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Abstract

The accepted stochastic descriptions of biochemical dynamics under well-mixed conditions are given by the Chemical
Master Equation and the Stochastic Simulation Algorithm, which are equivalent. The latter is a Monte-Carlo method, which,
despite enjoying broad availability in a large number of existing software packages, is computationally expensive due to the
huge amounts of ensemble averaging required for obtaining accurate statistical information. The former is a set of coupled
differential-difference equations for the probability of the system being in any one of the possible mesoscopic states; these
equations are typically computationally intractable because of the inherently large state space. Here we introduce the
software package intrinsic Noise Analyzer (iNA), which allows for systematic analysis of stochastic biochemical kinetics by
means of van Kampen’s system size expansion of the Chemical Master Equation. iNA is platform independent and supports
the popular SBML format natively. The present implementation is the first to adopt a complementary approach that
combines state-of-the-art analysis tools using the computer algebra system Ginac with traditional methods of stochastic
simulation. iNA integrates two approximation methods based on the system size expansion, the Linear Noise
Approximation and effective mesoscopic rate equations, which to-date have not been available to non-expert users, into
an easy-to-use graphical user interface. In particular, the present methods allow for quick approximate analysis of time-
dependent mean concentrations, variances, covariances and correlations coefficients, which typically outperforms
stochastic simulations. These analytical tools are complemented by automated multi-core stochastic simulations with
direct statistical evaluation and visualization. We showcase iNA’s performance by using it to explore the stochastic
properties of cooperative and non-cooperative enzyme kinetics and a gene network associated with circadian rhythms. The
software iNA is freely available as executable binaries for Linux, MacOSX and Microsoft Windows, as well as the full source
code under an open source license.
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Introduction

Chemical kinetics is by its very nature stochastic. This

stochasticity has several origins, chief among them being that

spontaneous processes are responsible for the conformational

changes which occur in unimolecular reactions while the process

of bringing two molecules together to participate in a bimolecular

reaction is Brownian motion [1]. This randomness is averaged out

and hence non-apparent when the reactions under study involve a

large number of molecules. This is the case of reactions occurring

in test-tubes or in even larger systems. However inside cells,

conditions are such that many species exist in low copy numbers

[2]. The importance of stochasticity is particularly obvious in

genetic regulatory networks since there are one or two copies of

most genes per cell [3]. It is thus clear that stochastic modeling of

intracellular networks is necessary to understand the complex

biochemical processes underpinning a cell’s response to both

internal and external perturbations.

Current software implementations offer a broad range of

stochastic modeling methods. Available packages can be divided

into particle based descriptions and population based descriptions.

Particle based methods adopt a microscopic approach that

describes the movement of each individual reactant (non-solvent)

molecule in space and time by means of Brownian dynamics.

Popular software packages include the Greens Function Reaction-

Diffusion algorithm [4], Smoldyn [5] and MCell [6]. Population

based methods adopt a mesoscopic approach that retains the

discreteness of reactants but does not need to simulate individual

particle trajectory explicitly. This methodology, used by packages

such as Smartcell [7] and MesoRD [8], is based on the reaction

diffusion master equation [9,10]. The basic idea is to divide the

reaction volume into smaller subvolumes, with reactions proceed-

ing in each subvolume and molecules entering adjacent sub-

volumes by diffusion. Next one applies the well-mixed assumption

to each subvolume (but not to the whole system) which implies that
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we can ignore the positions and velocities of individual molecules

inside each subvolume. The state of the system is then described

by the number of molecules of each species in each subvolume, a

description which is considerably reduced compared to that

offered by particle based methods. This methodology relies on the

knowledge of length scales over which the system is said to be

spatially homogeneous [2].

A further reduced population description can be achieved by

specifying to the situation in which the concentrations of

interacting molecules are approximately spatially homogeneous

over the entire reaction volume. Reaction kinetics is governed by

two timescales: (i) the diffusion timescale, i.e., the time it takes for

two molecules to meet each other and (ii) the reaction timescale,

i.e., the time it takes for two molecules to react when they are in

close proximity to each other. Concentration homogeneity over

the entire compartment in which reactions occur, ensues when the

reaction timescale is much larger than the diffusion timescale [2].

The large majority of available software packages, deterministic or

stochastic, model this situation. Under such well-mixed conditions

the Stochastic Simulation Algorithm (SSA) provides an accurate

mesoscopic description of stochastic chemical dynamics. The SSA

is a Monte Carlo technique by which one can simulate exact

sample paths of the stochastic dynamics. The latter has been

rigorously derived from microscopic physics by Gillespie for dilute

well-mixed gases and solutions [11,12]. Over the past two decades,

the popularization of the algorithm has led to its broad availability

in many software packages (see Table 1). However in many

situations of practical interest, the application of the SSA is

computationally expensive mainly due to the two reasons: (i)

whenever the fluctuations are large, e.g., the case of low copy

numbers of molecules, a considerably large amount of ensemble

averaging of the stochastic trajectories is needed to obtain

statistically accurate results. (ii) the SSA simulates each reaction

event explicitly which becomes computationally expensive when-

ever the copy number of at least one molecular species is large [1].

The chemical master equation (CME) is a mathematically

equivalent and hence complementary description to the SSA [9].

The CME is a system of linear ordinary differential equations with

an unbounded or a typically very large finite state space given by

all combinations of copy numbers of the reactant molecules.

Hence the advantage of the CME over the SSA is that it does not

require any ensemble averaging and is not based on time-

consuming simulation of individual reactions. However the CME

does not lend itself easily to numerical or analytical computation,

the reason being the large dimensionality of its state space. Hence

to-date, software packages exploiting the utility of the CME have

been scarce (see Table 1). Direct numerical integration of the

CME is possible through the finite state projection method [13]

which is implemented in the python package CmePy [14].

However, the state space grows exponentially with the number

of species and hence these methods have limited applicability in

biologically relevant situations. A different type of approach

involves the calculation of the moments of the probability

distribution solution of the CME by approximate means.

Generally there exists an infinite hierarchy of coupled moment

equations for reaction networks with bimolecular interactions. In

order to make progress, a common method involves the truncation

of the hierarchy by means of a moment-closure scheme. The

software MomentClosure [15] implements the normal moment-

closure approximation for mass action networks by setting all

cumulants higher than a desired order to zero. A variety of

alternative closures schemes are implemented in the package

StochDynTools [16]. The advantage of these approaches is that

they generally present quick ways to investigate the effects of noise

without the need for averaging over many realizations of the

stochastic process. However, these methods are based on ad hoc

assumptions for the choice of the closure scheme and hence their

accuracy and range of validity is often unknown.

In this article we introduce the software package, intrinsic Noise

Analyzer (iNA), which enables a complementary approach using

van Kampen’s system size expansion (SSE) of the CME together

Table 1. Current software approaches for stochastic modeling.

Package REs Stochastic Simulation CME GUI SBML Ref

Mean Var PDF Mean Var PDF

BioNetS 3 3 3 3 3 3 3 [72]

Cain 3 3P 3 3 3 3 3 [73,74]

CellMC 3P 3 [75]

Copasi 3 3 3 3 3 [18]

Dizzy 3 3 3 3 3 [76]

SimBiology 3 3P 3 3 3
(2)

3 [77]

StochKit 3P 3 3 3
(4) [78]

StochPy (5)
3 3 3 3

(3)
3 [79]

CMEpy 3FSP 3 3 3
(3) [14]

MomentClosure 3 3MA 3 3
(1)

3 [15]

StochDynTools 3 3MA 3 3
(2) [16]

iNA 3 3P 3 3 3
SSE

P 3 3 3 3

H
P

implementation uses multi-core parallelism, (1) Maple, (2) Matlab, (3) matplotlib, (4) using converter, (5) if used as plugin for PySCeS [80], HFSP
method based on the

Finite-State Projection algorithm, HMA
method based on moment approximation, HSSE

method based on system size expansion.

Existing software packages are divided in groups presenting implementations based on stochastic simulation or such based on the Chemical Master Equation. The
software iNA combines both by using the system size expansion which has not been available in a software package yet. In particular, we also list whether the package
allows for evaluation of mean concentrations, variances (Var) and the probability density function (PDF).
doi:10.1371/journal.pone.0038518.t001
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with traditional approaches of deterministic and stochastic

simulation of chemical kinetics. The present implementation

features the approximate computation of a selected number of

moments of the probability distribution function solution of the

CME by use of the Linear Noise Approximation (LNA) as well as

the effective mesoscopic rate equations (EMREs). The advantage

of these methods is that they are not based on ad-hoc assumptions

like moment-closure approximations but rather they are based on

the SSE which is a systematic expansion of the CME in powers of

the inverse volume of the compartment in which reactions occur.

The LNA provides the lowest order approximation to the second

moments of the probability distribution (the variance and

covariance of fluctuations) while the EMREs provide the first-

order correction to the concentrations predicted by the determin-

istic rate equations (REs). iNA is the first software package to

bridge the gap between deterministic simulation of chemical

kinetics using rate equations, stochastic simulation of kinetics by

the SSA and systematic analytic approximations of the CME. The

novel combination of these complementary approaches makes

iNA a valuable tool for the study of intrinsic noise in biological

systems that has not yet been available to researchers and non-

expert users in standalone software. The article is organized as

follows. First we describe iNA’s input specifications, the imple-

mented methods and the features of the GUI. We then present the

use of iNA to explore the dynamics of three models commonly

encountered in biochemical kinetics: non-cooperative enzyme

kinetics, cooperative enzyme kinetics and a gene network

associated with circadian rhythms. Finally we discuss the design

and implementation of the SBML parser and the methods, along

with optimizations that increase the performance of the analysis.

We complete the presentation by a derivation of the SSE-based

methods at the heart of iNA.

The software is available as executable binaries for Linux

(Fedora, Ubuntu, OpenSuse), MacOSX (10.5, 10.6, 10.7) and

Microsoft Windows (7, XP) from http://code.google.com/p/

intrinsic-noise-analyzer, as well as the full source code under the

open source GPL2 license. The SBML files used in this article are

available under the same URL.

Results

Input Format Specification
The general formulation of biochemical kinetics considers a

number N of distinct chemical species confined in a mesoscopic

volume of size V under well-mixed conditions. Species interact via

R chemical reactions of the type

s1jX1z . . . zsNjXN DA
kj

r1jX1z . . . zrNjXN , ð1Þ

where j is the reaction index running from 1 to R, Xi denotes

chemical species i, kj is the reaction rate of the jth reaction and sij

and rij are the stoichiometric coefficients. We associate with each

reaction a propensity function âaj(~nn,V) such that the probability for

the jth reaction to occur in the time interval ½t,tzdt) is given by

âaj(~nn,V)dt. The vector ~nn~(n1,:::,nN )T denotes a mesoscopic state

where ni is the number of molecules of the ith species. Note that our

general formulation does not require all reactions to be necessarily

elementary, i.e., unimolecular and bimolecular chemical reactions,

but can also describe effective reactions. If the jth reaction is

elementary then its reaction rate kj is a constant while if it is non-

elementary the reaction rate is a function of the instantaneous

concentrations, i.e., the elements of the vector ~nn=V.

This description of the biochemical reaction networks in

terms of reactants, products, the associated stoichiometries and

kinetic laws are part of the Systems Biology Markup Language

(SBML) [17] which has become a standard representation of

such networks. iNA natively supports SBML compatible with

level 2 version 4 which makes the software versatile to work

with models exchanged from other applications as Copasi [18],

CellDesigner [19], SBML editor [20] or shorthand SMBL [21]

as well as with some of the many models that are freely

available in public databases [22]. The basic components of

SBML parsed by iNA are definitions of units, compartments,

species and reactions. iNA reads all SBML files that describe

reaction networks as defined by the reaction scheme (1) along

with the associated propensities. The former is obtained from

SBML’s reactant and product stoichiometry definitions while the

latter is parsed from the ‘‘KineticLaw’’ construct. Species can be

specified in terms of both amount (mol, molecule numbers and

derived units) and concentration (molar, number concentrations

and derived units).

The validation of models considered suitable for stochastic

analysis requires the software to make several restrictions on

SBML model definitions. Currently, events and explicit time

dependent rate parameters are not supported. Also, reactions

defined by the SBML specific reversible attribute cannot be

validated for stochastic models due to ambiguities in the associated

‘‘KineticLaw’’. We refer users to the software package Copasi

which allows for convenient conversion between SBML’s revers-

ible and irreversible reaction definitions. For consistency, the

definition of a species must conform all species to be defined non-

constant and free of algebraic constraints. The implementation of

iNA assumes that such constraints arise naturally from the

stoichiometry of the reaction network. Furthermore it is required

for all parameters to be evaluated before runtime of simulations.

Therefore the software does not allow parameters to be defined by

ODEs or assignment rules. The software package gives the

appropriate error messages in cases where one of the above

specifications is not met.

Stochastic Simulation
Over the past two decades the SSA has enjoyed widespread

popularity mainly because of the ease by which one can simulate

stochastic reaction networks [23,24]. Given that the system is in

state~nn at time t, Gillespie proved using the laws of probability [25]

that the probability per unit time for the jth reaction to occur at

time tzt is

p(t,jD~nn,t)~âaj(~nn,V) exp {
XR

i~1

âai(~nn,V)t

 !
: ð2Þ

The SSA generates a stochastic trajectory of the kinetics by

sampling a reaction index j and a reaction time t according to Eq.

(2), followed by an update of the population size

ni(tzt)~ni(t)zSij for every species i. Note that the net change

of the molecule number of species i by reaction j is given by the

stoichiometric matrix Sij~rij{sij . Despite its popularity, stochas-

tic simulation has two major shortcomings. Firstly, simulations

have to be carried out a significantly large number of times

because of the considerable amount of independent realizations

needed to obtain accurate statistical averages. Secondly, simula-

tions can become quite slow when the population number of any

molecular species is large [1]. Stochastic simulation is a basic

component of the software iNA with support for simultaneous

Exploration of Stochastic Kinetics Using iNA
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simulation of independent realizations using shared memory

parallelism of the OpenMP standard [26]. The software features

two implementations of the SSA via the direct and the optimized

direct method [25,27]. The output data is presented in terms of

mean concentrations, variances and correlations as a function of

time which allow for direct statistical interpretation.

The Chemical Master Equation and the System Size
Expansion

An equivalent formulation for the stochastic reaction network

described by Eq. (1) is the CME which can be derived from

combinatorial arguments [9,10,28] and or from microphysics

[11,12]. The CME gives the time-evolution equation for the

probability P(~nn,t) that the system is in a particular mesoscopic

state ~nn~(n1,:::,nN )T ,

LP(~nn,t)

Lt
~
XR

j~1

P
N

i~1
E

{Sij
i {1

��
âaj ~nn,Vð ÞP(~nn,t): ð3Þ

Here we have introduced the step operator E
{Sij

i which is

defined by its action on a general function of molecular

populations as E
{Sij

i g(n1,:::,ni,:::,nN )~g(n1,:::,ni{Sij ,:::,nN ) [9].

The CME is equivalent to a set of coupled differential-difference

equations for each possible mesoscopic state, i.e., each combina-

tion of reactant molecule numbers. Typically, the large number of

such states makes the CME intractable for numerical and

analytical computation. The software package iNA uses an

alternative approach based on van Kampen’s SSE of the CME

which is applicable whenever the dynamics of the reaction

network is monostable [9]. In brief, the method constitutes a

large volume expansion whose successive terms can be used to

approximate the moments of the probability density function to

any desired accuracy. Thereby it is implicit that whenever the

reaction volume is large (or equivalently the molecular populations

are large at constant concentration) the average concentrations

can be approximated by the macroscopic REs,

L½~XX �
Lt

~S~ff (½~XX �), ð4Þ

which are exactly the same as those used in deterministic models

of biochemical kinetics. Note that ½~XX � is the vector of macroscopic

concentrations and ~ff is the macroscopic rate function vector, see

Methods section. Note that matrices are underlined throughout

the article.

The leading order term of the SSE is given by the LNA

which has been the key tool in analytical studies of noise

[9,29,30]. The merit of the method is that it provides a simple

means of calculating the fluctuations about the concentration

solution of the REs. In particular one is typically interested in

the covariance of the time-dependent concentrations

S(t)~
~nn(t)

V
{½~XX (t)�

� �
~nn(t)

V
{½~XX (t)�

� �T

, ð5Þ

where the angled brackets denote the statistical average. Within

the LNA the elements of the covariance matrix are determined

by the time-dependent equation

L
Lt

S~JSzSJTzV{1D: ð6Þ

Note that the matrix J is the Jacobian which gives the extent by

which small perturbations of the REs, Eq. (4), decay. The matrix

D is the diffusion matrix which quantifies the size of the

perturbation due to intrinsic noise. Both matrices can be

constructed from the stoichiometric coefficients and the macro-

scopic rate function vector ~ff . The diagonal elements of S are the

variances and hence determine the standard deviation of

concentration fluctuations by

si(t)~
ffiffiffiffiffiffiffiffiffiffiffi
Sii(t)

p
: ð7Þ

The off-diagonal elements are the covariances which determine

Pearson’s correlation coefficients between the concentration

fluctuations of species Xi and Xj.

corr(Xi,Xj)(t)~
Sij(t)

si(t)sj(t)
: ð8Þ

Considering higher terms of the expansion one can obtain

corrections to the REs which stems from a coupling of the mean

concentrations to the higher order moments of the concentration

fluctuations. These corrections have been calculated for networks

composed of elementary reactions by Grima [31]. The new time-

evolution equations which are obtained from this analysis are

called effective mesoscopic rate equations (EMREs) and they are

here extended for general reaction networks composed of

elementary and non-elementary reaction steps (see Methods

section). The EMREs are given by

L
Lt

~nn

V

� �
~

L
Lt

~XX
h i

zJ
~nn

V

� ��
{ ~XX
h i�

z~DD, ð9Þ

where ~DD is a vector which describes the coupling of the mean

concentrations to the variance and covariance of fluctuations in

the concentrations. It depends on the macroscopic concentrations

and the covariance matrix which can be obtained by the solution

of Eq. (4) and (6), respectively. We refer the interested reader to the

section Methods for the definition of the vector ~DD together with an

explicit derivation of the prescribed methods. EMREs have been

shown to accurately describe the mean concentration over a wide

range of copy numbers [31–35]. Generally the predictions of the

REs and the EMREs agree only for reaction networks of

unimolecular reactions. For more general reaction networks such

as those involving bimolecular or non-elementary reactions,

EMREs provide finite-copy number corrections to the REs. It is

to be kept in mind that EMRE’s provide meaningful results if and

only if the predicted mean concentrations for all species are

positive; in practice this means that the EMRE is valid for reaction

volumes above a certain breakdown volume which is system

specific (see [35] for further discussion).

The present software allows the computation of the SSE

methods either in time dependent conditions or at steady state.

The former is obtained by numerical integration of the set of

coupled ordinary differential equations, Eqs. (4), (6) and (9). The

Exploration of Stochastic Kinetics Using iNA
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latter uses the same set of equations with the time derivative set to

zero and reduces them to a set of simultaneous algebraic equations

which typically can be solved with less computational effort and

higher numerical accuracy. For the first time, all of the the above

methods are made available to a broad audience by the software

package iNA.

Features of the GUI
The software iNA aims at ease of use of analytical approxima-

tions that facilitate the exploration of stochastic effects in

biochemical reaction networks. We have therefore focused on a

minimal GUI composed of a model tree with table and plot views.

Analyses tasks can be easily accessed through wizards which guide

the user through configuration. The GUI is divided into a menu

bar and a main window. After a model has been loaded using the

menu bar it will be available in the list of ‘‘Open models’’ on the

left hand side. The latter list is hierarchically organized as follows

N Model, where the basic components of the model can be

accessed. These include compartments, species, parameters

and reactions; see Fig. 1a.

N Analyses, where the results of the Linear Noise Approximation,

EMRE or SSA analyses can be accessed; see Fig. 1b.

The Model section contains a basic SBML reader for viewing the

parameters that define the biological model and making sure that

the SBML file has been parsed correctly. The Analyses section can

be filled with items selected from the option Analyses in the menu

bar. Currently there are three wizards available.

N a Steady State Analysis (SSE) wizard which customizes the

computation of LNA, RE and EMRE in steady state

conditions,

N a Time Course Analysis (SSE) wizard which customizes the

computation of the LNA, RE and EMRE in time-dependent

conditions,

N a Stochastic Simulation Algorithm (SSA) wizard guiding the

initialization of stochastic simulations.

All wizards allow the user to select a subset of species to be

analyzed, see Fig. 1c. The output of each analysis is simply a data

table which can be saved to a text file or visualized by the

predefined plot widgets.

The Steady State Analysis is the most basic analysis provided by the

program. It yields mean concentrations and the covariance matrix

according to the LNA. Note that to the LNA level of

approximation, the mean concentrations are the same as those

obtained from solving the REs. The roots of the REs are computed

Figure 1. GUI of the software iNA. (a) Model views gives information on reactions, rate constants, propensities and species. (b) Table views provide
the analysis results in an easy-to-read format. (c) iNA’s wizards allow for user friendly configuration of analyses. (d) Plot views visualize results in neat
format. Note that SSE in (b) stands for system size expansion.
doi:10.1371/journal.pone.0038518.g001
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by iNA using the Newton-Raphson method with line search [36]

and therefore it is required to specify precision and maximum

number of iterations of the algorithm. iNA also outputs the mean

concentration predictions according to EMREs [31]. These

account for stochastic effects and hence are generally expected

to be much closer to the true concentration prediction of the

CME. Thereby one can obtain a quick estimate of the effect of

noise on the reaction network. iNA offers convenient visualization

of the outputs using the Plot option shown in Fig. 1d. This bar plot

features two separate columns for the concentrations calculated by

the REs and the EMREs of the individual species. The former is

complemented with an error bar which indicates the standard

deviation of the concentration fluctuations calculated using the

LNA. The Time Course Analysis presents a wizard which is as simple

to use as conventional integrators for deterministic REs by which

one specifies the final time of integration, and the maximum

relative and absolute errors. Therefore it is clear that all results

obtained by the SSE should be checked for consistency with

numerical integration carried out using smaller error estimates.

The time course consists of theoretical estimates according to the

deterministic REs and the corresponding fluctuations around it

which have been estimated by the LNA at any point in time. At

the same time the estimation of the mean concentrations using

EMREs is shown and can be compared to its deterministic

counterpart. The results can be accessed by a table view presenting

the numerical data of the analysis or by selected plot views

showing the mean concentrations and fluctuations computed by

the REs and LNA, the correlation coefficients obtained from the

LNA as a function of time or a comparison between the

concentration predictions of EMREs and the REs.

In order to validate the results, the Stochastic Simulation wizard

offers the choice between two different implementations of the

SSA (see section Design and Implementation) and allows the user

to adjust the number of independent realizations that are used to

calculate the statistical averages. This enables direct comparison of

the simulation results with those obtained from the analysis using

the SSE methods. All outputs are exportable to text files.

Applications
We showcase the utility of the present software by analyzing

three models of biochemical kinetics: the Michaelis-Menten

reaction [37], a multi-subunit enzyme with cooperative kinetics

[38,39] and a gene network with negative feedback that has been

proposed for circadian rhythms in Drosophila and Neurospora

[40]. The SBML files that have been used in this section are listed

in Table 2.

Michaelis-Menten Reaction with Substrate Input
The Michaelis-Menten reaction is a well studied example of

biochemical kinetics. Over the past decade, stochastic models of

the reaction have received considerable attention by means of

analytical and stochastic simulation methods [23,24,32,41]. We

here consider an embedded reaction mechanism that also

accounts for flux conditions naturally found in living cells which

comprises substrate input and product consumption reaction steps.

SzE
k1

k{1

ES DA
k2

EzP,

1 DA
kin

S, P DA
kout 1, ð10Þ

where S denotes the substrate species, E the free enzyme species,

ES is the enzyme-substrate complex and P the product species.

The k’s refer to the associated rate constants. In what follows, we

consider the same reaction occurring in two compartments

characterized by two different length scales: the cellular scale

which is the scale of large organelles such as mitochrondria

(0:5{1 mm) [42] and the scale of small sub-cellular compartments

such as lipid rafts (10{200 nm) [43]. Two SBML files F1 and F2

(see Table 2) have been provided, one for each length scale. The

rate constants are the same for both files and are shown in Table 3.

These can also be conveniently accessed by the Model view of iNA,

see Fig. 1a. Note that these rate constants are obtained from an

experimental study of the enzyme Malate dehydrogenase [44].

Michaelis-Menten kinetics on the cellular scale. We here

consider the reaction scheme (10) to take place in a compartment

of volume V~0:5fl (femtoliters) which corresponds roughly to the

size of a bacterium or a large organelle [45]. We now analyze the

steady-state stochastic properties of the reaction by means of the

LNA and the EMRE.

Table 2. SBML model definition files that have been used in this article.

F1 enzymekinetics1.xml Enzyme with Michaelis-Menten kinetics, V~0:5fl.

F2 enzymekinetics2.xml Enzyme with Michaelis-Menten kinetics, V~0:01fl

F3 coopkinetics1.xml Multi-subunit enzyme with cooperative kinetics, V~1fl

F4 coopkinetics2.xml Multi-subunit enzyme with cooperative kinetics, V~0:1fl

F5 coremodel1.xml Circadian clock model, V~2fl, weak negative feedback

F6 coremodel2.xml Circadian clock model, V~0:2fl, weak negative feedback

F7 coremodel3.xml Circadian clock model, V~0:2fl, strong negative feedback

All files and the software iNA are available from the URL http://code.google.com/p/intrinsic-noise-analyzer.
doi:10.1371/journal.pone.0038518.t002

Table 3. Rate constants for Michaelis-Menten kinetics with
substrate input (SBML files F1 and F2).

kin 1.861025 M/s kout 7s21

k1 56107 (Ms)21 k21 5s21

k2 5s21

doi:10.1371/journal.pone.0038518.t003
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The SBML file F1 specifies an initial condition of about 1200

enzyme molecules in non-complex form, which corresponds to a

total enzyme concentration of 4 mM (micromolar); the substrate

and product concentrations are initially zero. The model definition

can be opened in iNA to perform the Steady State Analysis. The

output generated is a table view which is shown in Fig. 1b that can

also be exported to a text file as well as visualized by a plot (see Fig.

2a). We obtained values for the substrate and product concentra-

tions to be 1:8 mM and 2:6 mM according to the REs. The table

view gives further information on the intrinsic fluctuations in terms

of the covariance matrix in steady state. We have computed the

coefficient of variation (CV), a non-dimensional quantity which

measures the inverse signal-to-noise ratio. The CV of species X is

defined as CV (X )~sX=½X �, where sX is the standard deviation

defined by Eq. (7). We obtain CV (S)~0:122 and CV (P)~0:035.

Note that the EMRE concentrations obtained from the Steady State

Analysis of iNA are very close to those predicted by the REs. This

suggests that the LNA predictions of CV are accurate.

We verified the accuracy of the LNA predictions by obtaining

1000 independent realizations using the Stochastic Simulation wizard;

the result is shown in Fig. 2b. The figure shows that the

concentrations have reached steady state after about 5s. We then

exported the data to a file and averaged over the output for t§5s.

The resulting mean concentrations are given by ½S�~1:8 mM and

½P�~2:6 mM with mean variances of 5:0|10{2 (mM)2 and

8:2|10{3 (mM)2, respectively. These values correspond to CV of

about 0.124 and 0.035 which are in excellent agreement with the

predictions of the LNA computed by iNA.

Michaelis-Menten kinetics in a small intracellular

compartment. Next we study the same reaction in a compart-

ment of reduced volume V~0:01fl which roughly corresponds to

a spherical volume of diameter 270nm. The enzyme concentra-

tions correspond to a total copy number of only 24 molecules. In

such a small compartment, the average substrate concentrations

can be greatly enhanced by intrinsic noise. The Steady State Analysis

performed by iNA is summarized in Fig. 3(a). The substrate

concentration is 1:8 mM according to the RE and 2:9 mM
according to the EMRE. This implies a noise-induced enhance-

ment of the concentration by about 60%. Note for all other

concentrations – those of enzyme, complex and product – the

predictions of the RE and EMRE theory agree exactly and thus

are independent of the volume of the compartment. These

phenomena have been found earlier by Grima [32] using the SSE

and are well reproduced by the software iNA.

We verify these predictions by stochastic simulation; the result is

shown in Fig. 3b. We can now compare this result to the time course

obtained from the REs and the LNA, see Fig. 3c. A comparison of the

latter two subfigures reveals that the approach to steady state as

obtained from SSA simulations is significantly slower than the one

predicted by the macroscopic REs. Note also that the variance of the

substrate concentration of the SSA is considerably larger than that

predicted by the LNA. However we see that the time course of the

stochastic simulation in Fig. 3b is well reproduced by the EMRE, see

Fig. 3d. We exported the data from stochastic simulation to a text file

and performed a time average over concentrations for which t§10s.

The results are 3:0 mM and 2:6 mM for substrate and product

concentrations, respectively, which are in excellent agreement with the

predictions of the EMREs. We have also estimated the coefficient of

variation by stochastic simulations to be CV (S)~0:78. Note that in

this case the LNA predicts a value of 0.86 which overestimates the size

of intrinsic noise by about 10%.

Comparing Figs. 3b and 3c, shows that the relative magnitudes of

the concentrations of substrate and product are reversed when noise is

taken into account. In contrast, a comparison of Figs. 2a and 2b, shows

that the relative magnitudes of the concentrations of substrate and

product remain the same even when noise is taken into account. This

indicates that a noise-induced concentration inversion effect occurs

below some critical compartment volume, a phenomenon which has

recently been described by Ramaswamy et al. for the trimerization

reaction with bursty input and for a two gene circuit with negative

feedback [35]. In the section Methods, we use EMREs to calculate the

theoretical value for the critical volume at which the concentrations of

substrate and product become equal. Above the critical volume, the

product concentration is larger than that of the substrate and hence the

REs are qualitatively correct. Below the critical volume, the substrate

concentration is larger than that of the product and REs are then

qualitatively incorrect. The critical volume is calculated to be 0:0146fl

for the enzyme Malate dehydrogenase considered here. Note that the

compartment volume used in this example (0:01fl) is smaller than the

critical volume whilst the volume used in the previous example (0:5fl) is

much larger. This explains why the concentration inversion effect is

only observed in the current example.

Figure 2. Michaelis-Menten kinetics in a large compartment of volume V~0:5fl. Plots showing the results of Linear Noise Approximation (a)
and Stochastic simulation using an ensemble of independent 1,000 realizations (b). The two are in excellent agreement. Both figures have been
obtained from iNA’s analysis of the SBML file F1.
doi:10.1371/journal.pone.0038518.g002
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Cooperative Enzyme Kinetics
Apart from Michaelis-Menten kinetics, it is often found that

many enzymes exhibit positive cooperativity in substrate binding.

Such behavior is a kinetic signature of enzymes with multiple

interdependent binding sites. As a consequence, experimental

ligand binding curves show a sigmoidal dependence on the

abundance of specific substrates [37,46]. Tyson [38] used REs to

study the deterministic cooperative kinetics of a two subunit

enzyme catalyzed system (an enzyme with two binding sites). Here

we extend the model to involve four subunits and study its

stochastic properties using iNA. The reaction scheme reads

SzE
k1

k{1

E DA
kcat

EzP,

SzES1

k2

k{2

ES2 DA
kcat

ES1zP,

SzES2

k3

k{3

ES3 DA
kcat

ES2zP,

SzES3

k4

k{4

ES4 DA
kcat

ES3zP:

ð11Þ

We enforce the condition KM1&KM2&KM3&KM4 where

KMi~(k{izkcat)=ki is the Michaelis-Menten constant of the ith

enzyme reaction. This condition ensures that the binding of a

substrate molecule to the enzyme molecule with n sites already

occupied by other substrate molecules occurs quicker than

substrate binding to an enzyme molecule with n21 sites occupied;

hence the phenomenon of positive cooperativity. In order to

account for flux conditions that are found naturally in living cells,

we also include substrate input and product removal reactions

1 DA
kin

S, P DA
kout 1: ð12Þ

We have written two SBML model files, F3 and F4, that

describe the chemical reactions with an initial total enzyme

concentration of 1 mM inside two different compartment volumes

(1fl and 0:1fl). The rate constants are the same for both

compartments and can be found in Table 4. The choice of rate

constants leads to Michaelis-Menten constants which are in the

physiological range [47] and which guarantee positive coopera-

tivity: KM1~20 mM, KM2~2 mM, KM3~0:2 mM and

KM4~0:02 mM.

Figure 3. Michaelis-Menten kinetics in a small compartment of volume V~0:01fl. (a) Plot of iNA’s Steady State Analysis shows amplified
EMRE substrate concentrations in comparison with those predicted by the REs. This conclusion is supported by stochastic simulations (b) using an
ensemble size of 10,000 realizations which are in excellent agreement with steady state and time course predictions shown in (a) and (d), respectively.
(c) For comparison we show the result of the LNA time course which fails to accurately predict both the mean substrate concentrations and the
variance of fluctuations about them. The figures have been obtained from iNA’s analysis of the SBML file F2.
doi:10.1371/journal.pone.0038518.g003
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Cooperative enzyme kinetics at the cellular scale. An

enzyme concentration of 1 mM realized in a cellular volume of 1fl

implies a copy number of about 600 enzyme molecules per cell.

The Steady State Analysis of iNA enables one to obtain a quick

overview of the noise characteristics of the reaction network in

steady state conditions. Comparing the prediction of the REs and

EMREs, as summarized in Fig. 4a, we find excellent agreement at

this length scale. Since the average concentrations are well

captured by the macroscopic REs we can investigate the

fluctuations around them using the LNA. The size of the error

bars in Fig. 4a show that as for the Michaelis-Menten reaction, the

largest fluctuations in steady-state conditions occur for the

substrate species. The mean substrate concentration as obtained

from the table view is 1:1 mM with a CV of about 0.14. This implies

fluctuations of roughly 90 substrate molecules showing that

molecular fluctuations in enzyme kinetics can be very significant

even at the cellular scale.

We now use iNA to calculate the transient correlations in the

dynamics. Note that the presence of correlations is a distinct feature

of the stochastic description. The correlation coefficient as defined

by Eq. (8) can be computed by iNA using the LNA, as well as from

stochastic simulations, see Fig. 4 b,c. The two are in excellent

agreement. The fluctuations of free enzyme and substrate

concentrations become anti-correlated as the steady state is

approached; this is expected and simply due to the fact that they

bind to each other. However, what is more interesting is that the

transient correlations can exhibit a complex biphasic behavior,

alternating between positively and negatively correlated states as a

function of time. Damped oscillations in the correlation coefficients

can be traced to the presence of a pair of complex conjugate

Table 4. Rate constants for model of cooperative enzyme
kinetics with substrate input (SBML files F3 and F4).

kin 9 mM/s kout 10s21

k1 1(mMs)21 k21 10s21

k2 10(mMs)21 k22 10s21

k3 16102(mMs)21 k23 10s21

k4 16103(mMs)21 k24 10s21

kcat 10s21

doi:10.1371/journal.pone.0038518.t004

Figure 4. Cooperative enzyme kinetics in a large compartment of volume V~1fl. (a) Plot of the Steady State Analysis which shows good
agreement of RE and EMRE results. (b) Estimation of time dependent correlation coefficients using the Linear Noise Approximation which are found to
be in good agreement with those calculating from ensemble averaging of 5,000 stochastic simulations (c). Note that the oscillatory behavior in the
correlation coefficients indicates the presence of noise induced oscillations. The figures were obtained from iNA’s analysis of the SBML file F3.
doi:10.1371/journal.pone.0038518.g004
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eigenvalues of the Jacobian of the REs. The latter have been

connected with the presence of noise-induced oscillations that are

observed in single realizations of the stochastic dynamics [48].

Similar oscillations have also been found for enzymes with negative

cooperativity, i.e., in the presence of an inhibitor, and have been

related to the presence of damped oscillations in the corresponding

deterministic model [49]. Indeed the Time Course Analysis carried out

by iNA shows transient damped oscillations in the mean concen-

trations, see Fig. 5a. We have also verified this transient dependence

against stochastic simulations which are shown in Fig. 5b and found

to be in good agreement with the results of the LNA.

Cooperative enzyme kinetics in a small intracellular

compartment. Many enzymes operate in small compartments.

Hence for physiological concentrations, the enzyme copy numbers

can be quite small. In the second SBML model file, F4, we have

reduced the compartmental volume to 0:1fl which at constant

total enzyme concentration implies a copy number of only 60

enzyme molecules. The time course of the mean concentrations

can easily be investigated by means of the EMRE implemented by

iNA. The result is shown in Fig. 5c. We observe that the time

course is in good agreement with the macroscopic REs only for

free enzyme and product concentrations. In contrast, we find that

the EMRE predicts the damped oscillations in the substrate

concentration to die out quicker than predicted by the REs. This

inherent dephasing of individual realizations (compared to the

previous case in which the volume was 1fl) can be traced back to

increased noise due to smaller copy numbers at the subcellular

scale. We have qualitatively verified this effect by ensemble

averaging 10,000 stochastic simulation realizations, see Fig. 5d.

Gene Regulatory Network with a Negative Feedback Loop
Many genes are represented by only a single copy inside living

cells. It is also a fact that many important regulatory molecules

exist in low copy numbers. Hence the biochemical process of gene

expression is inherently stochastic which also implies that there is a

significant amount of noise in the protein levels.

A remarkable property of gene expression is the emergence of

cellular rhythms which are commonly attributed to a negative

feedback loop in which clock proteins inhibit the expression of

their own gene [50–52]. There is an ongoing debate whether

circadian rhythms (a class of cellular rhythms) observed in constant

Figure 5. Transient dynamics of cooperative enzyme kinetics in large and small compartments. (a) shows damped oscillations in the
mean concentrations of the RE and the fluctuations about them at the cellular scale V~1fl (large compartment) which are in excellent agreement
with the ensemble averaged data obtained from 5,000 stochastic simulations (b). In (c) we show how the EMRE predicts that noise destroys the
oscillations when the reaction is taking place inside a small intracellular compartment of size V~0:1fl. This is well reproduced by stochastic
simulations using 10,000 realizations (d). Figure (a) and (b) have been obtained from iNA’s analysis of SBML file F3 while (c) and (d) were obtained
from analysis of SBML file F4.
doi:10.1371/journal.pone.0038518.g005
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darkness are self-sustained or noise-induced [53]. The latter, which

can be analyzed by means of the SSE, is considered here.

We consider the case where cell-cell coupling and cell-to-cell

variability are negligible. Then a single SSA realization of the

stochastic dynamics of a circadian clock circuit models single cell

circadian rhythms of clock expression while the average over

independent realizations models the ensemble rhythm at the

population level.

The genetic network under study is a variant of the core model

for a circadian clock which has been considered by Gonze and

Goldbeter in Ref. [40]. At the heart of the model is a set of

effective reactions that describe transcription and translation

G DA
k0

GzM,

M DA
ks

MzPC ,

M DA
kdm 1, PC DA

kdp
S, ð13Þ

which is a common to many simple models of gene expression

[54,55]. The above involves the clock gene, G, the transcribed

mRNA, M and the cytosolic clock protein, Pc. Note that we have

also taken into account mRNA degradation with rate kdm as well as

the consumption of protein with rate kdp in a different pathway

involving S which is not explicitly considered here. The negative

feedback loop arises from transport of the cytosolic clock protein

into the nucleus (the nuclear protein is represented by PN) [56]

PC

kin

kout

PN , ð14Þ

where it binds to promoter regions of DNA while inhibiting the

expression of its own gene

PNzG
k1

k{1

GPN ,

PNzGPN

k2

k{2

GPN2: ð15Þ

Furthermore we assume that degradation occurs via the following

enzymatic processes

PCzE
k3

k{3

EPC DA
kcat,3

E,

PNzF
k4

k{4

FPN DA
kcat,4

F : ð16Þ

The constraint that the gene copy number is fixed to one implies

that the RE model for this system depends on the compartment

volume. Taking into account discreteness, e.g., calculating the

EMRE corrections, generates a volume dependence on top of this

pre-existing volume dependence. To clearly distinguish the volume

corrections due to the EMRE, we follow [35] (see its Supplemen-

tary Information) and scale the rates such that we eliminate the

volume dependence of the REs. This ensures that the effective

rates for transcription and DNA binding are the same for different

reaction volumes. The rescaling is as follows: k0~VNAk ’0 ,

k1~VNAk ’1 , k{1~VNAk ’{1 , k2~VNAk ’2 and k{2~
VNAk ’{2 . We further impose cooperative binding by the choice

of rate constants k2~10k1 and k{2~k{1. The specific values of

the rate constants used in this example can be found in Table 5.

Two SBML files F5 and F6 were created to describe the

biochemical reactions in compartments of size 2fl and 0.2fl

respectively. Figures Fig. 6 and 7 show the results obtained by

analyzing file F5 using iNA. At this length scale, the population

level descriptions of the mean concentrations and of the variances

of fluctuations as given by the REs and the LNA respectively,

match very well those obtained from stochastic simulations

(compare Fig. 6a and b). In Fig 6c we show a single SSA

trajectory which corresponds to single cell level data. Note that

while at the population level, one can observe synchronous

damped oscillations, at the single cell level oscillations are not

evident. In Fig. 7 we show the results of a more detailed test on the

accuracy of the LNA. We compare the correlation coefficients

estimated from the LNA and stochastic simulations and find good

agreement between the two. We observe that the fluctuations of

the cytosolic and nuclear protein species are strongly correlated

with a clear hierarchy of the correlation coefficients over the whole

time course, i.e., corr(PC ,PN )wcorr(M,PC)wcorr(M,PN ).
Moreover, we see that over a short time interval M and PN are

anti-correlated due to the onset of the repression. The minima in

the correlations at some point in time suggests that repression

generally affects the fluctuations of all three species.

It is commonly believed that on average transient responses

observed on the cell population level can be accurately described

by deterministic REs [57]. This is contrary to the theory of

EMREs which predicts that for nonlinear reactions considered in

mesoscopic volumes, the mean concentration prediction of the

macroscopic REs does not agree with that of the CME. In other

words, if the circuit inside each cell is characterized by low copy

numbers of interacting molecules then the mean concentrations at

the population level (obtained using the SSA) will show deviations

from the predictions of the REs. These deviations are too small to

observe in Fig. 6. Hence we used iNA to analyze the SBML model

Table 5. Rate constants for circadian clock model (SBML files
F5 and F6. File F7 has the same constants except that k1 is
multiplied by a factor of 100.).

kin 5d21 kout 5d21

k09 500d21 k0 VNAk09

k19 0.5d21 k1 VNAk19

k219 0.5d21 k21 VNAk21

k2 10k1 k22 k21

k3 0.5(mMd)21 k23 0.5d21

k4 10(mMd)21 k24 5d21

kcat,3 0.5d21 kcat,4 10d21

ks 5d21 kdm,kdp 5d21

Note that the time unit is days (d).
doi:10.1371/journal.pone.0038518.t005
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Figure 6. A circadian clock model realized in a large compartment of volume V~2fl. (a) Mean concentrations and variance of fluctuations
obtained by ensemble averaging 3,000 stochastic realizations. This corresponds to averages calculated over a population of an equal number of
uncoupled identical cells, each having a circadian clock inside. The latter time course is well reproduced by the Linear Noise Approximation shown in
(b). While the population level concentrations display damped oscillations, individual stochastic simulation realizations (which correspond to
individual cell data) reveal no obvious periodicities, (c). All figures have been obtained by analyzing SBML file F5 with iNA.
doi:10.1371/journal.pone.0038518.g006

Figure 7. Transients in the correlations of concentration fluctuations for a circadian clock model realized in a large compartment of
volume V~2f l. Comparison of the time course of correlations obtained from the Linear Noise Approximation (a) and from ensemble averaging
stochastic simulations of 3,000 independent cells (b). The two are in good agreement. The minima are a signature of repression due to the negative
feedback loop. Both figures have been obtained by analyzing SBML file F5 with iNA.
doi:10.1371/journal.pone.0038518.g007
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definition F6 where the reaction volume is 10 times smaller than

that in F5. Figs. 8a and b show the population level Time Course

Analysis provided by iNA, according to the SSA, EMREs and the

REs. Note that the EMRE predictions no longer agree with those

of the macroscopic REs. In fact, we find that on the cell population

level, the influence of intrinsic noise reduces the damping of

synchronous oscillations compared to the large copy number case

considered in Fig. 6b. A comparison of Figs. 8a and b shows that

these predictions are supported by stochastic simulations. Reduced

damping of the oscillations can be interpreted as increased

coherence of individual stochastic realizations on the single cell

level. We have also carried out single cell simulations, see Fig. 8c,

which qualitatively support this conclusion. In fact, we find that

the protein concentrations in a single cell exhibit sustained

oscillations at a period of about one day which is in agreement

with the period of synchronous damped oscillations at the

population level, see Fig. 8. Note also the shift to lower frequency

in the damped oscillations. Similar noise-induced shifts have been

observed by other authors [58] using stochastic simulations.

To investigate this effect further, we increased the repression

rate constant k1 by a factor of 100, see SBML file F7 in Table 2

with a volume V~0:2fl. Interestingly, we find that here the

EMRE predicts synchronous damped oscillations even when they

are absent in the REs, see Fig. 9a. Hence, these oscillations are

purely induced by noise since they cannot be observed in the

corresponding deterministic model. We have verified this effect

against stochastic simulations which are in qualitative agreement

as shown in Fig. 9b. Note that although the EMRE prediction is

qualitatively correct in predicting oscillations where they are not

captured by the REs, the phase and frequency of the oscillations

differs significantly from the stochastic simulations at the cell

population level, as shown in Fig. 9b. Higher-order corrections to

the mean concentrations than those of the EMRE would be

needed to correctly capture such details. The theory of such

corrections has already been worked out [59] but they are not

presently implemented in iNA. While at the cell population level,

we have noise-induced damped oscillations, at the single cell level

we observe persistent periodic rhythms in the mRNA and protein

concentrations (see Fig. 9c) which are considerably more regular

and conspicuous compared to the case of weak negative feedback

in Fig. 8. Similar differences between the population level and cell

level circadian dynamics have been experimentally observed [60].

Figure 8. A circadian clock model realized in a small compartment of volume V~0:2fl with weak negative feedback. Time course
analysis obtained from stochastic simulations of an ensemble of 50,000 independent cells (a) and from the REs and EMREs (b). The EMRE analysis
shows synchronous damped oscillations which are amplified compared to the macroscopic REs. This suggests that noise increases the coherence at
the single cell level compared to the case V~2fl, see Fig. 6. This is also supported by single cell stochastic simulations which show bursty noise-
induced oscillations of mRNA, M, and more regular oscillations for the cytosolic and nuclear protein concentrations, Pc and PN, respectively. All figures
have been obtained by analyzing SBML file F6 with iNA.
doi:10.1371/journal.pone.0038518.g008
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We conclude by noting that the fact that the RE model could

not capture the population level dynamics suggests that the

common practice of extracting rate constants by fitting population

level data to RE model predictions (see for example [61]) may lead

to erroneous results whenever the single cell dynamics are

considerably affected by intrinsic noise.

Design and Implementation
The conceptual design of iNA consists of three layers: model

interpretation, computation and GUI which are shown in Fig. 10.

The input is a SBML model definition file from which an

interpreter of the mathematical model representation is set up.

The computational layer of iNA can be accessed by the user in two

ways. One route is direct stochastic simulation of the model. This

procedure has to be carried out repeatedly in order to obtain

sufficiently accurate statistical averages. The second route is to

obtain an approximate analytical solution for the mean concen-

trations and the variance and covariance of concentration

fluctuations of the CME. For the latter we employ the Linear

Noise Approximation and the EMRE method which rely on van

Kampen’s SSE. The output of the computation is visualized by

table and plot views implemented in the GUI. iNA has been

implemented in C++ and makes use of the cross-platform library

Qt (Nokia, Inc) which yields comparable graphical interfaces on

different platforms from a single source code.

The SBML parser. The model file is parsed using the library

libSBML [62] from which the interpreter is set up. The latter

constructs a mathematical representation of the model which is

suitable for the use of the computer algebra system Ginac [63].

Such representation comprises the list of species, the stoichiometric

matrix and the set of propensities characterizing the reaction

network. Though symbolic representations of SBML are available

[64], these libraries are limited to the representations of models

using deterministic REs. The implementation presented here is the

first to adopt this approach for the computation of the SSE of the

CME, which goes beyond the validity of the deterministic REs.

Thereby it fills the gap between analytical approximations and

stochastic simulation of biochemical kinetics.

Figure 9. A circadian clock model realized in a small compartment of volume V~0:2fl and with strong negative feedback. This rate
constant k1 which controls the strength of transcriptional repression is made a hundred times larger than that used for Fig. 8. In (a) we compare the
predictions of the REs with those of the EMREs. The EMREs predict damped oscillations at the population level which are missed by the REs. The
presence of these noise-induced synchronous oscillations is qualitatively confirmed by stochastic simulations of 100,000 independent cells (b).
However, the phase of the damped oscillation is quantitatively different from the EMREs. In particular, panel (a) shows damped oscillations with a
period of about 1 day (d) while the ones obtained from stochastic simulations in panel (b) have a significantly longer period. We have also carried out
stochastic simulations at the single cell level (c) which show sustained bursty oscillations with a period of about 1.5 days in the mRNA, M, and
cytosolic protein, Pc, concentrations. All figures have been obtained by analyzing SBML file F7 with iNA.
doi:10.1371/journal.pone.0038518.g009
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SSA and methods based on the SSE. The computational

layer offers two methods for the stochastic simulation: the direct

method developed by Gillespie [25] and the more recently

introduced optimized direct method [27]. It is our experience that

the latter typically speeds up simulations by a factor of two. The

computation of the LNA and EMRE requires the series expansion

of the CME in powers of the inverse square root of the volume of

the compartment (see the section Methods). We make use of the

library Ginac, by means of which we can compute derivatives

analytically and obtain series expansions of the mathematical

model representation instead of resorting to numerical approxi-

mations. The computations are heavily based on basic linear

algebra, for which we resort to the C++ template library Eigen

[65] that has been customized to work with symbolic represen-

tations of Ginac. In order to allow for unconstrained numerical

integration, it is also necessary to identify the corresponding

conservation laws of the reaction network which is done using the

full-pivoting LU decomposition provided by Eigen. This algorithm

has been described in Ref. [66] and has been shown to give

reliable results. The numerical integration of the ordinary

differential equations describing REs, the LNA and EMREs is

performed using explicit Runge-Kutta algorithms (RK4, RKF45,

Dopri54) or implicit Rosenbrock method (4/5th order) for stiff

problems [36,67,68].

Optimizations. Generally the number of simultaneous

equations that need to be solved by the software is given by N
for the REs, (1=2)N(Nz1)zN for the LNA and (1=2)N
(Nz1)z2N for the EMREs, where N is the number of species

(see the section Methods). Hence the complexity of the SSE based

methods grows at least quadratically with the number of species

depending on the algorithm of integration employed. In contrast,

the performance of the SSA is limited first by the number of

reactions over the time course, which is proportional to the size of

the propensity and second by the large number of realizations

required to obtain accurate statistical averages. We have addressed

the latter issue by supplying our stochastic simulators with easy-to-

use OpenMP parallelism which is available on many platforms

and can be accessed through the Stochastic Simulation wizard. The

remaining bottlenecks concern the performance of expression

evaluation which is at the heart of both analytical and stochastic

simulation methods. In order to allow for efficient evaluation of

the required expressions, we have set up a bytecode interpreter, a

concept which is common to dynamic programming languages.

Bytecode interpreters increase the execution performance by

reducing the code complexity and allow for very efficient

implementations while at the same time maintaining the

portability of code across many platforms. The expressions

computed by iNA are first compiled into a bytecode representation

which is then reduced by fast peep-hole optimizations [69] and

finally evaluated using an efficient interpreter implementing stack-

machines. On single-core architectures we observed a speed up by

a factor of 10220 compared to the use of conventional methods

for both stochastic simulations and SSE based methods. On multi-

core architectures the performance of the SSE methods could be

significantly improved by the use multiple stacks enabling parallel

expression evaluation.

Methods

General Formulation of the SSE
In the section The Chemical Master Equation and the System Size

Expansion we have introduced the CME, Eq. (3). The latter is

typically intractable for analytical solution. In fact, exact solutions

exist only for a handful of cases. However, the dynamics can be

investigated systematically by means of van Kampen’s SSE [9,70].

The starting point of the analysis is the so called Van Kampen

ansatz

~nn

V
~½~XX �zV{1=2~EE, ð17Þ

by which one separates the instantaneous concentration into a

deterministic part given by the solution ½~XX � of the macroscopic

REs, Eq. (4), and the fluctuations around it. The change of

variable causes the probability distribution of molecular popula-

tions P(~nn,t) to be transformed into a new probability distribution

of fluctuations P(~EE,t). In particular, the time derivative transforms

as [9]

LP(~nn,t)

Lt
~

LP(~EE,t)
Lt

{V1=2
X

i

L½Xi�
Lt

LP(~EE,t)
LEi

, ð18Þ

which takes into account the change in probability along the

deterministic trajectory of ½Xi�.
The expansion of the step operator. The core of the

expansion now follows from the observation that the step operator

can be written as the Taylor series E
{Sij

i g(n1,:::,ni,:::,nN )~

e{L=LniSij g(n1,:::,ni,:::,nN ) which upon the change of variable, Eq.

(17), can be expanded in terms of the inverse square root of the

volume V.

P
N

i~1
E

{Sij
i {1~{V{1=2

XN

i~1

SijLi

Figure 10. Schematic illustrating the architecture of the
software iNA. The software reads an SBML file, sets up an internal
mathematical representation of the biochemical reaction scheme, and
computes the mean concentrations and the variances and covariance of
concentration fluctuations as a function of time by stochastic
simulations and by approximations based on the system size expansion.
The results are then output via tables and plots implemented in the
GUI.
doi:10.1371/journal.pone.0038518.g010
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z
V{1

2

XN

i,k~1

SijSkjLiLk{
V{3=2

6

XN

i,k,r~1

SijSkjSkrLiLkLr

zO(V{2),

ð19Þ

where Li:L=LEi.

The expansion of the propensity. We now turn to the

expansion of the propensity which is done in two steps. Note that

from here on we use the convention that twice repeated Greek

indices have to be summed over 1 to N. First we expand the

propensities in powers of epsilon. The result is

âaj(~nn,V)~aj(½X �,V)zV{1=2EaL½Xa�aj(½~XX �,V)

z
1

2
V{1EaEbL½Xa�L½Xb�aj(½~XX �,V)zO(V{3=2):

ð20Þ

Note that aj(½X �,V) is simply the microscopic propensity

evaluated at the deterministic concentrations. As shown below

the latter depends explicitly on V and can be expanded into a

finite series of the form

aj(½X �,V)~V(f
(0)

j (½X �)zV{1f
(1)

j (½X �)zV{2f
(2)

j (½X �)z:::): ð21Þ

The first term denoted by f
(0)

j (½X �) is typically associated with

the macroscopic rate function of the j-th reaction. Combining Eq.

(20) and (21) we find

âaj(~nn,V)~V f
(0)

j (½~XX �)zV{1=2EaL½Xa�f
(0)
j (½~XX �)

�

z
1

2
V{1EaEbL½Xa�L½Xb�f

(0)
j (½~XX �)zV{1f

(1)
j (½~XX �)zO(V{3=2)

�
: ð22Þ

In this way we obtain an expansion whose coefficients are

independent of V. We will illustrate the expansion for the case of

mass action kinetics and the case of non-elementary reactions. The

former case allows to write the propensity in the generic form

âaj(~nn,V)~VkjP
N

z~1

V{szj (nz)szj
, ð23Þ

where (nz)szj
is the falling factorial nz(nz{1):::(nz{szjz1). The

microscopic propensity becomes

aj(½X �,V)~VkjP
N

z~1

½Xz�(½Xz�{V{1):::(½Xz�{V{1(szj{1)), ð24Þ

and hence by collecting terms of order V0 and V1 it follows that

f
(0)

j (½~XX �)~kjP
N

z~1

½Xz�szj ,

f
(1)

j (½~XX �)~{
kj

2 P
N

z~1

½Xz�szj{1
szj(szj{1) ð25Þ

For non-elementary reactions we consider the Michaelis-

Menten example with reaction propensity VvmnS=(nSzVKM )
as has been suggested by Rao [71]. By expressing the particle

number in terms of concentrations one observes that by

construction macroscopic and microscopic propensities agree,

i.e., we have aj(½~XX �,V)~Vfj(½~XX �). It follows that the macroscopic

rate function becomes f
(0)

j ~fj(½~XX �)~vm½S�=(½S�zKM ) while

f
(n)

j ~0 for all n.0. The above expansions are computed

automatically by iNA and do not require any further user input.

Note however that in the situation where the user defined propensity

cannot be expanded in the prescribed way the software simply

assumes that f
(0)

j (½~XX �)~aj(~nn,V)=V at constant V. By doing so the

correctness of the numerical values used in the analysis is ensured.

The expansion of the CME. The expansion obtained in this

way can be written as

LP(~EE,t)
Lt

{V1=2 L½Xa�
Lt

LP(~EE,t)
LEa

~

V1=2LaDazV0L(0)zV{1=2L(1)zO(V{1)
� �

P(~EE,t), ð26Þ

where the individual terms in the expansion are obtained using

(3) together with the expansions (19), (20) and (21) and grouping

terms in descending powers of V.

L(0)~{LaJb
a bz

1

2
LaLbDab, ð27Þ

L(1)~{LaD(1)
a {

1

2!
LaJbc

a qbqcz
1

2!
LaLbJ

c
abqc

{
1

3!
LaLbLcDabc:

ð28Þ

Note that Eq. (28) corrects Eq. 14 in Ref. [31] which is missing the

third term. However, this does not affect the result. Here we have

the defined the SSE coefficients given by

D
(n)
ij::r~

XR

k~1

SikSjk:::Srk f
(n)

k (½~XX �),

J
(n)

ij::r
st::z~

L
L½Xs�

L
L½Xt�

:::
L

L½Xz�
D

(n)
ij::r: ð29Þ

Note that we adopt the convention to omit the index for n = 0,

e.g., D(0)
a :Da. We can now equate the terms of order V1=2 which

appear on the left and right hand side of Eq. (26):
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L½Xi�
Lt

~Di~
XR

k~1

Sikfk(½~XX �), ð30Þ

which are the macroscopic REs.

The linear noise approximation. We now proceed by

constructing equations for the moments of the ~EE variables. We

follow the derivation presented in Ref. [59] and expand the

probability distribution of fluctuations P(~EE,t) in terms of the

inverse square root of the volume

P(~EE,t)~
X?
j~0

Pj(~EE,t)V{j=2: ð31Þ

In consequence there exists an equivalent expansion of the

moments

hEkEl :::Emi~
X?
j~0

½EkEl :::Em�jV{j=2, ð32Þ

where the following definition has been used

½EkEl :::Em�j~
ð
EkEl :::EmP j(~EE,t)d~EE: ð33Þ

Using the expansion of the probability density, Eq. (31), together

with Eq. (26) and (27) we find after equating all terms of order V0:

L
Lt
P0(~EE,t)~L(0)P0(~EE,t)

~ {LaJb
a Ebz

1

2
LaLbDab

� �
P0(~EE,t): ð34Þ

The result is the Linear Noise Approximation which yields a

linear Fokker-Planck equation. Its solution is well known to be a

multivariate Gaussian distribution [9,29]. The time evolution

equations of the first two moments are obtained by multiplying the

latter by Ei and EiEj respectively and performing the integration

over~EE:

L
Lt
½Ei�0~Ja

i ½Ea�0, ð35Þ

L
Lt
½EiEj �0~Ja

i ½EaEj �0z½EiEa�0Ja
j zDij : ð36Þ

Note that in the case of the deterministic initial conditions we

have ~nn=V~½~XX � initially and hence all moments of~EE given by Eq.

(32) are zero for t = 0. We can also deduce by inspection of Eq. (35)

that in this case we have ½~EE �0~0 for all times. In order to relate the

moments back to the moments of the concentration variables we

use Eq. (32) and (17) to find that mean concentrations and

covariance matrix are given by

ni

V
~½Xi� ð37Þ

Sij~
ni

V
{

ni

V

� �
nj

V
{

nj

V

� �

~V{1½EiEj �0 ð38Þ

Using the definition of the covariance matrix Sij together with

Eq. (36) we find that it satisfies the time dependent matrix equation

L
Lt

S~JSzSJTzV{1D, ð39Þ

where the Jacobian and diffusion matrix are given by (J)ij~J
j
i

and (D)ij~Dij , respectively [29]. It follows that to order V0 the

average concentrations are correctly described by the macroscopic

REs. The size of fluctuations about the average are then given by

the matrix S as obtained from the solution of Eq. (39).

Effective Mesoscopic Rate Equations. In this section we

will use higher order corrections to derive a set of effective

mesoscopic rate equations, the EMREs, that are expected to be

closer to the true concentrations as predicted by the CME. We

therefore utilize the system size expansion, Eq. (27) together with

Eq. (31) and equate terms of the order V{1=2. The result is given

by

L
Lt
P1(~EE,t)~L(0)P1(~EE,t)zL(1)P0(~EE,t): ð40Þ

Multiplying the above equation by Ei and performing the

integration over
Ð

d~EE we find

L
Lt
½Ei�1~Ja

i ½Ea�1z
1

2
J

ab
i ½EaEb�0zD

(1)
i : ð41Þ

We can use the above result together with Eq. (17) and (32) to

find an equation for the average concentration accurate to order

O(V{3=2):

~nn

V
~½~XX �zV{1½~EE �1zO(V{3=2): ð42Þ

Hence we conclude that the difference between the true

concentrations predicted by the CME and those of the macro-

scopic RES evolves as

L
Lt

~nn

V
{½~XX �

� �
~J

~nn

V
{½~XX �

� �
z~DD, ð43Þ

where we have defined the vector ~DD with components
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Di~
1

2
J

ab
i SabzV{1D

(1)
i : ð44Þ

Note that in the case of deterministic initial conditions this result

enjoys an increased accuracy of order O(V{2) as has been shown

in Ref. [59]. Note that by virtue of Eq. (17) we see that each

nonzero solution of the above equation implies a correction to the

concentrations as macroscopic REs. Necessary conditions for this

to be true depend on the explicit form of the propensities such as

propensities with nonlinear dependence on the molecular popu-

lations for which J
ab
i ~LaLbSicfc(½~XX �)=0 or propensities for which

microscopic and macroscopic rate functions do not agree, i.e.,

D
(1)
i ~Siaf (1)

a (½~XX �)=0. Note that for a network composed entirely

of elementary reactions D
(1)
i is non-zero only for species which

dimerize because of the special form of the propensity which is

given by k(n=V)(n{1). It can be shown that in this case

D
(1)
i ~{(1=2)Ga

i ½Xa� with Ga
i :Jaa

i and hence

Di~
1

2
J

ab
i Sab{V{1Ga

i ½Xa�
� �

, ð45Þ

which agrees with the result given by Grima for networks

composed of elementary reactions [31].

Concentration Inversion Effect for the Michaelis-Menten
Reaction

Recently, Ramaswamy et al. [35] have reported a noise-induced

concentration inversion effect using the EMREs. The authors

consider independent realizations of the same chemical system in

compartments of different volumes. They find that for monostable

reaction networks with bimolecular reactions, when a species is

more more abundant than another for large compartmental

volumes, i.e., the regime where the REs are valid, then the reverse

occurs for an identical system realized in compartmental volumes

below a critical value, i.e., the regime where the EMREs give a

more accurate description of the true mean concentrations.

We here derive the equation for the critical volume for this

discreteness-induced concentration inversion of substrate and

product in the Michaelis-Menten scheme (10). The macroscopic

REs are given by

d

dt
½S�~kin{k1½E�½S�zk{1½ES�,

d

dt
½ES�~k1½E�½S�{k{1½ES�{k2½ES�,

d

dt
½P�~k2½ES�{kout½S�, ð46Þ

where ½E�~½ET �{½ES� by conservation of total enzyme

concentration. Under steady state conditions the above equations

can be solved by setting the time derivatives to zero which yields

½S�~KMa=(1{a), ½P�~kin=kout and ½ES�~½ET �a where

a~kin=(k2½ET �) is measuring the fractional enzyme saturation.

The EMREs of the reaction have been first obtained by Grima in

Ref. [32] where it was found that the REs are only accurate for

describing the enzyme and product concentrations in mesoscopic

volumes, i.e., we have hnC=Vi~½C� and hnP=Vi~½P�. However

they underestimate the mesoscopic substrate concentration. The

critical volume under which the concentrations of substrate and

product concentrations are equal is obtained from the condition

nS

V
~

nP

V
, ð47Þ

which implies the same equality in terms of molecule numbers.

The finite volume correction to the macroscopic REs as given in

Ref. [33], Eq. 29, leads to the condition

½P�~½S�z 1

Vcrit

a2KM

(1{a)(KMz½ET �(1{a)2)
: ð48Þ

Solving the above equation for Vcrit we find

Vcrit~a2 kin

kout
(1{a){KMa

� �{1

1z
½ET �
KM

(1{a2)

� �{1

: ð49Þ

Using the rate constants for the Malate dehydrogenase enzyme

summarized in Table 3 we find a critical volume of

Vcrit~1:46|10{17l.
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