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Abstract

Acceleration of genetic improvement of autogamous crops such as wheat and rice is neces-
sary to increase cereal production in response to the global food crisis. Population and pedi-
gree methods of breeding, which are based on inbred line selection, are used commonly in
the genetic improvement of autogamous crops. These methods, however, produce a few
novel combinations of genes in a breeding population. Recurrent selection promotes
recombination among genes and produces novel combinations of genes in a breeding pop-
ulation, but it requires inaccurate single-plant evaluation for selection. Genomic selection
(GS), which can predict genetic potential of individuals based on their marker genotype,
might have high reliability of single-plant evaluation and might be effective in recurrent
selection. To evaluate the efficiency of recurrent selection with GS, we conducted simula-
tions using real marker genotype data of rice cultivars. Additionally, we introduced the con-
cept of an “island model” inspired by evolutionary algorithms that might be useful to
maintain genetic variation through the breeding process. We conducted GS simulations
using real marker genotype data of rice cultivars to evaluate the efficiency of recurrent
selection and the island model in an autogamous species. Results demonstrated the impor-
tance of producing novel combinations of genes through recurrent selection. An initial popu-
lation derived from admixture of multiple bi-parental crosses showed larger genetic gains
than a population derived from a single bi-parental cross in whole cycles, suggesting the
importance of genetic variation in an initial population. The island-model GS better main-
tained genetic improvement in later generations than the other GS methods, suggesting
that the island-model GS can utilize genetic variation in breeding and can retain alleles with
small effects in the breeding population. The island-model GS will become a new breeding
method that enhances the potential of genomic selection in autogamous crops, especially
bringing long-term improvement.
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Introduction

Cereals account for a large share of the human food supply [1], suggesting that an increase in
yield of cereals will lead to a stable world food supply and suggesting the necessity for feeding
the world population, which is expected to reach nine billion by 2050 [2,3]. Most cereals, e.g.
rice (Oryza sativa L.), wheat (Triticum aestivum L.), and barley (Hordeum vulgare L.), are
autogamous plant species. In a conventional breeding program of an autogamous plant species,
the size of linkage blocks remains larger than that expected for an allogamous species. That fact
explains the low probability of generating novel combinations of alleles of genes in a breeding
program. Bulk population methods and pedigree methods for breeding, by which breeders
repeat selfing and selecting inbred lines, are used commonly for the genetic improvement of
autogamous plant species [4,5]. The expected levels of breakup of initial linkage blocks through
infinite repetitions of self-pollination are the same level of two to three cycles of random mat-
ing [6]. Recurrent selection, by which selection and crossing of selected individuals are per-
formed repeatedly, was proposed to solve this issue, as suggested by Fujimaki [7]. However, in
practice, it might cause different issues, one of which is inaccurate selection based on single
plant evaluation. Genomic selection (GS) [8] is expected to solve the problem of recurrent
selection because GS enables us to evaluate plants according to their marker genotypes on a
single-plant basis. For instance, Rutkoski et al. [9] described the efficiency of recurrent selection
using GS in stem rust resistance in wheat. They emphasized that the increase of recombination
events facilitates the combination of favorable alleles, and that it would make greater gains
than conventional bulk breeding methods would. Moreover, GS enables us to skip phenotyping
at each selection cycle. It therefore enables us to implement rapid-cycle genetic improvement
by accelerating generation advancement. This study evaluated the efficiency of recurrent selec-
tion using GS in autogamous plant breeding via a simulation study.

This study investigates “island-model GS” as a new breeding strategy for autogamous plants,
and evaluates its potential via breeding simulations. The term “island model” was derived origi-
nally from the field of population genetics, meaning that a large population is split into multi-
ple subpopulations and that each subpopulation receives migrants from the others. Whereas
selection takes place within each subpopulation, crossbreeding occasionally occurs between
subpopulations [10]. Migration among subpopulations has a tendency to counteract the dis-
persion of allele frequency [11]. The concept of the island model in population genetics has
inspired global optimization problems in the computational science research field. In optimiza-
tion problems, it is often difficult to search for the global optimum of a large number of param-
eters because of the existence of a number of local optima when the objective function is
nonlinear and non-differentiable. Evolutionary algorithms (EAs), which are heuristic algo-
rithms used to find a better or optimal solution, are used frequently to resolve local optima
issues. In EAs, individuals are constructed based on the parameters in question, which are
assumed as genes of living organisms. Relations between genotypes (i.e., sets of genes) and
their fitness constitute a ‘fitness landscape’. To reach the highest fitness point (i.e., to obtain the
genotype that has the best genotypic value) or at least to reach a higher fitness point (i.e., to
obtain a genotype that has a better genotypic value) on the fitness landscape, selection and
crossing are repeated as they are in a natural population. The concept of an island model is
used in the field of EAs. In the island model of EA, individuals are split into subpopulations,
and selection and crossing are repeated in each subpopulation involving migrants. Whitley
etal. [12] reported that the island model of EA showed better search performance than a single
population model in some cases. One reason for this efficiency is that various islands (i.e., sub-
populations) maintain some degree of independence and therefore explore different regions of
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the parameter space. The success of the island model of EA suggests that the island model con-
cept can be effective not only in natural selection but also in artificial selection.

The concept of the island model is expected to be efficient in plant breeding. When plant
breeding, breeders select plants having better genotypic values. The genotypic value of a plant
can be regarded as the fitness of the plant. Because of the conceptual and procedural similarities
between plant breeding and EA, the island model is expected to be useful for plant breeding. As
described above, recurrent selection might be efficient for the genetic improvement of autoga-
mous plants. When among-cultivar diversity is large, as is often the case in autogamous crops,
genetic differences among segregating families become large. When we consider segregating
families as islands, the islands will maintain some degree of independence. They can be consid-
ered to explore different regions of the parameter space for “optimizing QTL genotypes.”
Therefore, the concept of the island model might work effectively in the recurrent selection of
autogamous breeding populations.

Some risks to consider are that the algorithms in EAs are also effective in plant breeding just
because of the resemblance between EAs and plant breeding. Some differences exist between
EAs and plant breeding. First, mutations occur frequently in EAs, although they remain quite
limited in a breeding population because of the time scale of a breeding program. Second, EAs
can simulate a large population to generate wide genetic diversity at the expense of computa-
tional time, whereas the size of a breeding population is limited in plant breeding. At the same
time, labor for crossing plants in autogamous species might limits the number of plants used as
parents, because crossing autogamous plants is usually laborious as a result of the necessity of
avoiding selfing. Third, EAs can gain high ability through a number of selection cycles in a
short time using computers, whereas plant breeding requires a long time to evaluate and select
plants. Although O’Hagan et al. [13] conducted breeding simulations using some concepts in
EAs, they assumed a large population size and a high mutation rate from a radiation dose. It
was not realistic to implement their algorithms directly in an actual plant breeding program. It
is necessary to consider the restrictions on a real plant breeding program and to evaluate the
efficiency of the algorithms under the restrictions.

In this study, we conducted breeding simulations with a real marker genotype data of culti-
vars in Asian cultivated rice. To take advantage of existing materials and their information, we
assumed the use of recombinant inbred lines (RILs) derived from crosses between the existing
cultivars as a training population and as an initial breeding population. We specifically exam-
ined the following three points in the simulations: (i) the efficiency of recurrent selection in
autogamous crop breeding, (ii) the suitable constituent of an initial breeding population, i.e.,
initial populations derived from a single bi-parental cross and derived from multiple bi-paren-
tal crosses, and (iii) the efficiency of the “island-model GS,” which is proposed first for applica-
tion to plant breeding in this study. Through evaluation of these three points, we examined the
potential of recurrent GS and the island-model GS in breeding of autogamous plant species.

Materials and Methods
Marker data and position estimation

In this study, we performed breeding simulations based on real marker data of Asian cultivated
rice. A dataset consisting of the genotypes of 3,102 markers for 112 rice cultivars was used in
the breeding simulations. The 112 cultivars represented the geographical and historical diver-
sity of rice cultivars developed mainly in Japan (S1 Table). DNA of the cultivars was extracted
from one typical individual plant from each cultivar using CTAB method [14], and was used
further for genotyping of 3,102 markers. Among the 3,102 markers, 3,071 were single nucleo-
tide polymorphism (SNP) markers developed from the sequence of Japanese cultivars [15,16],
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and 31 were simple sequence repeat (SSR) markers [17]. The SNP genotyping was done using
Mlumina Beads Station 500G (Illumina Inc., San Diego, USA) following the manual. The physi-
cal map positions were determined based on rice genome build 4 (IRGSP Build 4, http://rgp.
dna.affrc.go.jp/IRGSP/Build4/build4.html). The positions of all markers on the linkage map
were necessary to simulate between-marker recombinations that occurred in meiosis. The posi-
tions of all markers that were not located on the linkage map were estimated via a polynomial
regression of the linkage map positions on the physical positions using information of the rice
genetic linkage map of a F, population derived from a single cross between the japonica variety
Nipponbare and the indica variety Kasalath [18,19] and its updated information [20]. Imputa-
tion of missing marker genotypes was held using fastPHASE ver. 1.3 [21]. The imputation was
repeated 100 times, and genotypes at each imputed locus were imputed alternatively as one of
two homozygous genotypes according to the occurrence proportions of the homozygous geno-
types over the 100 replications [22].

Simulation settings

The 100 markers out of 3,102 markers were assumed as quantitative trait loci (QTL) control-
ling a target trait in each simulation trial. The proportion of phenotypic variance explained by
each QTL (i.e., the heritability of each QTL) was set to follow the equation proposed by Lande
and Thompson [23] in the population constructing of the 112 cultivars. The effective number
of QTL was set as 40. The sum of heritability of all QTL was set as 0.6. The genetic variation
was explained only in an additive way: no dominance and no epistatic effect influenced the
trait. Genotypic values were simulated using these simulated QTL effects. Phenotypic values
were calculated by adding simulated environmental deviations into those genotypic values.
Phenotypic variance of population composed of the 112 cultivars was standardized to be 1.0.
For each breeding procedure, 100 replications of simulation were implemented.

Breeding schemes

First, from 112 rice cultivars, seven varieties were selected: Koshihikari, Yumeakari, Hitome-
bore, Hatsushimo, Hinohikari, Nanatsuboshi, and Asahinoyume. We selected these cultivars to
represent the genetic diversity in the 3,102 markers of the 112 cultivars. Second, six F lines
derived from six bi-parental crosses were made. Koshihikari, which was a predominant variety
in Japan, was used as a common parent for the six bi-parental crosses. Starting from the six F;
lines, six Fg populations were simulated with the repeated selfing and the single seed descent
(SSD) procedure. These simulated populations were used as initial populations for GS breeding
and as a training population for building a GS prediction model. Each F¢ population was con-
structed of 180 lines (i.e., 1,080 Fg lines in all).

In all GS breeding schemes, 20 cycles of GS were conducted. A prediction model was built
from phenotypic values and marker genotypes of the initial populations (i.e., six Fs populations
consisting of 1,080 lines) and was used throughout the 20 cycles. The selection intensity was set
as 10%. Instead of random mating, a single-round robin [24] was used, in which crosses were
conducted as a chain, i.e,, plantl X plant2, plant2 x plant3, . ., plant S x plantl among S plants,
as a rule for crossing selected plants for the next generation because of the difficulty of random
mating in rice (i.e., autogamous species) population. Selected plants were crossed in a round-
robin design. Ten genotypes were derived from each of S round-robin crosses.

First, to evaluate the efficiency of recurrent selection, we compared the outcomes of GS
breeding with those of RILs using the same breeding population derived from a single bi-
parental cross. Second, to evaluate the impact of genetic architecture of a breeding population
in GS breeding, breeding populations of two types were compared: (a) six breeding
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doi:10.1371/journal.pone.0153945.g001

populations, each of which was derived from a single bi-parental cross (discrete GS; Fig 1A)
and (b) a breeding population derived from admixture of six bi-parental crosses (bulked GS;
Fig 1B). For the former, one breeding population consisted of 180 lines derived from one bi-
parental cross. For the latter, six Fs populations derived from each of six bi-parental crosses
were gathered to construct one breeding population of 180 lines, in which 30 lines came from

each F¢ population. In the discrete GS, six breeding populations of 180 genotypes, each of
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which was derived from a single bi-parental cross, was improved independently with GS (Fig
1A). In the bulked GS, only one breeding population, with 180 genotypes derived from admix-
ture of multiple bi-parental crosses, was created. It experienced GS (Fig 1B). In the discrete GS
and the bulked GS, the 180 genotypes were derived from the round-robin crosses of 18 plants
that experienced GS. Third, to evaluate the efficiency of the island-model GS breeding, we com-
pared the island-model GS with the bulked GS. In the bulked GS, GS was performed on a single
breeding population derived from multiple bi-parental crosses (Fig 1B). In the island-model
GS (Fig 1C), breeding was conducted based on six equal-sized subpopulations that were mutu-
ally connected with a small amount of migration. The initial state of each subpopulation for
the island-model GS was an F¢ population derived from a single bi-parental cross. To facilitate
genetic migration between subpopulations, one of the selected plants was chosen randomly
and exchanged between subpopulations every cycle. Then mating was conducted among three
selected plants belonging to a single subpopulation after the migration. The migration was held
in a one-directional ring design in which the six subpopulations were randomly ordered. All
simulations were done using R, version 3.1 [25].

Genomic selection model

In GS breeding, we used G-BLUP for building a model for genomic prediction. The model had
the following form.

y=Xp+Zu+e

In that equation, y = {y;} is a vector of phenotypes, f is a vector of fixed effects, u is a vector
of random genotypic values with Var[u] = Ko,”. K represents the realized additive relation
matrix calculated from genotypes of the 3,002 non-QTL markers with removal of monomor-
phic markers in the training population. X and Z respectively represent design matrices for the
fixed effects and the random effects. In this simulation study, X was a vector of ‘1’s as the inter-
cept of the model with the length of the number of observation; Z was a matrix by which an
identity matrix (number of observations x number of observations) was combined with a 0
matrix (number of observation x number of prediction) by columns. € is a vector of the error
deviations with variance Var[g] = Ko,’. Each marker genotype is defined as 1, 0, and -1 when
the numbers of the considered allele contained are respectively two, one, and zero. The R pack-
age “rrBLUP” [26] was used to build a genomic prediction model with G-BLUP.

Summarization of results

From RILs in the initial breeding population of GS breeding, the best line (i.e., the line with the
highest genotypic value) was selected. The genotypic value of the best line was used as a stan-
dard for comparing the efficiency of recurrent selection with that of breeding utilizing inbred
lines.

In GS breeding, an attained genotypic value was represented as the maximum of the true
genotypic values among selected plants (i.e., upper 10% of plants selected based on predicted
values) at each selection cycle. Here, we assumed that a breeder can detect the best plant from
the selected plants through field trials before the variety release. The average breeding values of
plants belonging to a single population and the distribution of breeding values are examined to
compare the attained genotypic values (i.e., the maximum of the true genotypic values among
selected plants) with the population mean.

To monitor variation in selection accuracy through the breeding process, the accuracy of
genomic prediction was measured by Pearson’s correlation coefficient between the predicted
values and true genotypic values in each breeding cycle.
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Figures show averaged values of 100 simulations in each breeding procedure. To test the sig-
nificance of difference in the mean genotypic values among populations that experienced dif-
ferent breeding methods, we used matched-pairs Wilcoxon tests. Breeding populations in all
methods were derived from an identical initial population at each replication of the simula-
tions. The populations derived from the identical initial population were considered as a
matched-pair in the Wilcoxon test.

Results
Genetic diversity in 112 rice cultivars

Fig 2 shows the result of cluster analysis of the 112 rice cultivars by 3,102 markers. The distance
matrix was calculated as the Euclidean distance, in which two homozygous SNP genotypes are
treated as 0 or 1. The cluster was made using Ward’s method [27]. The shared common parent in
bi-parental crosses, Koshihikari, was in the bottom left of the figure. The remaining cultivars, which
were used in our breeding simulation, represented the genetic diversity existing in the 112 cultivars.

GS breeding designs

For the breeding of the population derived from a single cross (i.e., the discrete GS and the
selection among the initial population), one population that attained the highest genetic gain
was reported as the best result. Fig 3(A) shows the attained genotypic values in the discrete GS.
The dashed line shows the maximum value of genotypic values in Fs population derived from a
single cross. Red lines represent the result of Koshihikari x Hatsushimo population, which
attained the highest genotypic value among the six breeding populations on average (52 out of
100 replications of simulation in GS breeding). Blue lines represent the average value of the
best population in each simulation. The discrete GS attained a higher genotypic value than the
maximum of the Fs population at every cycle after the first two cycles of selection (p < 0.01 in

-',_Asa

o‘&“ .

Fig 2. Cluster analysis of the 3,102 markers in 112 rice cultivars. Yum, Yumeakari; Hit, Hitomebore; Kos,
Koshihikari; Hat, Hatsushimo; Hin, Hinohikari; Nan, Nanatsuboshi; Asa, Asahinoyume.

doi:10.1371/journal.pone.0153945.g002
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Fig 3. Genotypic values attained through selection cycles. Maximum of the true genotypic values among
selected plants. (a) Solid lines show results of the discrete GS breeding. Dashed lines represent the maximum
value of genotypic values in Fg population derived from a single cross. Red and blue lines respectively represent
the results of Koshihikari x Hatsushimo and the results of the best population in each simulation trial. (b) Red,
green, and blue lines respectively present results of the discrete GS of Koshihikari x Hatsushimo population, one
of the bulked GS, and one of the island-model GS.

doi:10.1371/journal.pone.0153945.g003

results of Koshihikari x Hatsushimo population; p < 0.01 in results of the best population in
each simulation trial). For the result of Koshihikari x Hatsushimo population, the discrete GS
exceed the maximum of F¢ in the 85 out of 100 trials after two cycles of selection, and then
attained higher genotypic value than the maximum of F in all 100 trials after six cycles of selec-
tion. The result suggests the superiority of GS breeding to the conventional methods using inbred
lines. The genetic gain of discrete GS, however, reached plateau after 7-8 cycles of selection.

Fig 3(B) shows the attained genotypic values in the GS breeding of three types (i.e., the dis-
crete GS, the bulked GS, and the island-model GS). The attained genotypic values in the dis-
crete GS show the same values as red solid line in Fig 3(A). The bulked GS, in which the
breeding population derived from multiple bi-parental crosses, attained higher genotypic val-
ues than the discrete GS using the population derived from a single bi-parental cross (p < 0.01
at every cycle after the first two cycles of selection). After the first two cycles of selection, the
attained genotypic values of the bulked GS exceeded that of the discrete GS in 62 out of 100
simulation replications. The bulked GS showed rapid genetic improvement during the early
cycles and reached plateau after 12-13 cycles.

We conducted the simulation of the island model GS only for the population derived from
admixture of multiple bi-parental crosses because the population derived from admixture of
multiple bi-parental crosses were expected to have higher potential than the population derived
from a single bi-parental cross (Fig 3B). Blue lines in Fig 3(B) show the attained genotypic val-
ues of the island-model GS using six subpopulations. The island-model GS attained lower
genotypic values than the bulked GS until the seventh cycle of selection for the averaged value
over 100 trials (p < 0.01 at every cycle after the first 10 cycles of selection). At the sixth cycle of
selection, the island-model GS exceed the bulked GS in 57 out of 100 simulation replications.
In the later selection cycles, the island-model GS attained higher genotypic values than the
bulked GS did. The island-model GS exceed the bulked GS in 83 out of 100 simulation replica-
tions after 12 cycles of selection. The island-model GS did not reach a plateau in the first 20
cycles. Through the 20 cycles of selection, the genetic ability of all subpopulations converged to
the same level even though the initial ability was different among different subpopulations.

In the island-model GS simulation, we generally assumed that (i) the number of migration
individuals was set to 1 in each subpopulation, (ii) the exchange interval was one (i.e., breeder
should exchange selected individuals every cycle), and (iii) one population derived from a sin-
gle bi-parental cross constructed one subpopulation. These assumptions attained better results
than the other assumptions, as derived below. That is, the island-model GS simulation, in
which two individuals were exchanged from each subpopulation, resulted in the similar genetic
ability to the island-model GS with one individuals” exchange (S1 Fig). The simulation with dif-
ferent migration intervals (i.e., exchanging event was conducted every 2-5 cycles) resulted in a
lower genetic gain than the island-model GS in which individuals were exchanged every cycle
(S2 Fig). The simulation based on an initial population in which lines are allocated randomly
to six subpopulations represented lower gain than the simulation with the initial population
separated according to their parents (S3 Fig).

In all GS breeding, decreases of the genotypic values were observed after the first selection
cycle (Fig 3). S4 Fig shows two examples of simulation trials during the first three cycles of bulked
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GS. At the first selection cycle, the average genotypic value of the breeding population improved.
The best genotypic values, however, showed deterioration through the first selection cycle, i.e.,
the right tail of the distribution went to the left side. In the result figures, we showed the best
genotypic values among the selected genotypes via genomic prediction at each selection cycle, so
that the attained genotypic values appeared to go down through the first selection cycle.

Genetic variance in a breeding population and prediction accuracy at
each selection cycle

All GS breeding schemes show similar trends in the genetic variance (Fig 4). The variance
decreased after the first selection and increased somewhat after the second selection in GS
breeding of all types. Then, after the third selection, the genetic variance decreased gradually.
For the discrete GS and the bulked GS, both breeding strategies showed similar levels of
decrease in variance at the first selection, but the level of increase was larger in the bulked GS
than the discrete GS at the second selection. Because of this difference of increment of variance,
the breeding population of the bulked GS maintained higher variance than that of the discrete
GS in early generations. The island-model GS showed different levels of genetic variances
among the initial subpopulations. At the first selection, the island-model GS showed the lower
variance than the others, and increased variance more than the others. The average genotypic
values of subpopulations in the island-model GS did not converge until the fifth selection cycle,
although they almost converged after the sixth selection cycle (Fig 3B).

In the bulked GS, almost all loci (99.03% on average) were homozygous in the initial popula-
tion (Fig 5), suggesting that the process of making the initial population (i.e., repeated selfing with
SSD until Fg) created inbred lines in the present situation. In the next generation, breeding popu-
lation had many heterozygous loci (23.98%). The proportion of fixed loci increased rapidly with
repeated selections. Fig 6 presents the proportion of fixed loci in the bulked GS. It was 19.63% in
the initial population. The proportion increased respectively to 60.48%, 75.25%, 85.90%, and
92.36% in the fifth, tenth, fifteenth, and twentieth generations. The increase of the number of
fixed loci resulted in a rapid decrease of the proportion of heterozygous loci, i.e., increased number
of homozygous loci (Fig 5). For the bulked GS, the homozygosity was 93.93% on average after the
12th cycle (i.e., the timing where the bulked GS has reached a plateau). Under circumstances in
which inbreeding was conducted after 12 cycles of the bulked GS, the homozygosity reached
99.24%, on average, through the three cycles of inbreeding (i.e., SSD procedure).

The prediction accuracy at each selection cycle showed the same trend as that of genetic var-
iance in the all GS breeding schemes (Fig 6). The first selection, at which the training popula-
tion included the predicted candidates, attained the highest prediction accuracy. Then it
decreased just after the first selection and increased slightly immediately after the second selec-
tion. After the third selection, the prediction accuracy declined gradually. The decline of accu-
racy immediately after the first selection was smaller in the bulked GS than in the discrete GS
(Fig 6A and 6B). The island-model GS showed a much smaller decrease of accuracy immedi-
ately after the first selection than the others. The prediction accuracy varied among subpopula-
tions over the 20 selection cycles (Fig 6C).

Discussion
Structure of breeding population

This study performed simulations of GS breeding in rice, which is an important autogamous
cereal crop. Using a real marker data of rice varieties, the population structure existing among
the rice varieties can be incorporated into the simulations. First, we compared the potential of
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Fig 4. Genetic variance shown through selection cycles. Results of the discrete GS in a population derived from a single bi-parental cross of
Koshihikari x Hatsushimo: red line. Results of the bulked GS: green line. Results of each subpopulation in the island model GS: blue lines.

doi:10.1371/journal.pone.0153945.9004

GS breeding with the maximum potential of RILs (Fig 3A). The superiority of GS breeding was
demonstrated as the high efficiency of recurrent selection, in which selection and cross are
repeated, even when single-round robin was applied instead of random mating. Results suggest
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Fig 5. Proportion of heterozygous loci among the all SNPs in the bulked GS. Red line represents the result of the bulked GS during 20 cycles of
breeding. The blue line shows results obtained from repeated inbreeding after 12 cycles of the bulked GS.

doi:10.1371/journal.pone.0153945.9005

that recurrent selection with repeated selections and crosses can make various combinations of
alleles of genes in a breeding population and can gradually fix the favorite combinations of
alleles in the population through cycles of selection.
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Fig 6. Prediction accuracy attained through selection cycles. Results of the discrete GS in a population derived from a single bi-parental cross of
Koshihikari x Hatsushimo: red line. Results of the bulked GS: green line. Results of each subpopulation in the island model GS: blue lines.

doi:10.1371/journal.pone.0153945.9006

For recurrent GS, it is desirable that the initial population has large genetic variation because
of its ability to contribute to genetic improvement. One can readily infer that a breeding popu-
lation derived from multiple bi-parental crosses can harbor lager genetic variation in breeding

PLOS ONE | DOI:10.1371/journal.pone.0153945  April 26,2016 13/21



@’PLOS ‘ ONE

Island Model Genomic Selection for Improvement of Autogamous Crops

than a population derived from a single superior bi-parental cross, assuming equal breeding pop-
ulation sizes. Comparison between these breeding populations (i.e., comparison between the dis-
crete GS and the bulked GS) proved that a breeding population derived from mixture of multiple
bi-parental crosses can attain higher genotypic values than that derived from a single bi-parental
cross, even when the sizes of the two populations are equal (Fig 3B). In the discrete GS, we pre-
sented the result of a population that attained the best genetic gain among six breeding popula-
tions (the best population among all simulation trials on average and the best population in each
simulation trial are shown respectively with red and blue lines in Fig 3A). Therefore, the size of
the initial breeding population was 1,080 in total in the discrete GS, which was six times larger
than that in the bulked GS. This result suggests the importance of admixing a large genetic diver-
sity into one population to create new combinations of alleles of related genes. A population
derived from admixture of multiple bi-parental crosses had higher genetic diversity in an initial
population, and showed more moderate decline of genetic variance than a population derived
from a single bi-parental cross (Fig 4), resulting in more rapid genetic improvement and slower
attainment to a plateau in the bulked GS than the discrete GS (Fig 3B).

In the simulations, the decrease in genotypic values at the first cycle (Fig 3) was observed. A
plant derived from the initial breeding population is expected to have the mean of genotypic
values of two parental plants that were inbred (Fg) lines selected in the initial population based
on the additive model. The plant was always worse than the superior parent. The attained
genotypic values (the maximum of true genotypic values) at the first cycle was lower than the
initial population, although the mean of breeding population improved (e.g., S4 Fig)

Island-model GS

In this study, we first proposed the island-model GS that was inspired by the island model in
EAs, and evaluated the efficiency of the island-model GS using a computer simulation reflect-
ing the situation of plant breeding. The island-model GS involved some uncertainty about its
success because of differences between plant breeding and EAs: (i) mutations occur frequently
in EAs, but they are limited in an actual plant population; (ii) EAs can simulate a large popula-
tion involving wide variation, although the size of breeding population is limited in plant
breeding; and (iii) EAs can gain high ability through numerous selection cycles in a short time
using computer resources, although plant breeding requires much time to evaluate and select
individuals. We used a population derived from multiple bi-parental crosses as an initial breed-
ing population in the simulation of the island-model GS. In the simulation, the island-model
GS showed a good performance particularly in the later cycles (Fig 3B; Table 1). The result

Table 1. Summary of the simulation results from three GS breeding procedures.

Genotypic value Cycle

10
15
20

Selection cycles to reach the
plateau

Proper situation

Discrete GS Bulked GS Island-model GS

(Koshihikari x Hatsushimo)

2.18 2.56 2.28

2.40 2.96 3.13

244 3.05 3.46

2.44 3.05 3.59

7-8 cycles 12-13 cycles > 20 cycles
Only two lines are available. A new variety is required in a Long-term selection is
short time. desirable.

Genotypic values at the 5, 10, 15, and 20 cycles are shown as average. Bold letters represent the highest genotypic value at each cycle.

doi:10.1371/journal.pone.0153945.t001
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suggests that the small population size (i.e., 180 individuals in this study) is sufficient to imple-
ment the island-model GS in actual breeding. Single-round robin was applied as a rule for mak-
ing crossings because of the difficulty of random mating in autogamous species, causing no
problem in implementing the island-model GS. These results suggest that the island-model GS
is efficient as a selection strategy even though differences exist between actual breeding and
EAs.

For GS breeding, the rapid decrease of genetic improvement becomes a daunting problem
hindering long-term selection. Jannink [28] described that the reason for the decrease was the
loss of favorable alleles in a breeding population. In the island-model GS, it was expected that
different alleles were selected in different subpopulations so that different subpopulations
involved different genetic variation. Because of the effect of the maintenance of genetic varia-
tion in a whole population, the authors expected that the island-model GS has the potential of
realizing the long-term GS. In our simulations, the island-model GS attained higher genotypic
values than the other GS methods did (Fig 3B). The result suggests that the island-model GS
holds a clue to long-term GS.

It is important for all breeding programs to maintain genetic diversity in a breeding popula-
tion. For the bulked GS, a particular family might be selected preferably at the first selection
cycle because the initial breeding population is composed of multiple families derived from bi-
parental crosses. Actually, in 99 out of 100 simulation trials, one or more family disappeared at
the first selection cycle. For 75 out of 100 trials, the selected plants showed selection bias (chi-
square tests showed significant gaps from the equal proportion for each family; p < 0.05). In
the island-model GS, selection bias was prevented by assuming that each family derived from a
single bi-parental cross as an initial subpopulation. That is, it was important to separate fami-
lies, each of which was derived from a single cross, into different subpopulations. The island-
model GS attained lower gain in later generations when the initial subpopulations of inbred
lines were constructed randomly, irrespective of the family membership of the inbred lines
than when they were constructed according to the family membership (S3 Fig). This result also
suggests the importance of separating each family into an initial subpopulation. Therefore, the
genetic difference among subpopulations is an important factor that makes the island-model
GS beneficial compared to bulked GS. Moreover, the island-model GS reached a plateau later
than the bulked GS (Fig 3B). Improvement in the bulked GS was rapid in the initial cycles (Fig
3B) because selection bias at the first cycle favored populations derived from a specific cross
with high ability. This rapid improvement also led the decline of genetic variance and fast pla-
teau of improvement in the bulked GS. In the island-model GS, different genetic variations
were conserved in each subpopulation, resulting in maintenance of genetic diversity in a whole
population. Migration of alleles of genes that was attained by exchanging parents (i.e., selected
plants) between subpopulations contributed to the improvement of genetic potential through-
out the population.

The balance between the genetic improvement of a whole population and the maintenance
of genetic diversity among subpopulations can be related to migration rates. For this study, we
assumed the migration size as one, which seemed a limit when the selected size was three in
each subpopulation. This migration size worked efficiently in the simulations. When the
migration size was two, the attained genotypic value was not much different, but the characters
of subpopulations were unified earlier (S1 Fig). That is true because the large number of
exchanged parents resulted in the early assimilation between subpopulations, then the same sit-
uation as when the initial subpopulations were made randomly. In the present study, even
when the migration size was one, the migration rate was large (i.e., 1/3). In such a case, the
migrants should have strong competitiveness in the subpopulation. Even under the high migra-
tion rate, the island-model GS with the migration interval of one (i.e., migration occurred
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every generation) yielded the best results among the intervals of 1-5 cycles with the same size
of exchanged individuals in the simulation (S2 Fig). Results suggest that the frequent exchange
of genotypes results in high efficiency of genetic improvement in the whole population, even
with a high migration rate. In the simulations of the island-model GS, small population size
and strong selection intensity were assumed. Selecting only three plants in one subpopulation
produced a severe genetic bottleneck in the subpopulation. Because of the severe bottleneck,
genetic variance in each subpopulation decreased drastically in two or three cycles of selection
without migration (S5 Fig). Although the drastic decrease in genetic variation in each subpopu-
lation resulted in the lower genetic gain through 20 selection cycles of the island-model GS
with longer migration intervals, the genetic gain did not reach a plateau through the 20 cycles
(S2 Fig). This result might suggest that genetic variation was maintained among subpopula-
tions, which contributed to the utilization of large genetic variation in breeding process and the
slow but long-term genetic improvement. S6 Fig shows the result of principal component anal-
ysis in 3,102 markers of a breeding population through five cycles of the island-model GS.
When the migration interval was one, genotypes in different subpopulations were admixtures
in several cycles. However, when the migration interval was greater than one, different subpop-
ulation underwent selection to different direction (i.e., different subpopulation showed geno-
types of different types). Wright [29] described that random differentiation tends to cause
different adaptive trends and different processes of selection in different subpopulations even
under uniform environmental conditions. Our simulations of the island-model GS, in which
we imposed selection to the identical direction for all subpopulations, might follow this situa-
tion. The island-model GS with longer migration intervals promotes the utilization of large
genetic variations in a whole population. In a breeding program, it might be better to conduct
the island-model GS with the shorter migration interval because of the demand of release of
new cultivars in a shorter period of time. However, if breeders can spend much time or if they
can hope for long-term selection, the migration interval should be decided based on the bal-
ance between the pace of improvement and the pace of reaching a plateau.

Suggestion for breeding of autogamous plants

The potential of the island-model GS in the breeding of an autogamous species was demon-
strated via breeding simulations. For the actual plant breeding, distinctness, uniformity, and
stability are necessary to release new cultivars [4]. In autogamous crop species, pure lines are
made as a new cultivar to realize uniformity and stability. In general, cultivars in a market expe-
rienced from 6 to 7 cycles of selfing [4]. Considering the rapid fixation of alleles in recurrent
selection shown as the rapid decline of the genetic variance (Fig 4), a few cycles of self-pollina-
tion after the genetic improvement reached a plateau sufficient to yield highly homozygous
genotypes. In our simulation, only three cycles of self-pollination were sufficient to attain
homozygosity higher than 99% after 12 cycles of the bulked GS (Fig 5).

The GS method presented in this paper emphasized the maintenance of genetic variation in
a breeding population to select autogamous species. However, an earlier report [30] suggested
the GS process with selecting more homozygous individuals. That study demonstrated that a
large genetic variance is caused by self-fertilization [31], thereby improving genetic ability in
GS. In their process, however, few new combinations of genes would appear in a breeding pop-
ulation. As suggested by the present study, GS with recurrent selection is a good strategy, espe-
cially for a long-term breeding.

Spindel et al. [32] suggested that GS might be effective for rice breeding when the target trait
was controlled by a number of genes. They demonstrated that GS attained higher prediction
accuracy than the conventional pedigree method and the method using a few markers with
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large effects for predicting grain yield, which is controlled by numerous small effect genes
using 332 rice inbred lines. Their result encourages our assumption that recurrent GS can be
performed with high accuracy. In our simulation study, although the markers were fewer than
their recommended value (one marker every 0.2 cM), it is expected that GS can attain higher
accuracy than the conventional selection methods. Spindel et al. [32] provided an example of
procedures of rice breeding incorporating GS, in which GS was conducted instead of pheno-
typic selection during the conventional breeding procedure using inbreeding. The recurrent
GS, which was proposed in the present study, might attain higher genetic gain than breeding
with repeated inbreeding.

In this study, GS was conducted to evaluate a single plant accurately. However, the predic-
tion accuracy declined with repeated selection cycles (Fig 6). The main reason for the decline is
expected to be the increasing genetic distance between the training and breeding populations.
In the simulation study of GS in barley (Hordeum vulgare L.) [28], the prediction model was
updated every cycle by making doubled haploids after selection. In the present simulation, a
prediction model was built based on 1,080 Fy lines, and was used throughout a breeding pro-
gram. Selection accuracy decreased with repeated selections (Fig 6). If the prediction model
can be updated, then selection accuracy would be improved (e.g., Iwata et al. 2011; Jannink
2010; Yabe et al., 2013; Yabe et al., 2014 [28, 33-35]). Updating a prediction model, however,
requires great effort and time. The present results show the potential to use one prediction
model, which can be built with RILs families, for a long time. The phenotype and marker geno-
type data of RILs or backcross inbred lines (BILs) are usually collected in public and private
sectors, suggesting that breeders can use existing segregating populations and/or their marker
and phenotypic data to build a prediction model. The optimal timing for updating a prediction
model should be considered based on time, cost, and effort for preparing a new training popu-
lation, and based on the accuracy of the updated model. Simulations with model updating were
conducted to confirm the possibility that model updating increases the efficiency of genetic
improvement (S7 Fig). For the simulations, we selected one realistic procedure from several
possible ones. The simulations were performed for the bulked GS scenario. A prediction model
was updated twice during the 20 cycles of selection using inbred lines derived from plants
selected from the breeding population. Model updating increased the prediction accuracy and
achieved genetic improvement only slightly. Even when the number of inbred lines used for
updating the model was increased, the prediction accuracy and genetic gain did not improve to
any great degree. Results suggest that low genetic variation in the breeding population impeded
the genetic improvement and the increment of prediction accuracy under the model updating.
For the present simulations with the model updating, we used inbred lines derived from the
breeding population, in which numerous QTL had been fixed when the updated model was
available (Fig 4). Based on the simulations conducted for this study, the model updating did
not strongly affect the GS breeding efficiency. To improve the GS breeding efficiency, genetic
variation introduced from other breeding populations would be more useful than the model
updating. However, further analysis is necessary to optimize the resource allocation for model
updating and the introduction of new genetic variation.

For this study, it was assumed that the initial population comprised of six families derived
from six combinations of bi-parental crosses. The seven varieties used as parents of the initial
breeding and training population were selected to represent the genetic diversity in the 112 cul-
tivars well based on their marker genotypes. It is also possible to choose parental varieties
based on phenotypic variation of target traits required for breeding objectives. We often con-
duct breeding programs under certain restrictions (e.g., a lower limit of seed or fruit quality).
Therefore, it might be efficient to choose parents according to the required level of phenotypic
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values rather than genetic diversity of marker genotypes. In this case, however, one might miss
some useful alleles harbored by inferior varieties.

For island-model GS, it is possible for multiple breeding stations work together to create a
new cultivar. A breeding population has been selected according to the local adaptation and
maintains different genetic diversity from other populations. We can use this situation in
island-model GS by assuming a breeding population in each region as a subpopulation. In each
region, breeders can conduct their breeding programs using their own population. They can
occasionally exchange a part of their cultivars for cultivars of other regions to introduce new
genetic variation into their population. Actually, breeding procedures of this type have been
conducted consciously or unconsciously in the traditional breeding of various crop species.
The island-model GS is intended to balance genetic improvement and the maintenance of
genetic diversity in a more explicit manner.

Conclusions

This report is the first of a study investigating the potential of an island model for GS breeding.
This study demonstrates that recurrent GS is efficient for the breeding of autogamous crops.
Recurrent GS produces novel combinations of genes in a breeding population and is expected
to attain higher genetic gain than conventional breeding methods by inbreeding. For recurrent
GS, it is important to involve large genetic variation, so that a greater number of novel combi-
nations of genes can be produced. The island-model GS, which was derived from population
genetics and which has shown high efficiency in EA field, is effective to improve genotypic val-
ues while maintaining genetic variation in a breeding population. In the island-model GS, sub-
populations maintain different genetic variation by involving different variations and
conducting selection to different directions. The island model GS improves a population slowly
but for a long time, resulting in high genetic gain using genetic variation while avoiding any
discarding of favorable genes. By the recurrent GS, autogamous breeding might break through
the barrier of genetic improvement. Moreover, island-model GS can involve wide genetic varia-
tion in a breeding program and realize long-term selection.

Supporting Information

S1 Fig. Genotypic values attained through selection cycles in the island-model GS. Red lines
represent the genotypic values attained when the migration interval was 1 and the number of
exchanged individuals was 1. Blue lines show results obtained when the migration interval was
1 and the number of exchanged individuals was 2.

(PDF)

S2 Fig. Genotypic values attained through selection cycles in the island-model GS. Red lines
represent the genotypic values attained when the migration interval was 1 and the number of
exchanged individuals was 1. Blue lines show the results of following settings: (a) the migration
interval was 2 and the number of exchanged individuals was 1, (b) the migration interval was 3
and the number of exchanged individuals was 1, (c) the migration was 4 and the number of
exchanged individuals was 1, and (d) the migration interval was 5 and the number of
exchanged individuals was 1.

(PDEF)

S3 Fig. Genotypic values attained through selection cycles in the island-model GS. Red lines
represent the genotypic values attained when the migration interval was 1 and the number of
exchanged individuals was 1, in which the initial population was separated according to their
parents. Blue lines show the results when the migration interval was 1 and the number of

PLOS ONE | DOI:10.1371/journal.pone.0153945 April 26,2016 18/21


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0153945.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0153945.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0153945.s003

@’PLOS ‘ ONE

Island Model Genomic Selection for Improvement of Autogamous Crops

exchanged individuals was 1, whereas the initial population was randomly allocated to six sub-
populations.
(PDF)

$4 Fig. Distribution of genotypic values at two simulation trials in the bulked GS. The dis-
tributions shown in red, green, and blue respectively show the values of the initial population, the
population experienced one selection cycle, and the population experienced two selection cycles.
(PDF)

S5 Fig. Genetic variance attained through selection cycles in the island-model GS. Red lines
represent the genotypic values attained when the migration interval was 1 and the number of
exchanged individuals was 1. Blue lines show results of the following settings: (a) the migration
interval was 2 and the number of exchanged individuals was 1, (b) the migration interval was 3
and the number of exchanged individuals was 1, (c) the migration interval was 4 and the num-
ber of exchanged individuals was 1, and (d) the migration interval was 5 and the number of
exchanged individuals was 1.

(PDF)

S6 Fig. Principal component analysis in 3,102 markers of a breeding population through
five cycles in the island-model GS. x-axis and y-axis respectively show the first and second
principal component. Different colors represent different subpopulations. The numbers repre-
sented at the top of the plot show the migration interval. The numbers at the right side of the
plot show the selection cycles. This figure presents one simulation trial out of 100 trials.

(PDF)

S7 Fig. Impact of updating a prediction model. Genotypic values (a) and prediction accuracy
(b) through selection cycles in the bulked GS with model update are shown. Gray vertical lines
represent the selection cycles at which the updated prediction models started be used. The green
line represents the bulked GS without model updating. For updating the prediction model, 180
(or 540) lines derived from 18 plants that were selected at the 2" and 8" selection cycles were
used to build a new prediction model after five cycles of selfing. At the first cycle, 10 (or 30) plants
were derived from one parental individual. At the subsequent four cycles, single seed decent
(SSD) was adopted. The updated prediction model was available at the 8" and 14" selection
cycles, assuming that a certain time is required for selfing and field experiments for obtaining phe-
notypic data. In the simulations represented by the black line, a prediction model was updated
with the original training population and 180 lines derived as described above. In the simulations
represented by the orange line, all procedures are the same as those represented by the red line,
except that 30 plants were derived from one parental plant to produce 540 lines for training.
(PDF)

S1 Table. 112 Japanese rice cultivars used in this study with pedigree.
(PDF)
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