit for these

data. Based on run time, accuracy, and learning curves, RF was
used to predict WARHICS class.

RF prediction efficacy was assessed using confusion matrices.
The left ear validation dataset saw significantly higher accuracy
than the no information rate (Acc = 0.5462, NIR = 0.4067, p
< 0.001). Cohen’s kappa was calculated as 0.35 which signifies
a fair agreement between the reference and prediction (16). The
confusion matrix from which these values were calculated is
shown in Table 4 along with within-class precision and recall
calculated following the guidelines laid out in Sokolova and
Lapalme (17). Overall, the model performs best at classifying
individuals with no clinical hearing loss (WARHICS class 1). The
algorithm performs less well at identifying individuals that fall
into WARHICS class 2 and WARHICS class 5.

Right ear data were used to test the RF algorithm. The
same model trained on 80% of the left ear data was used to
predict the classification for all 9,258 cases of right ear data.
Again, accuracy was significantly greater than the no information
rate (Acc = 0.5583, NIR = 0.4273, p < 0.001). Cohen’s kappa
showed fair agreement between the machine learning algorithm
and the reference classifications (Cohen’s kappa = 0.3573). The
confusion matrix from which these values were calculated is
shown in Table 5 along with within-class precision and recall.
The algorithm shows a similar pattern of results for the right
ear data as it did for the left ear validation dataset, though the
algorithm seems to have more success classifying listeners in
WARHICS class 5 for the right ears than it did for the left.

DISCUSSION

There are several ways to assess the real-world efficacy of a
machine learning algorithm. At the end of the day, we want to
know how accurate the algorithm is; however, “accuracy” can
be conceived of in different ways. We will explore two rules for
assessing accuracy: a strict rule, and a practical rule.

The strict rule states that anymismatch between the predicted
WARHICS class and the reference WARHICS class is a miss.
For example, if the listener has a reference WARHICS class of
5 and they are categorized as WARHICS 5, this is a hit. If they
are categorized as WARHICS 4, this is a miss. The practical
rule is based on the difference in expected speech audibility due
to a mismatch between the predicted and reference WARHICS
classes. For details on calculation of this this rule, please see the
Supplementary Materials.

By the strict rule, the machine learning algorithm correctly
categorizes a loss roughly 55% of the time—about 1 in 2
individuals. This is certainly below the desired success rate, but
this is due to the intentional lack of information provided to
the machine learning algorithm. If all pure tone frequencies
were included, the machine learning algorithm would have
been significantly more accurate; however, this was not the
goal of the present study. The intent was to see how accurately
the machine learning algorithm could predict audiometric
configurations given limited information that one might expect
to have when using uncalibrated equipment in a person’s
home, similar to the approach suggested by Van Tasell. A
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FIGURE 3 | Learning curves of the three machine learning algorithms trained on the left ear data. RF, Random Forest; SVM, Support vector machines with radial

kernel; KNN, k-nearest neighbors.

TABLE 4 | Confusion matrix results of left ear machine learning predictions.

Reference

1 2 3 4 5 6 7 8 Precision

P
re
d
ic
tio

n

1 705 244 92 13 31 2 5 0 0.65

2 11 13 8 2 1 0 1 0 0.36

3 36 92 168 72 55 2 14 0 0.38

4 0 0 26 89 40 19 10 0 0.48

5 0 0 5 8 11 10 12 0 0.24

6 0 0 0 1 5 5 2 0 0.38

7 0 1 1 1 9 4 22 1 0.56

8 0 0 0 0 0 0 0 0 0

Recall 0.9 0 0.6 0.5 0.07 0.12 0.3 0

Columns represent the reference WARHICS classes from the NHANES dataset. Rows represent the predicted WARHICS classes from the RF algorithm. Numbers along the diagonal (in

bold) count the number of correct classifications. Numbers above the diagonal count the number of classifications where the predicted WARHICS class is less severe than the reference

WARHICS class (underprediction of loss). Numbers below the diagonal count the number of classifications where the predicted WARHICS class is more severe than the reference

WARHICS classification (overprediction of loss). Overall, the machine learning algorithm correctly predicted 54.79% of losses, underpredicted 34.40% of losses, and overpredicted the

remaining 10.82% of losses. Within-class precision and recall for these data are presented in the margins. The precision and recall values for WARHICS class 8 are anomolous because

there was only 1 case in the validation dataset and it was misclassified. They are included here for completeness.

different machine learning approach achieved around 90%
accuracy across different audiometric configurations using
judgments provided by three licensed audiologists about the
configuration, severity, and symmetry of participant’s losses
(18). However, such an approach requires more resources
and is subject to variability according to the experts being
consulted. An advantage of the method tested here, despite
its lower accuracy by the strict rule, is its ability to be
fully automated and implemented in remotely-conducted

auditory experiments where expert judgment cannot be
easily applied.

Given these results, the practical rule may be the appropriate
way to describe the results of the present experiment if
the machine learning solution presented here were used to
predict thresholds for a speech intelligibility experiment. By
the practical rule, the machine learning algorithm succeeds
88.3% of the time. This success rate is much better than
the strict rule partly due in part to a laxer criterion for
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TABLE 5 | Confusion matrix results of right ear machine learning predictions.

Reference

1 2 3 4 5 6 7 8 Precision

P
re
d
ic
tio

n

1 3,712 1,185 482 73 140 0 34 0 0.66

2 46 56 59 13 6 0 3 0 0.31

3 195 455 803 300 291 8 75 0 0.38

4 1 10 139 374 197 92 39 0 0.44

5 0 2 5 45 97 37 41 0 0.43

6 0 0 0 5 14 25 16 0 0.42

7 1 3 9 12 36 15 105 0 0.58

8 0 0 0 0 0 0 0 0 0

Recall 0.94 0.03 0.5 0.5 0.12 0.14 0.34 0

This table is laid out the same way as Table 4. Overall, the machine learning algorithm correctly predicted 55.88% of losses, underpredicted 33.39% of losses, and overpredicted the

remaining 10.73% of losses. Within-class precision and recall for these data are presented in the margins.

counting a success. However, the practical rule does as its
name implies: uses a practical threshold for success based
on the audibility that would be achieved for presented
speech stimuli. Eighty eight point three percent of the cases
would still be predicted to score 95% correct on sentence
materials, even when underamplified. If a machine learning
solution were used in this context, a researcher may be able
to identify whether a listener received the correct gain or
not. A researcher might be able to identify which of the
remaining 11.7% were misclassified by looking at volume
control (presumably, listeners that were overamplified would
turn the volume down to a comfortable level), or by
devising a threshold test at the outset of the experiment to
identify those that were underamplified. Such methods are
speculative here and would need to be refined further in
the future.

User-operated tests could be applied inside and outside
of the clinic. In the clinic, it could be used to improve
efficiency. An audiologist that needs to only measure two
or three air conduction thresholds in conjunction with a
short questionnaire would save a substantial amount of time,
improving the efficiency of clinic operations. The saved time
could then be used for other diagnostic tests or counseling.
This is consistent with calls to action for audiologists to
focus on more sophisticated measures, expert interpretation,
and patient counseling, vs. spending a majority of their
appointment time manually adjusting the levels produced by
a pure-tone audiometer (19, 20). With regard to in-home
testing, measurement of audiometric thresholds is becoming
a reality with devices like the AMTAS Home Hearing Test
(4, 5). Such in-home devices are expensive and must be
physically provided to the patient if it is important that the
test be calibrated to provide accurate results. However, if a
patient were provided with an online link via their home
computer, a first fit could be estimated with only two pure
tone thresholds, a short questionnaire, and without the need
for precisely calibrated presentation levels. If a method was
able to accurately predict an individual’s WARHICS class, a

hearing aid might then be provided with the initial frequency-
gain response set according to the predicted audiogram and
with a margin of adjustment considered acceptable for the
user. The margin of adjustment would likely cover the range
of the WARHICS class assigned to the patient. Such a range
would acknowledge the fact that the machine learning solution
presented here does not predict a specific audiogram, but rather
a range of possible audiograms. Setting a range of adjustment
values could be a potential solution to this problem. Support
for this method comes from a recent paper suggesting that
hearing aids set by the user using a smartphone app can provide
outcomes that are as good as—or better than—those provided
by the traditional audiologic best practices (21). Using machine
learning to restrict the adjustment range could speed up the
process of self-fitting for the patient. A combination of user-
adjusted response and response constraints based on predicted
audiogram would guard against situations where the user
chooses a response that is inadequate or inappropriate for their
hearing loss.

As a caution, if in-home testing becomes a broadly
accepted option in the future, careful steps will need to
be taken to make sure that patients have a pathway for
follow-up likely including a full audiogram, medical care,
and that treatable audiologic disorders are not missed. One
questionnaire, the Consumer Ear Disease Risk Assessment
(CEDRA), effectively screens for serious audiologic disorders
(22). CEDRA or a similar questionnaire could be used as
a supplement during at-home hearing screening. In view of
data that perceived hearing disability is not strongly related to
pure-tone thresholds [e.g., (23)], additional information may
be needed to guide provision of amplification once a hearing
loss has been identified. Nonetheless, recent developments
in auditory science (accelerated by effects of COVID-19 on
elective medical care) suggest that remote, at-home or other
user-centered assessment techniques will play a role in future
treatment options. That said, the present machine learning
algorithm is not ready for deployment on a massive scale in
clinical settings. The solution presented here would need to
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be fine-tuned, validated, and likely included in a battery of
other tests.

For research studies, a researcher using the approach
described here might be able to administer in-home
speech tests to individuals with hearing loss without
needing detailed knowledge of the participant’s computer,
headphones, or sound card. Although environmental
factors (e.g., road noise, background voices, construction,
pets, etc.) cannot be controlled for using this method,
the experimenter can coarsely estimate the class of a
participant’s loss and apply the appropriate gain. In view
of the known difficulties in accurately predicting loudness
perception from pure-tone thresholds (24), it would be
prudent of that experimenter to include a restricted volume
adjustment for the participant (perhaps one that maintains
an acceptable SII, as described above) in the case of
loudness discomfort. Such an approach would benefit the
field of hearing research by greatly expanding the sample
size and sample demographics without incurring much
extra cost.
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