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The adrenergic system plays a central role in stress signaling and stress is often
associated with increased production of ROS. However, ROS overproduction generates
oxidative stress, that occurs in response to several stressors. β-adrenergic signaling
is markedly attenuated in conditions such as heart failure, with downregulation and
desensitization of the receptors and their uncoupling from adenylyl cyclase. Transgenic
activation of β2-adrenoceptor leads to elevation of NADPH oxidase activity, with greater
ROS production and p38MAPK phosphorylation. Inhibition of NADPH oxidase or ROS
significantly reduced the p38MAPK signaling cascade. Chronic β2-adrenoceptor activation
is associated with greater cardiac dilatation and dysfunction, augmented pro-inflammatory
and profibrotic signaling, while antioxidant treatment protected hearts against these
abnormalities, indicating ROS production to be central to the detrimental signaling of
β2-adrenoceptors. It has been demonstrated that sirtuins are involved in modulating the
cellular stress response directly by deacetylation of some factors. Sirt1 increases cellular
stress resistance, by an increased insulin sensitivity, a decreased circulating free fatty
acids and insulin-like growth factor (IGF-1), an increased activity of AMPK, increased
activity of PGC-1a, and increased mitochondrial number. Sirt1 acts by involving signaling
molecules such P-I-3-kinase-Akt, MAPK and p38-MAPK-β. βAR stimulation antagonizes the
protective effect of the AKT pathway through inhibiting induction of Hif-1α and Sirt1 genes,
key elements in cell survival. More studies are needed to better clarify the involvement
of sirtuins in the β-adrenergic response and, overall, to better define the mechanisms by
which tools such as exercise training are able to counteract the oxidative stress, by both
activation of sirtuins and inhibition of GRK2 in many cardiovascular conditions and can be
used to prevent or treat diseases such as heart failure.
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INTRODUCTION
The sympathetic adrenergic system plays a central role in stress
signaling and stress is often associated with increased production
of reactive oxygen species (ROS).

ROS production is the result of several mechanisms, including
generation during oxidative phosphorylation in the mitochondria
as a product of normal cellular aerobic metabolism (Davies, 1995;
Ide et al., 1999). Thus, the major process from which the body
derives sufficient energy can also result in the production of ROS
(Ide et al., 1999). The balance between the production of ROS
and the activation of the antioxidant defense system is crucial
for the human physiology and the control of cellular homeosta-
sis. ROS play an important role in signaling processes, but their
overproduction generates oxidative stress. In fact, ROS can reg-
ulate cellular functions, e.g., during immune and inflammatory
processes (Remacle et al., 1995), in turn their overproduction

causes damage to cellular constituents, including DNA, proteins,
and lipids, especially when occurs with insufficient antioxidant
enzyme activity (Varma, 1991).

In several cellular signaling pathways (Nishida et al., 2000),
ROS act as second messengers downstream of specific ligands,
including Transforming Growth Factor-β1 (TGF-β1), Platelet-
Derived Growth Factor (PDGF), Fibroblast Growth Factor-2
(FGF-2), endothelin (Thannickal and Fanburg, 2000; Sawyer
et al., 2002; Griendling and FitzGerald, 2003; Machida et al.,
2003) and they are also involved in modulating the activity of spe-
cific transcription factors, such as Nuclear Factor-kB (NF-kB) and
Activator Protein–1 (AP-1) (Hsu et al., 2000; Hirotani et al., 2002;
Turpaev, 2002; Wu et al., 2002; Sabri et al., 2003; Rengo et al.,
2013a).

Elevated ROS have also been implicated in the development
and sustainment of several chronic degenerative diseases (i.e.,
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cancer, diabetes, neurodegenerative and cardiovascular condi-
tions) and in the mechanism of senescence and aging (Knight,
2000; Dröge, 2002; Westerheide et al., 2009; Marciano et al.,
2012; Paolillo et al., 2013; Rengo et al., 2013b), and it has been
suggested that they also contribute to adverse myocardial remod-
eling and the progression to heart failure (Sawyer et al., 2002;
Seddon et al., 2007). However, relatively little is known about
the type of ROS involved (e.g., superoxide, hydrogen peroxide,
peroxynitrite), their specific role in mediating myocyte hypertro-
phy, apoptosis, fibrosis that participate in myocardial remodeling
(Sawyer et al., 2002; Mann and Bristow, 2005; Seddon et al.,
2007), and in relationship to the overall progression to myocardial
failure.

The sympathetic adrenergic system plays a central role in
ability to rapidly respond to various types of threats. One
important target of adrenergic stimulation is the heart, where
activation of β-adrenergic receptors causes increases in heart
rate (chronotropy), relaxation speed (lusitropy) and contractility
(inotropy) (Andersson et al., 2011).

Increased adrenergic drive is a major factor influencing the
development of pathological cardiac hypertrophy, a stage which
precedes overt heart failure. Whereas it is well known that
heart failure, a highly prevalent syndrome, is characterized by
both increased ROS production and β-adrenergic hyperactiv-
ity, still few evidence are available on the relationship between
β-adrenergic system and oxidative stress.

Recently it has been discovered that a family of enzymes
consists of NAD+-dependent histone/protein deacetylases, called
Sirtuins, represents pivotal regulator of redox cellular status.

In mammalian cells SIRT1 appears to control the cellular
response to stress by regulating the family of Forkhead tran-
scriptional factors (FOXOs) (Brunet et al., 2004) and directly
deacetylating the Heat Shock Factor (HSF1) and thus regulating
Heat Shock Proteins (HSPs) expression (Westerheide et al., 2009;
Corbi et al., 2012a).

This review is aimed to focus on the relationship between
adrenergic system activity and oxidative stress, with a light on
the possible implications of sirtuins in the regulation of this
mechanism.

OXIDATIVE STRESS IN THE CARDIOVASCULAR SYSTEM
Several in vitro and in vivo studies have demonstrated ROS activa-
tion in the cardiovascular system in response to various stressors
and in the failing heart (Ide et al., 1999; Cesselli et al., 2001;
Wallace, 2001; Sawyer et al., 2002; Sabri et al., 2003; Scortegagna
et al., 2003; Suematsu et al., 2003), and animal studies have also
suggested that antioxidants and ROS defense pathways can ame-
liorate ROS-mediated cardiac abnormalities (Chen et al., 1996;
Yen et al., 1996; Ho et al., 1998; Conrad et al., 2004; Giordano,
2005).

The ROS oxide (O2-), nitric oxide (NO), hydroxyl (OH-), and
peroxynitrite (ONOO-) are molecules characterized by the pres-
ence of unpaired electrons that are highly reactive with cysteine
residues in the catalytic center of cellular enzymes, thus making
them excellent signal transducers (Finkel, 1999).

ROS have been linked to key pathologic processes such as
cardiac hypertrophy (Nakamura et al., 1998) cardiomyocyte

apoptosis (von Harsdorf et al., 1999), ischemia-reperfusion
(Zweier et al., 1989) and heart failure itself (Ide et al., 1999). But
also oxidant overproduction occurs in response to several stres-
sors, including chemicals, drugs, pollutants, high-caloric diets,
and exercise (Kohen and Nyska, 2002). Physical exercise can
increase oxidative stress, eventually causing a perturbation of
homeostasis that is dependent on training specificity (Conti et al.,
2012a) and workload (Conti et al., 2013), but in turn it is also
able to counterbalance the deleterious effects of ROS by activation
of several antioxidant systems, such as Super Oxide Dismutases
(SODs), HSPs and catalase (Corbi et al., 2012a,b). The mecha-
nisms by which ROS mediate these different biologic responses
are not fully understood, but in many cases involve activation
of specific redox-sensitive signaling molecules. Three important
candidates for downstream effectors are p38 Mitogen-Activated
Protein Kinase (p38MAPK) and c-Jun Kinase (JNK), members of
the stress-activated kinase family, and the cell survival kinase Akt
(Griendling et al., 2000).

Angiotensin II, Tumor Necrosis Factor alpha (TNF-α) and
norepinephrine are neurohormones implicated in the develop-
ment of cardiac hypertrophy and progression to end-stage human
heart failure (Packer, 1998). There is currently evidence that
at least some hypertrophic effects induced by these agents are
mediated through ROS.

In vivo, under physiologic conditions, O2- is predominantly
inactivated by SODs, which are present in high concentrations
in mitochondria (MnSOD), cytosol (Cu/Zn SOD), or plasma
membrane/extracellular spaces, and consequently the formation
of ONOO- is minimal.

During physiological and pathological conditions, including
aging, SODs convert O2- to hydrogen peroxide (H2O2), which
has a longer half-life, can diffuse longer distances than O2-, and
is able to influence signaling events at more distant sites. In fact
H2O2 can regulate the activity of several enzymes essential for
Ca2+ release, growth, or apoptosis (phospholipases A2, C, and
D, Src kinase, p38MAPK, JNK and Akt/PKB) (Griendling et al.,
2000).

It has been demonstrated that the expression and activity of
the SOD system is modified in aging, with reduced cell abil-
ity to counteract the oxidant molecules, and consequent weak
resistance to ROS accumulation (Rinaldi et al., 2006). Obviously,
cytotypes with limited replication ability, such as brain and heart,
are particularly vulnerable to this phenomenon, suggesting that
it could explain, at least in part, high prevalence of cardiovascu-
lar and neurological disorders in elderly people (Navarro-Arévalo
et al., 1999). In fact, it is widely known that oxidative stress
and reduced antioxidant defense have negative effects on car-
diac structure and function (Singal et al., 1988) and they are also
involved in lipid membrane oxidation and other heart age-related
conditions (Corbi et al., 2012b).

HSPs are another system of cellular defense against oxida-
tive stress. These “stress-induced proteins” are ubiquitous and
highly conserved chaperones, important in the folding of new
synthesized or damaged proteins. Moreover, HSPs mediate mito-
chondrial protection against oxidative stress and some of those,
such as HSP70, have been associated with myocardial protec-
tion. Martin et al. (Martin et al., 1997) showed an increased
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survival in HSP70-transfected cardiomyocytes and consequent
increased expression of the HSP70 enzyme against ischemic car-
diac damage.

The metabolism of H2O2 is tightly regulated by the cellu-
lar glutathione peroxidases, which scavenge H2O2 (glutathione-
dependent) or catalase (glutathione-independent) (Sorescu and
Griendling, 2002). By converting H2O2 into water, catalase con-
stitutes a primary antioxidant defense system and could protect
cells from ROS and its deleterious consequences on diseases.

Recently it has been demonstrated that catalase protected
cardiac mitochondrial aconitase enzyme from oxidative damage
(Schriner et al., 2005) and overexpression of catalase targeted to
mitochondria protects mice from cardiac aging, providing direct
evidence for the role of mitochondrial ROS in the aging of this
vital organ (Dai et al., 2009).

In fact, accumulation of oxidative damage has also been con-
sidered responsible of many different aspects of the aged heart. It
has been found that cardiac fibrosis and size of myocytes increase
with aging, while the number of myocytes decreases and ventricu-
lar hypertrophy is almost a constant finding in the aging rat heart
(Anversa et al., 1986; Klima et al., 1990; Besse et al., 1994a). Hearts
of old rats are characterized by reduced antioxidant defenses, such
as SODs and Hsp 70 (Rinaldi et al., 2006).

Moreover, the oxidative stress with abnormalities in mitochon-
drial function, calcium (Ca2+) handling, electrolytes alterations,
hormones, and cardioprotective signaling have all been pro-
posed as potentially implicated in the aging process (Besse et al.,
1994b). In particular, regarding the effects of electrolytes changes
implicated in the regulation of myocardial function, it has been
demonstrated that magnesium (Mg2+) interferes on failed car-
diac contractility (Corbi et al., 2008) by modifying sarcoplasmic
reticular Ca2+ transport systems with a calcium antagonism
mechanism based on competition between Mg2+ and Ca2+ for
the same binding sites on key myocardial contractile proteins,
such as troponin C, myosin, and actin (Koss and Grubbs, 1994)
that could explain the opposite effects of Mg2+ and Ca2+ on
myocardial contractility (Kawano, 1998). Ca2+ overload can be
induced by direct effect of ROS on Ca2+ handling proteins or
indirectly, by inducing membrane lipid peroxidation (Valko et al.,
2007).

SIRTUINS AND OXIDATIVE STRESS IN THE
CARDIOVASCULAR SYSTEM
Another important mechanism involved in cellular redox reg-
ulation is represented by family of sirtuins, a cluster of seven
homologous proteins regulating cellular biology and metabolism
through deacetylation of histones and other cellular factors
such as NFkB, HSF1, p53, FOXOs, and Peroxisome Proliferator-
Activated Receptor Gamma Coactivator (PGC-1). By promoting
deacetylation, sirtuins can either promote or inhibit the activity
of several protein targets (Finkel et al., 2009; Haigis and Sinclair,
2010; Guarente, 2011).

SIRT1 and SIRT6 can deacetylate specific lysines on his-
tone tails to promote transcriptional silencing. SIRT1 also
deacetylates many non-histone proteins such as p53, FOXOs,
Nuclear Receptor Corepressor (SMRT/NCOR), and PGC-1alpha
(Finkel et al., 2009; Haigis and Sinclair, 2010; Guarente, 2011).

SIRT3 targets mitochondrial enzymes involved in metabolism,
ROS detoxification, and mitochondrial function including Long
Chain Acyl coe-enzyme A Dehydrogenase (LCAD), Isocitrate
Dehydrogenase 2 (IDH2), SOD2, and cyclophilin D (Hafner
et al., 2010; Zhong and Mostoslavsky, 2011). Other enzymatic
reactions catalyzed by selected sirtuins are the transfer of an
ADP-ribosyl group from NAD+ to an acceptor protein (SIRT1,
SIRT4, and SIRT6) (Finkel et al., 2009; Haigis and Sinclair, 2010;
Guarente, 2011), or the demalonylation and desuccinylation of
modified proteins (SIRT5) (Du et al., 2011). However, the biolog-
ical relevance of these reactions is only beginning to be unveiled
(Oellerich and Potente, 2012).

In particular, SIRT1, the human homologous of the family, is
involved in many functions of human physiology, including DNA
repair, cell cycle regulation, apoptosis, gene expression, and aging
(Grubisha et al., 2005). By FOXO3 acetylation and/or phospho-
rylation oxidative stress induces arrangement of SIRT1-FOXO3a,
complex indispensable for cell cycle arrest and induction of DNA
repair (Brunet et al., 2004). In turn, SIRT1 can modulate the
cellular stress response directly deacetylating some proteins and
regulating their expression (Porcu and Chiarugi, 2005). In fact,
SIRT1 modulates the threshold of cell death in the setting of
exogenous stress, including oxidative damage, interacting with
p53, inhibits Bax-induced apoptosis by deacetylation of Ku70,
and regulation of other targets linked to cell death (Cohen et al.,
2004) and cellular antioxidant activity (such as Mn-SOD and
catalase) (Corbi et al., 2012b).

Moreover, SIRT1 protects against endothelial dysfunction by
preventing stress-induced premature senescence, thereby modu-
lating the progression of cardiovascular diseases (Ota et al., 2007;
Li et al., 2011; Nadtochiy et al., 2011; Stein and Matter, 2011),
and it plays an essential role in mediating the survival of cardiac
myocytes under stress in vitro (Alcendor et al., 2004; Pillai et al.,
2005).

It has been observed that overexpression of Sirt1 reduces
expression of the Angiotensin II Type 1 Receptor (AT1R)
(Sunagawa, 2008) and this inhibition seems to prevent endothe-
lial dysfunction of cerebral arterioles (Arrick et al., 2008; Miyazaki
et al., 2008).

Although there are fewer studies of the other sirtuins, the
importance of SIRT3 for cardiac function has been demonstrated
by some authors. SIRT3 is expressed abundantly in the heart,
and has been reported to play a protective role against hyper-
trophy, acting at different levels. SIRT3 overexpression blocks
hypertrophy both in vitro and in vivo, whereas SIRT3−/− mice
exhibit enhanced susceptibility to hypertrophy (Sundaresan et al.,
2009), likely indirectly protecting against cardiac hypertrophy by
specifically control of ROS levels. Moreover, SIRT3 attenuates
Hypoxia-Inducible Factor 1-alpha (HIF-1α) activity indirectly by
controlling intracellular ROS (Finley et al., 2011), suggesting a
central regulatory function of sirtuins in the cellular response to
hypoxia (Oellerich and Potente, 2012).

More recently Cardus et al. demonstrated that the presence of
SIRT6 in endothelial cells protects from telomere and genomic
DNA damage, thus preventing a decrease in replicative capacity
and the onset of premature senescence. These findings suggest
that SIRT1 and SIRT6 collaborate at different levels to maintain
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endothelial homeostasis, with SIRT6 regulating chromatin func-
tions and DNA repair, and SIRT1 intracellular signaling networks
(Cardus et al., 2013).

Finally SIRT7 seems to be an essential regulator of tissue
homeostasis in the heart through its interaction with p53. Sirt7-
deficient primary cardiomyocytes show an approximately 200%
increase in basal apoptosis, and a significantly reduced resistance
to oxidative and genotoxic stress (Vakhrusheva et al., 2008; Corbi
et al., 2013).

Because the sirtuins activity depends on NAD+ availability it
has been suggested that their enzymatic activity is directly linked
to the energy and cellular redox status via the NAD+/NADH
ratio. Among the seven sirtuins, SIRT1 and SIRT3 are crucially
involved in regulation of cardiomyocyte energy metabolism, pro-
duction of ROS and signaling relevant to cell death/survival
(Tanno et al., 2012) playing different roles in regulation of
energy production and oxidative stress. Hearts consume large
amounts of O2 and yield high levels of ROS in the mitochon-
dria. In addition, various extracellular factors, such as angiotensin
II and Tumor Necrosis Factor-alpha (TNF-alpha), induce ROS
formation and promote cardiomyocyte death together with the
mitochondrial ROS (Giordano, 2005).

It has been demonstrated that MnSOD is required for normal
biological function of tissues. In fact, Li et al showed that Mn-
SOD−/− homozygous mutant mice die within the first 10 days
of life with a dilated cardiomyopathy, accumulation of lipid in
liver and skeletal muscle, and metabolic acidosis, and these find-
ings were related to a severe reduction in succinate dehydrogenase
(complex II) and aconitase (a TCA cycle enzyme) activities in the
heart (Li et al., 1995).

Furthermore, Loch et al found that MnSOD+/− mice dis-
played a decrease in fraction shortening and ejection fraction
and an increase in left ventricular internal diameter in systole,
and developed heart hypertrophy with accompanying fibrosis and
necrosis, demonstrating that lifelong reduction of MnSOD activ-
ity has a negative effect on normal heart function (Loch et al.,
2009).

Both SIRT1 and SIRT3 up-regulate Mn-SOD expression
through different mechanisms, such as HIF-2a (Dioum et al.,
2009) and/or FOXO4 (van der Horst et al., 2004) for SIRT1 and
FOXO3a for SIRT3 (Sundaresan et al., 2009). Sundaresan et al.
(2008) demonstrated that overexpression of both nuclear and
mitochondrial SIRT3 protected cardiomyocytes from genotoxic
stress and oxidant stress.

However, sirtuins adopt several other different tools to coun-
terbalance the oxidative stress.

For instance, Alcendor et al. showed that overexpression of
either Sirt1 or constitutively active FoxO1a in cultured car-
diac myocytes stimulated expression of catalase, suggesting that
FoxO1a plays an important role in mediating Sirt1-induced
upregulation of catalase, which may in part mediate suppression
of myocardial damage caused by oxidative stress (Alcendor et al.,
2007).

SIRT3 also increases activity of other ROS-detoxifying
enzymes indirectly. SIRT3 deacetylates and activates IDH2 and
glutamate dehydrogenase in murine liver (Alcendor et al., 2007;
Lombard et al., 2007), both of which produce NADPH in the

mitochondria. NADPH in turn is required for glutathione reduc-
tase to convert oxidized glutathione to reduced glutathione, which
is a crucial cofactor for mitochondrial glutathione peroxidase to
scavenge ROS.

Shinmura et al. (2011) demonstrated that treatment of car-
diomyocytes with resveratrol, an activator of SIRT1 and SIRT3,
decreased ROS production and improved cell survival after
hypoxia/reoxygenation without increasing the expression level of
MnSOD protein.

Recently, mitochondrial ALdehyde DeHydrogenase 2
(ALDH2) has been identified as a novel target of SIRT3 (Schlicker
et al., 2008; Lu et al., 2011). Excessive ROS in stressed hearts trig-
gers lipid peroxidation and accumulation of reactive aldehydes,
which in turn impairs mitochondrial function and induces cell
damage. ALDH2 removes the aldehydes reducing the toxicity
(Chen et al., 2010). Then, SIRT3-mediated ALDH2 activation
could be another mechanism that mitigates cardiomyocyte
damage induced by ROS, resulting in cardioprotection (Tanno
et al., 2012).

β ADRENERGIC SYSTEM AND OXIDATIVE STRESS IN
CARDIOVASCULAR SYSTEM
It is well established that β-adrenoceptor (βAR) activation stimu-
lates adenylyl cyclase activity through the participation of G pro-
teins and promotes the formation of cAMP in the myocardium
(Stiles et al., 1984; Bristow et al., 1990; Bohm, 1995; Chakraborti
et al., 2000). The elevated level of cAMP increases the intracel-
lular concentration of Ca2+ in cardiomyocytes on protein kinase
A (PKA) mediated phosphorylation of different Ca2+-handling
proteins in the membrane and produces the positive inotropic
effect in the heart (Stiles et al., 1984; Bristow et al., 1990; Bohm,
1995; Chakraborti et al., 2000). This βAR-mediated signal trans-
duction mechanism not only regulates the contractile activity of
the healthy heart, but it is also considered to provide critical
support for the maintenance of cardiac function during the devel-
opment of heart failure (Bristow et al., 1990; Bohm, 1995; Post
et al., 1999; Chakraborti et al., 2000; Sethi et al., 2007; Cannavo
et al., 2013a).

In failing hearts, elevated sympathetic activity initially com-
pensates for decreased cardiac contractility. βAR-mediated sig-
naling is markedly attenuated in heart failure subjects, owing to
the downregulation and desensitization of the receptors and their
uncoupling from adenylyl cyclase (Rockman et al., 2002; Di Lisa
et al., 2011; Rengo et al., 2012a; Femminella et al., 2013).

Many different mechanisms are implicated in the genesis of
heart failure. Effects of high levels of insulin on the cardiovascu-
lar function are well studied. In a model of isolated rats papillary
muscles, it was demonstrated that insulin-induced modulation
of contractility is calcium independent and that insulin leads to
a supersensitization on the β1-adrenoceptors (β1-AR) (Ferrara
et al., 2005). At the same time, elevated plasma free fat acid lev-
els have a stimulatory effect on sympathetic nervous system, as
showed by decreased QTc interval after weight loss (Corbi et al.,
2002; Bianco et al., 2013).

One of the pathophysiological mechanisms involved in the
genesis of heart failure is represented by a persistent β1-AR stim-
ulation, that evokes a multitude of cardiac toxic effects, including

Frontiers in Physiology | Clinical and Translational Physiology November 2013 | Volume 4 | Article 324 | 4

http://www.frontiersin.org/Clinical_and_Translational_Physiology
http://www.frontiersin.org/Clinical_and_Translational_Physiology
http://www.frontiersin.org/Clinical_and_Translational_Physiology/archive


Corbi et al. Sirtuins, oxidative stress and beta-adrenergic system

myocyte apoptosis and hypertrophy, as showed in vivo on rodent
hearts and in vitro on cultured cardiomyocytes (Ferrara et al.,
1997; Zheng et al., 2005; Cannavo et al., 2013b).

In particular it has been demonstrated a β1-AR downregula-
tion and desensitization due apparently to overt and sustained
stimulation, with largely unaltered β2-adrenoceptors (β2-AR)
(Molenaar et al., 2007; Feldman et al., 2008; Rengo et al., 2012b),
leading to an increased β2:β1 ratio.

β2-AR play an important role in the regulation of the angio-
genic response in HF, as showed by the evidence that β2-AR over-
expression was associated with a markedly increased capillary and
arteriolar length density and enhanced in vivo myocardial blood
flow and coronary reserve (Rengo et al., 2012b) and β-blockade
promotes cardiac angiogenesis in heart failure via activation of
VEGF signaling pathway (Rengo et al., 2013a).

G protein-coupled receptor kinases (GRKs) regulate numer-
ous G Protein-Coupled Receptors (GPCR) by phosphorylating
the intracellular domain of the active receptor, resulting in recep-
tor desensitization and internalization. GRKs also regulate GPCR
trafficking in a phosphorylation independent manner via direct
protein-protein interactions (Evron et al., 2012).

GPCR are seven-transmembrane receptors that transmit a
wide range of extracellular stimuli into cells, regulating the major-
ity of biological processes. Upon agonist stimulation, GPCR
activate G proteins, which exchange bound GDP for GTP, lead-
ing to the dissociation of the G protein into activated Gα and
Gβγ subunits. This dissociation promotes downstream signaling
through specific effector proteins and second messengers (Pierce
et al., 2002; Takeda et al., 2002).

GRK2 is the most ubiquitous member of the GRK family.
GRK2 rapidly phosphorylate GPCR upon agonist stimulation and
facilitate the binding of arrestins to the phosphorylated receptors,
leading to uncoupling of the receptor from the G protein (Pitcher
et al., 1998a). This process, known as receptor desensitization, is
the loss of receptor responsiveness upon prolonged stimulation.
GPCR that are known substrates of GRK2 include the β2-AR, the
chemokine receptors CCR2b and CCR5, the Platelet Activating
Factor Receptor, and the neurokinin-1 receptor for substance P
(Pitcher et al., 1998a; Lombardi et al., 2002).

GRK2 binds PhosphoInositide 3-Kinase (PI3K) and recruits
it to the cell surface upon ligand stimulation of the βAR (Naga
Prasad et al., 2001). This interaction has been shown to be impor-
tant for βAR endocytosis, most likely via enhanced recruitment of
AP2 to the receptor (Naga Prasad et al., 2002; Salazar et al., 2013).

Blocking the interaction of GRK2 with PI3K improves contrac-
tile function during heart failure by reversing βAR desensitization
abnormalities and restoring βAR signaling (Perrino et al., 2005;
Evron et al., 2012; Rengo et al., 2012c).

Interestingly, changes in GRK2 levels have been reported in a
number of disease states. In human GRK2 levels are increased in
myocardial tissue during heart failure (Ungerer et al., 1994; Rengo
et al., 2013a,b,c), myocardial infarction (Santulli et al., 2011) and
hypertension (Gros et al., 1997; Santulli et al., 2013).

Production of ROS has been detected in several cells stim-
ulated with cytokines, peptide growth factors, and agonists of
GPCRs (Thannickal and Fanburg, 2000). During inflammatory
processes, lymphocytes are exposed to H2O2 and other ROS that

are derived from activated macrophages and neutrophils as a first
line of defense against invading pathogens. Further downstream,
ROS regulate transcription factors, including NF-kB (Schreck
et al., 1991).

Some authors showed that exposure of lymphocytes to oxida-
tive stress results in a decrease in cellular GRK2 protein levels.
ROS produced by activated macrophages and neutrophils can
alter the activity of lymphocytes. Exposure of lymphocytes to
ROS results in increased intracellular calcium level, rapid tyrosine
phosphorylation of a variety of proteins (Schieven et al., 1993),
and activation of transcription factors such as NF-kB (Schreck
et al., 1991; Lombardi et al., 2002) (Figure 1).

Oxidative stress activates several other kinase signaling path-
ways, such as Protein Kinase C (PKC), MAPK, and PI3K.
Activated PKC can phosphorylate GRK2, with increased kinase
activity (Chuang et al., 1995). Interestingly, inhibition of PKC
does not affect basal GRK2 levels nor does it interfere with the
H2O2-induced decrease in cellular GRK2. In addition, specific
inhibitors of MAPK or PI3K do not have any effect on H2O2-
induced decreases in GRK2 protein (Lombardi et al., 2002).

Previous reports showed that GRK2 is the predominant GPCR
kinase involved in agonist-induced receptor sequestration of the
β2-AR. Moreover, studies in transfected cell systems suggest that
changes in the intracellular level of GRK2 alter the rate and extent
of sequestration of the β2-AR (Ferguson et al., 1996; Penela et al.,
1998; Lombardi et al., 2002).

A growing body of evidence has shown that GRK2 is capa-
ble of phosphorylating non-receptor substrates. GRK2 is a
microtubule-associated kinase that directly phosphorylates tubu-
lin following βAR stimulation (Pitcher et al., 1998b; Yoshida
et al., 2003), suggesting a functional link between GRK2 and the
cytoskeleton. Accordingly, GRK2 levels can affect agonist-induced
βAR internalization in a mechanism involving microtubule stabil-
ity (Vroon et al., 2007). GRK2-mediated phosphorylation of the
membrane-cytoskeleton linkers, radixin (Kahsai et al., 2010) and
ezrin (Cant and Pitcher, 2005), provides another indication for
this functional link to the cytoskeleton.

Another important target of GRK2 kinase activity is the Insulin
Receptor Substrate 1 (IRIS).

It has been reported that increased GRK2 levels mediate
insulin resistance in myoblasts and adipocytes via a mecha-
nism which involves sequestration of Gαq and IRIS (Usui et al.,
2005; Garcia-Guerra et al., 2010). Interestingly, GRK2 directly
phosphorylates IRIS in cardiomyocytes, a process that negatively
affects cardiac glucose uptake and insulin sensitivity following
ischemic injury and ultimately leads to the development of heart
failure (Ciccarelli et al., 2011; Evron et al., 2012).

In fact, GRK2, also known as βAR kinase 1 (βARK1), provides
a link between altered vascular/tissue physiology in insulin resis-
tance and impaired IRIS signaling. GRK2 can interfere directly
with Gαq/11-mediated signaling via its regulator of G protein
signaling domain/GAP activity (Usui et al., 2004). Increased
plasma concentration of the vasoconstrictive ET-1 polypeptide
is associated with insulin resistance and/or hypertension (Kohno
et al., 1990), which is, in turn, promoted by direct and indirect
(sympathoadrenal and angiotensin II dependent) effects of com-
pensatory hyperinsulinaemia to cause sodium retention (Yatabe

www.frontiersin.org November 2013 | Volume 4 | Article 324 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Clinical_and_Translational_Physiology/archive


Corbi et al. Sirtuins, oxidative stress and beta-adrenergic system

FIGURE 1 | Cellular response to oxidative stress mediating by

β-adrenergic response and sirtuins involvement. The ROS induce GRK2
hyperactivity that determines desensitization and internalization of βARs with
induction of cardiac hypertrophy (via AKT/NFkB pathway), apoptosis and

senescence (by inhibition of FOXOs). Sirtuins (and their activators) are able to
counteract these actions by direct effects on different molecules. ROS,
reactive oxygen species; CR, caloric restriction; Ac, acetyl; P, phosphoryl. ↓
activation; ⊥ inhibition.

et al., 2010). The correlation between excessive β-adrenergic activ-
ity and insulin resistance has long been noted (Deibert and
DeFronzo, 1980). While tissue GRK2 levels have been correlated
with plasma norepinephrine/epinephrine levels (Cho et al., 1999),
GRK2 can be upregulated in cultured cells by chronic insulin
(Garcia-Guerra et al., 2010), potentially as a result of PI3K-
dependent stabilization of GRK2 (Salcedo et al., 2006). Thus,
both local/circulating GPCR ligands associated with insulin resis-
tance/hyperinsulinaemia, and insulin itself, contribute to the high
GRK2 levels observed in insulin-resistant rodent/human tissues
(Garcia-Guerra et al., 2010; Copps and White, 2012).

These findings demonstrate that lowering GRK2 in myocytes
after ischemic injury will contribute to restore cardiac metabolism
and prevent the development of subsequent heart failure (Evron
et al., 2012).

Moreover, during heart failure GRK2 is up-regulated in the
adrenal medulla, causing α2-adrenoceptor dysfunction and cat-
echolamine hypersecretion. By decreasing GRK2 levels in the
adrenal gland, β-blocker treatment appears to restore adrenal
α2-AR density and signaling at the plasma membrane and cat-
echolamine feedback inhibition, reducing sympathetic overdrive
in chronic heart failure (Rengo et al., 2012c).

Thus, the favorable effects of GRK2 inhibition in cardiac dis-
ease can be ascribed not only to the direct improvement of
adrenergic response but also to more complex interactions among
different and specific systems involved in the pathophysiological
response to myocardial injury (Rengo et al., 2012a).

Also it is well known that oxidative stress represents an under-
lying mechanism involved in insulin resistance development. The
evidence that reactive nitrogen and oxygen species generation
occurs when endothelial cells respond to high glucose (Garcia

Soriano et al., 2001) suggests another link between oxidative stress
and β-adrenergic activity in the involvement of many cardiovas-
cular conditions.

ROS may change the functioning of GPCRs during disease
processes via the calpain-dependent regulation of cellular GRK2
levels (Lombardi et al., 2002).

Moreover, in vitro studies have revealed several non-classical
signaling molecules utilized by β2-AR, including β-arrestin 1
(Drake et al., 2008; Gong et al., 2008; Tilley et al., 2009),
p38MAPK (Gong et al., 2008; McAlees and Sanders, 2009) and
ROS (Yin et al., 2006; Gong et al., 2008). Transgenic activation
of β2-AR in cardiomyocytes leads to a sustained elevation of
NADPH oxidase activity, which is accompanied by a greater ROS
production as well as phosphorylation of p38MAPK. Inhibition
of NADPH oxidase or ROS significantly reduced the p38MAPK
signaling cascade. Chronic β2-AR activation in vivo is associated
with greater extent of cardiac dilatation and dysfunction as well
as augmented pro-inflammatory and profibrotic signaling, while
antioxidant treatment protected hearts against these abnormali-
ties, indicating ROS production to be central to the detrimental
signaling of β2-AR. These findings highlight that the coupling of
β2-AR with NADPH oxidase derived ROS/p38 MAPK is pivotal
to the adverse signaling mechanism, and thus forms a potential
therapeutic target (Xu et al., 2011).

More recently Chen et al. (2013) have been demonstrated that
GRK2 localizes to heart mitochondria and it was an absolute
requirement for prodeath signaling after oxidative and ischemic
stress. Specifically, mitochondrial targeting of GRK2 in myocytes
after ischemic injury promotes prodeath signaling because
mitochondrial accumulation of GRK2 in myocytes increases
after oxidative stress and it is dependent on ERK-mediated
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phosphorylation of GRK2, with subsequent movement to mito-
chondria dependent on binding of phosphorylated GRK2 to
Hsp90. Then the authors suggested that blocking this mechanism
led to cardioprotection.

β-ADRENERGIC SYSTEM, OXIDATIVE STRESS AND
SIRTUINS
It has been demonstrated that sirtuins, NAD+/NADH deacety-
lases, are involved in modulating the cellular stress response
directly by deacetylation of some factors that are also implicated
in endothelial function control (Tang et al., 2012; Conti et al.,
2013).

Sirt1 extends the lifespan of many organisms by increasing
cellular stress resistance (Brunet et al., 2004; Alcendor et al.,
2007), by an increase insulin sensitivity, a decrease circulat-
ing free fatty acids and insulin-like growth factor (IGF-1), an
increased activity of the energy-sensing enzyme, AMP-activated
Protein Kinase (AMPK), increased activity of Peroxisome pro-
liferator activated receptor-gamma coactivator-alpha (PGC-1a),
and increased mitochondrial number (Opie and Lecour, 2007).
The requirement of NAD+ for Sirt1 activity implies that
Sirt1 effectiveness depends on the cellular metabolic state
(Conti et al., 2012a). Moreover, Sirt1 acts by involving sig-
naling molecules such phosphatidyl-inositol-3-phosphate-kinase
(PI3K)-Akt, MAPK (Bezstarosti et al., 2006) and p38-MAPK-β
(Das et al., 2006) (Figure 1).

SIRT1 has been demonstrated to be localized predominantly in
the nucleus or cytoplasm depending on the cell type. SIRT1 shut-
tles between the two cellular compartments in response to cellular
stress in C2C12 cells and cardiomyocytes (Tanno et al., 2010), and
during differentiation in neural precursor cells (Hisahara et al.,
2008).

The nucleo-cytoplasmic shuttling is regulated by nuclear local-
ization signals and nuclear export signals in the aminoacid
sequences of SIRT1. PI3K/Akt- and JNK1- mediated phosphory-
lation of SIRT1 induces its nuclear translocation (Tanno et al.,
2007; Nasrin et al., 2009). Nuclear localization of SIRT1 seems to
be necessary for its protective function in cardiomyocytes (Tanno
et al., 2007, 2010) whereas the biological significance of cytoplas-
mic SIRT1 remains to be determined. It has been demonstrated
that resveratrol, a SIRT1 activator, improves insulin sensitivity in
diet-induced obesity in mice (Baur et al., 2006; Lagouge et al.,
2006). Sun et al. (2007) found that SIRT1 repressed protein phos-
phatase 1B (PTP1B) and thereby increased the level of insulin
receptor phosphorylation, improving insulin sensitivity both in
C2C12 myotubes and in high fat-fed mice.

Recently it has been demonstrated that βAR stimulation antag-
onizes the protective effect of the Akt pathway that is mediated
by both insulin and hypoxia preconditioning, through inhibiting
their induction of Hif-1α and Sirt1 gene, which are key elements
in cell survival (Rane et al., 2010).

Akt overexpression in mice suppressed autophagy, which
was associated with cardiac hypertrophy, interstitial fibrosis
and contractile dysfunction (Hua et al., 2011). SIRT1 regulates
autophagy by interacting with and deacetylating autophagy-
related proteins Atg5, Atg7, and Atg8 (Lee et al., 2008). Recently,
Hariharan et al. (2010) demonstrated that SIRT1 was required

for starvation-induced autophagy in cardiomyocytes, in which
SIRT1-mediated deacetylation of FOXO1 and subsequent activa-
tion of Rab7 plays a role.

Furthermore, FOXO1 was indispensable for maintenance of
cardiac function after starvation, suggesting that autophagy
induced by activation of the SIRT1-FOXO1 axis is an impor-
tant adaptive mechanism in the failing heart (Tanno et al.,
2012). Moreover, recently it has been demonstrated that reduced
SERCA2a protein level, ventricular dysfunction, ventricular
dilatation and mortality in a mouse model of type-1 diabetes
were nearly normalized by treatment with resveratrol in a SIRT1-
dependent manner (Sulaiman et al., 2010; Tanno et al., 2012).

The presence of high levels of norepinephrine has been consid-
ered as a pathological marker of heart failure (Tavares et al., 2008).
Another demonstration of the relationship between adrenergic
system and sirtuins is represented by the evidence that resvera-
trol prevents norepinephrine induced hypertrophy in adult rat
cardiomyocytes, by activating NO-AMPK pathway (Thandapilly
et al., 2011). Thandapilly et al. (2011) proposed that nore-
pinephrine binds with the β-adrenergic receptor on the cardiac
cell membrane, the sarcolemma, and activates phospholipase C
resulting in the formation of 1,2-diacylglycerol (DAG) and inosi-
tol triphosphate (IP3). In turn, DAG stimulates cytosolic protein
kinase activity resulting in increased protein synthesis leading
to the development of cardiac hypertrophy (Eskildsen-Helmond
et al., 1997).

In addition, resveratrol restored sirtuin activity, and thereby
improve cardiac function in rats with diabetic cardiomyopathy
(Sulaiman et al., 2010). Breen et al. (2008) studied the interac-
tion between AMPK and sirtuin in resveratrol mediated signaling
in skeletal muscle cells. In this study increased skeletal muscle glu-
cose uptake was observed upon resveratrol treatment which was
mediated by the sirtuin-AMPK dependent pathway (Breen et al.,
2008). Moreover, it has been also demonstrated that resveratrol
prevented cardiomyocyte hypertrophy by restoring the impaired
AMPK activity in phenylephrine exposed cardiomyocytes as well
as in SHR rats (Chan et al., 2008; Dolinsky et al., 2009) suggesting
an important role for AMPK in mediating resveratrol effects.

Some authors (Dolinsky et al., 2009; Thandapilly et al., 2010)
have recently reported that resveratrol prevented the development
of pathological cardiac hypertrophy in genetically hypertensive
rats without any effect on blood pressure, which is consid-
ered a pathological stimulus for the development of hypertrophy
(Thandapilly et al., 2010, 2011).

The antioxidant activities of sirtuins are well known. SIRT3
blocks the cardiac hypertrophic response through activation of
Foxo-dependent antioxidants, MnSOD and catalase, as well as
suppressing ROS-mediated Ras activation and the downstream
MAPK/ERK and PI3K/Akt signaling pathways (Sundaresan et al.,
2009) (Figure 1). In particular, SIRT1 and SIRT3 appear to share
similar ROS-accumulating end-point targets that cause cardiac
hypertrophy. All of these findings support the hypothesis that
use and development of sirtuin-specific activators and inhibitors
may help further dissect the collaborative functions of SIRT1 and
SIRT3 in the heart.

Less is known about the physiological role of SIRT7 in the
heart. SIRT7 is a nuclear protein that associates with rDNA and
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interacts with RNA (Ford et al., 2006). It is not clear whether
SIRT7 exhibits NAD+-dependent deacetylase activity, but reports
suggest that it does respond to metabolic conditions by stimu-
lating ribosomal biogenesis in dividing cells (Michishita et al.,
2005) and it regulates heart cell death and damage by inhibit-
ing p53, Ras, and Akt signaling pathways (Vakhrusheva et al.,
2008). In fact, SIRT7-deficient mice develop heart hypertrophy
and inflammatory cardiomyopathy, which is characterized by
extensive fibrosis (Vakhrusheva et al., 2008). However, the molec-
ular details explaining how SIRT7 targets these pathways remains
unclear (Schug and Li, 2010).

Recently it has been proposed that β-adrenergic activation
of the cAMP/PKA pathway rapidly increases SIRT1 activity in a
NAD+ independent fashion. This mechanism enables SIRT1 to
respond swiftly to the changing metabolic needs of the organ-
ism in settings of environmental stress. Cantó and Auwerx
suggested that SIRT1 acts as a metabolic effector, synchroniz-
ing metabolic pathways with nutrient availability (Cantó and
Auwerx, 2012). The molecular mechanism by which NAD+ reg-
ulates SIRT1 catalytic activity, however, is still not fully under-
stood. In a low energy state, SIRT1 deacetylates and increases
the activity of PGC-1a, leading to transcriptional upregulation
of genes involved in lipid catabolism and mitochondrial bio-
genesis (Rodgers et al., 2005; Lagouge et al., 2006; Gerhart-
Hines et al., 2007). Current understanding of the regulation
of this process has emphasized a role for AMPK signaling in
controlling the abundance of the SIRT1 substrate NAD+. The
elevated AMP/ATP ratio during energy deficiency triggers phos-
phorylation of PGC-1a by AMPK, which primes PGC-1a for
SIRT1-dependent deacetylation (and activation) (Cantó et al.,
2009).

AMPK also increases the concentration of intracellular NAD+,
further fueling SIRT1 deacetylase activity. However, both of these
processes occur over the course of several hours, too long to
permit rapid response to acute changes in energy stress.

SIRT1 activity has been reported previously to be regulated
by post-translational modifications, such as phosphorylation by
JNK. But the fact that the residues targeted by this pathway do
not reside in the catalytic domain and are not conserved evolu-
tionarily indicates this is an unlikely mechanism to regulate the
well-conserved metabolic functions of SIRT1 (Cantó and Auwerx,
2012). Given the evidence supporting a function for SIRT1 in
bioenergetics stress, Gerhart-Hines et al. (2011) hypothesized
that stress-induced β-adrenergic signaling might regulate SIRT1
activity. Activation of the βAR increases intracellular cAMP con-
centration and activates PKA and its downstream effectors. The
authors demonstrated that each component of the βAR-cAMP-
PKA axis is essential to SIRT1 deacetylation of PGC-1a. In U2OS
cells, treatment with β-adrenergic agonists (epinephrine and clen-
buterol) or cAMP mimetics (forskolin and 8-BrcAMP) led to
potent dose-dependent deacetylation of PGC-1a within 30 min.
Forskolin-induced PGC-1a deacetylation was dependent on both
PKA and SIRT1, but this effect was abolished by genetic deletion
of SIRT1 in mouse embryonic fibroblasts. Furthermore, reduc-
tion of SIRT1 expression prevented forskolin-mediated upregula-
tion of the PGC-1a target genes ERRa and PDK4 (Gerhart-Hines
et al., 2011).

The rapidity with which SIRT1 transduced cAMP/PKA sig-
nals suggested that SIRT1 might be a direct target for PKA
phosphorylation. Using mass spectrometry, the authors iden-
tified a residue on SIRT1 in the catalytic domain that was
uniquely phosphorylated in response to forskolin treatment. They
showed that Serine 434 (S434) phosphorylation was dependent
on cAMP/PKA signaling and was rapidly reversed by removal
of cAMP mimetic (forskolin). Furthermore, the authors showed
that S434 phosphorylation was essential for the forskolin-induced
increase in intrinsic SIRT1 enzymatic activity (Gerhart-Hines
et al., 2011). Importantly, in all experiments, total NAD+ content
was unchanged by cAMP/PKA signaling, indicating that cAMP-
mediated deacetylation of PGC-1a was independent of NAD+
regulation of SIRT1. Gerhart-Hines et al. depicts SIRT1 as a
dynamic orchestrator of both acute stress (βAR/cAMP signaling)
and sustained energy crisis (AMPK-mediated changes in PGC-
1a phosphorylation and NAD+ concentration) (Gerhart-Hines
et al., 2007, 2011; Chao and Tontonoz, 2012).

CONCLUSIONS
Oxidative stress represents the primum movens of several chronic
degenerative diseases, especially of the cardiovascular system
(Ferrara et al., 2006; Conti et al., 2012b). In the last decades
several studies have demonstrated as the β-adrenergic system
represents the target of the oxidative damage and, in turn, the
responsible of oxidants production. The sirtuins, a new class of
histone-deacetylases, seem to be the best defense of the cell to
counterbalance the oxidative stress through the action on differ-
ent pathways. Most part of the research on these molecules in
the last years has been focused on the sirtuins activators, show-
ing as the caloric restriction, the resveratrol and in particular the
exercise training are able to mediate their beneficial effects by
induction of sirtuins activity.

More recently, the use of a SIRT1 activator SRT2104 on
cardiovascular function provided positive effects on lipid pro-
files, but were unable to demonstrate beneficial effects on vas-
cular, endothelial, or platelet function compared with placebo
(Venkatasubramanian et al., 2013).

Therefore, as suggested by Merksamer et al. (2013), for the
future it will be important to develop experimental models in
which the levels of oxidative stress and the activities of sirtuins can
be precisely modulated to determine if sirtuins have a causative
role in lifespan extension.

Moreover, as discussed above and showed in Figure 1, whereas
the mechanisms involved in the cellular response to oxidative
stress are represented by the same actors, very few studies have
been performed to link the β-adrenergic system and sirtuins
activity, and most of them are only focused on the metabolic
pathway.

Therefore, more studies are needed to better clarify the
involvement of sirtuins in the β-adrenergic response and, overall,
to better define the mechanisms by which tools such as exercise
training are able to counteract the oxidative stress, by both acti-
vation of sirtuins (Ferrara et al., 2008) and inhibition of GRK2
(Rengo et al., 2010) in many cardiovascular conditions.

The activation or overexpression of sirtuins leads to measur-
able increases in health and resistance to different stress, making
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them an appealing target for the development of interventions
to promote improvements in health. However, more research is
needed before we can effectively target sirtuins for therapeutic
purposes. So, currently, although sirtuins represent promising
therapeutic targets, their role in the regulation of mammalian
lifespan remains an open question (Accili et al., 2011). Then, the
future perspective could be represented by studies performed to
identify the efficacy of sirtuin activators in the prevention and/or
treatment of cardiovascular diseases such as heart failure.
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