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Abstract: Flaxseed (Linum usitatissimum L.) has gained worldwide recognition as a health food
because of its abundance in diverse nutrients and bioactive compounds such as oil, fatty acids,
proteins, peptides, fiber, lignans, carbohydrates, mucilage, and micronutrients. These constituents
attribute a multitude of beneficial properties to flaxseed that makes its use possible in various
applications, such as nutraceuticals, food products, cosmetics, and biomaterials. The importance of
these flaxseed components has also increased in modern times because of the newer trend among
consumers of greater reliance on a plant-based diet for fulfilling their nutritional requirements, which
is perceived to be hypoallergenic, more environmentally friendly, sustainable, and humane. The
role of flaxseed substances in the maintenance of a healthy composition of the gut microbiome,
prevention, and management of multiple diseases has recently been elucidated in various studies,
which have highlighted its importance further as a powerful nutritional remedy. Many articles
previously reported the nutritive and health benefits of flaxseed, but no review paper has been
published reporting the use of individual flaxseed components in a manner to improve the techno-
functional properties of foods. This review summarizes almost all possible applications of flaxseed
ingredients in food products from an extensive online literature survey; moreover, it also outlines the
way forward to make this utilization even better.

Keywords: bioactive compound; biological activity; food application; functional properties;
gastroenterology; gut microbes; Linum usitatissimum L.; metabolism; superfood; veganism

1. Introduction

Flaxseed (Linum usitatissimum L.), commonly known as flaxseed or linseed, is an
annual crop mainly grown for oil, fiber, food, and feed purposes. The significance of this
crop has greatly increased in the modern world because of its exceptional nutritive content
with a strong biological activity that has made its use possible in various applications such
as functional foods, health supplements, and skincare products [1–3]. The importance
of flaxseed has also recently increased because of the newer trend of veganism among
consumers all over the world and the number of social, ethical, religious, moral, envi-
ronmental, and sustainability concerns associated with the consumption of animal-based
products. This review paper focuses on the techno-functional properties of individual
flaxseed components in foods that have never been reported in a comprehensive manner
in one place before [4]. Flaxseed is becoming increasingly famous as a superfood because
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of its beneficial role in regulating gut flora and alleviating symptoms of many human
diseases, such as cardiovascular ailments, diabetes, neural disorders, menopause, skin
problems, gastrointestinal issues, and even cancers [5]. Furthermore, the proteins and cyclic
peptides of flaxseed have been found to possess preferable antioxidant, antihypertensive,
anti-inflammatory, immuno-suppressive, and anti-diabetic properties [6].

The inclusion of flaxseed in a diet as an important grain has been recently emphasized
due to the nutritive benefits from its constituents, particularly fats, proteins, lignans, and
fiber, and their use in the development of various value-added products [7]. The functional
property of a food component is the behavior based on its biochemical composition, which
confers specific sensory characteristics both during processing and storage when utilized
as a food additive. For instance, flaxseed mucilage (FM) possesses a potent water-binding
ability, which has been successfully utilized in foods to enhance the stability, viscosity, and
consistency of beverages [8]. In addition, FM also has prebiotic properties, which are the
ability to bulk up the stools and regulate the beneficial composition of microbes inside the
gut that ultimately reduces the symptoms of constipation and irritable bowel syndrome
(IBS) [6]. We focused on the chemistry of bioactive compounds, functional properties, and
food applications, as well as the role of flaxseed bioactive compounds in the maintenance
of beneficial intestinal microbiomes. However, the industrialization of flaxseed and its
bioactive compounds has not been made possible yet as there are constraints to their
large-scale production and evaluation of their efficacy on a real-time basis.

2. Nutritional Composition of Flaxseeds
2.1. Lipids

Flaxseed oil (FO) is divided into monounsaturated, polyunsaturated, and saturated
fractions on the basis of fatty acid components (Figure 1) [9]. It is mainly abundant in total
unsaturated fatty acids (87.8–89.8%) in comparison with the small amount of saturated fatty
acids [10]. An investigation of FO extracted with petroleum ether elucidated α-linolenic
(C18:3, ω-3, 42.4%), linoleic (C18:2, ω-6, 26.2%), palmitic (C16:0, 12.9%) and stearic acids
(C18:0, 10.7%) as the major constituents [11]. Previous studies, however, revealed a little
higher amount of α-linolenic (ca. 49–53%) and oleic (C18:1, ω-9, ca. 16–21%) acids along
with a lower linoleic acid level (ca. 15–17%) and ascribed this variation to the difference
in environment and farming conditions [12,13]. On the other hand, when n-hexane was
used as an extracting solvent by Ishag and Khalid [11], it produced contrasting results
with greater linoleic acid (46.5%) and lower α-linolenic acid (11.6%), while 18.0% palmitic
acid in FO. It has been revealed that α-linolenic acid contents of flaxseed varieties from
New Zealand and Canadian origin approximate 60%, which is far greater than the varieties
belonging to Pakistan, Ethiopia, Egypt, and the USA. This increase is attributed to the cool,
humid environment and optimal cultural practices (Table 1) [10,14].

Alpha-linolenic acid (ALA) is an essential polyunsaturated fatty acid with omega car-
bon at position three, which cannot be synthesized by the human body itself. ALA is used
in the synthesis of docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) through
different biosynthetic pathways, which are required for the normal growth, development,
and maintenance of the human body, especially the brain and skin. Flaxseed oil is a very
important source of ALA, but it has been employed to a limited extent for human benefits
because of its low conversion ratio to DHA and EPA, which is a big hurdle faced by the
scientific community these days [15]. The bioavailability of ALA is also dependent on the
form of flaxseed consumed. For example, it is greater in flaxseed oil than in its milled form
or whole seed. Additionally, the high unsaturated fatty acid content of flaxseed makes
it highly prone to oxidative damage during processing stages, which is another threat
that needs to be addressed to take maximum advantage of its nutritional contents [15].
Moreover, another study reported an appreciable amount of phospholipids, including
phosphatidylethanolamine (27–40%), phosphatidylinositol (29–32%), phosphatidylcholine
(7–18%), lysophosphatidylcholine (8–21%), phosphatidylglycerol (1–4%) and phosphatidic
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acid (1–9%), along with a small amount of palmitic acid (about 5%) and stearic acid (about
3%) in the lipid portion of flaxseed [14].
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Figure 1. Overview of flaxseed bioactive compounds. (A) Proposed structure of KPI-ASF as RG-1
bridge-linked arabinans. (B) Proposed repeating unit of the acidic fraction gum (HR, RG-1, and
HG refer to homorhamnan, rhamnogalacturonan-I, and homogalacturonan, respectively). (C) Pro-
posed structure of KPI-EPF as xyloglucans. (D) Proposed structure of FM-NFG as arabinoxylans.
(E) Flaxseed oil, phenolic acids, sterols, pigments, and tocochromanols. (F) Lignans and their metabo-
lites. (G) Cyclolinopeptide-A, cyclolinopeptide-B, and alcalase-derived antioxidant peptide.
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Table 1. Protein, oil, and phenolic acid composition of flaxseed.

Composition of protein [16,17]

Amino acids Flaxseed protein meal (g/100 g) Flaxseed protein
hydrolysate (mg/g)

Alanine 4.59 n.a *
Arginine 10.63 33.12

Asparagine 9.76 496.51
Cysteine 3.80 n.a *

Glutamic acid 26.92 911.05
Glycine 6.14 288.43

Histidine 2.45 118.63
Isoleucine 5.21 207.49
Leucine 6.82 261.79
Lysine 4.18 191.41

Methionine 2.20 104.09
Phenylalanine 5.33 284.49

Proline 5.24 n.a *
Serine 5.88 n.a *

Threonine 4.19 169.94
Tryptophan 1.38 n.a *

Tyrosine 2.94 500.33
Valine 5.17 131.43

Composition of oil (%) [15]

Fatty acids Flaxseed oil Soybean oil
Myristic (C14:0) 0.03–0.05 n.a *–0.12

Pentadecanoic acid (C15:0) n.a *–0.01 n.a *
Palmitic (C16:0) 4.58–6.42 10.80–11.50

Palmitoleic (C16:1) 0.04–0.20 n.a *–0.16
Margaric (C17:0) n.a *–0.04 n.a *–0.04

Margaroleic (C17:1) n.a *–0.03 n.a *
Stearic (C18:0) 3.65–5.96 3.62–4.11

Oleic (C18:1n-9) 16.33–22.56 20.80–23.50
Linoleic (C18:2n-6) 9.18–15.88 50.23–53.33

Linolenic (C18:3n-3) 42.97–61.06 6.76–7.65
Arachidic (C20:0) 0.01–0.20 n.a *–0.32
Gadoleic (C20:1) n.a *–0.21 n.a *–0.22

Eicosanoic (C20:2) n.a *–0.09 n.a *
Behenic (C22:0) 0.11–0.14 n.a *–0.27

Lignoceric (C24:0) 0.04–0.13 n.a *–0.13
Saturated 8.42–12.90 14.42–16.18

Total Monounsaturated 16.37–23.00 20.8–23.88
Total Polyunsaturated 52.15–76.94 56.99–60.98

Composition of phenolic acids and lignans (mg/100 g) [16,18]

Non-defatted extracts Defatted extracts
p-Hydroxybenzoic acid 1719 6454

Chlorogenic acid 720 1435
Ferulic acid 161 313

Coumaric acid 87 130
Gallic acid 29 17

Vanillic acid 22 42
Sinapic acid 18 27

Protocatechuic acid 7 7
Caffeic acid 4 15
Diphyllin 4.2 n.a *

Secoisolariciresinol
diglucoside 1300 n.a *

Secoisolariciresinol 156 n.a *
Laricinesol 1.7 n.a *

Matairesinol 3.1 n.a *
Pinoresinol 0.8 n.a *
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Table 1. Cont.

Composition of vitamins and pigments (µg/g) [19,20]

Raw flaxseed Boiled flaxseed
α-Tocopherol 6.26 4.56
β-Tocopherol 1.07 0.89
γ-Tocopherol 302.0 256.2
δ-Tocopherol 2.26 2.09
β-Carotenoid 0.52 0.48
Xanthophyll 27.1 20.2

Sprouted LT001 a Zhongya 4 a

Lutein 56.03 8.14
Zeaxanthin 2.38 2.76

β-Cryptoxanthin 1.64 1.86
ε-Carotene 1.44 1.61
β-Carotene 5.18 5.87

* n.a = data not available, a = variety.

The total sterol content of FO ranged from 4720 to 7550 mg/kg oil [21], from which
sitosterol made the most quantity averaging almost 240 mg/100 g while campesterol and
stigmasterol were other significant constituents averaging about 110 and 50 mg/100 g in cor-
responding order [22]. FO also contained significant quantities of 24-methylenecycloartanol,
25-hydroxy-24-methylcholesterol and cyclolanost-23-ene-3,25-diol [21]. Tocochromanols
are another category of strong antioxidant compounds present in flaxseed oil, which be-
sides being amphipathic, also possesses vitamin E activity ranging from 154–934 mg/kg by
virtue of particular substances commonly called tocopherols and tocotrienols [23]. A huge
variation in the vitamin E activity of FO was observed due to the difference in plant variety,
location, growing, extraction, and storage conditions. Furthermore, this dual characteristic
of tocochromonals for being hydrophilic and hydrophobic at the same time comes from a
tyrosine-derived polar moiety and a poly-prenyl side chain, respectively. Tocotrienols are
tocochromanols with a geranyl-geranyl side chain, while tocopherols possess a phytyl-side
chain [24].

The total tocopherol content in Pakistani and Egyptian cultivars was greater than that
of Canadian and American cultivars [10], which is an indication of their better antioxidant
potential. Tocopherols are the fat-soluble vitamins (460–610 mg/kg) found in the greatest
amount in FO, trailed by plastochromanol-8 (270–370 mg/kg), which is a functional analog
of γ-tocotrienol and lastly α tocopherol that averages about 1–8 mg/kg [25]. The study also
revealed that the γ-tocotrienol and plastochromanol-8 had a positive correlation, while
δ-tocopherol had a negative correlation with temperature and amount of sunlight received
during seed ripening. The cause behind this biological mechanism needs to be sought out
for taking advantage of this relationship for human use [10].

2.2. Polysaccharides

FM is separated into two types of polysaccharide fractions on the basis of the net
charge that is acidic and neutral. Arabinoxylans with β-D-(1,4)-xylan make the backbone
of a neutral fraction, which is also free of uronic acid, while the acidic fraction is mainly
composed of sugars, which are building blocks of pectic substances such as galactose,
rhamnose, and galacturonic acid (Figure 1) [26]. The analysis of the chemical composition
of FM from different genotypes showed that FM from yellow seeds had lower galacturonic
acid (13–16%) and rhamnose (12–14%) contents, while higher neutral sugars like xylose
(39–48%) content in contrast to FM obtained from brown seeds [27]. Moreover, it has been
documented that the neutral fraction of FM with high molecular weight (MW; 1470 kDa)
also contains uronic acids in a small amount (1.8%), which gives it a pseudo-plastic flow
behavior [28].

The acidic fraction of FM is mostly constituted by two sub-fractions of rhamnogalac-
turonans, one with greater MW (1510 kDa) and the other with a lesser MW (341 kDa). The
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structure of rhamnogalacturonan from flaxseed hull was explicated through methylation
analysis and 1D/2D NMR spectroscopy which showed it to be a structure consisting of
rhamnogalacturonan-1 (RG-1) structure with diglycosyl repetition unit →2)-α-L-Rhap-
(1→4)-α-D-GalpA-(1→as depicted in Figure 1 [29]. Six types of RG-1 from FM were ob-
tained from ion-exchange chromatography and a light scattering detector [30]. Furthermore,
MWs of acidic fractions were also determined through size exclusion chromatography as
follows 756.4 kDa, 718.8 kDa, 505.6 kDa, 457.5 kDa, 354.8 kDa, and 593.2 kDa. However,
the rhamnose to galacturonic acid ratio (1.22 to 0.85) and degree of branching (0.33 to 0.65)
of the acidic fractions varied considerably. It was also revealed that RG-1 blocks are often
singly substituted with sugars like galactose, fructose, rhamnose, or sometimes short, neu-
tral monosaccharides. Polysaccharides in FM, when dissolved in water, attained random
coil confirmation, the MWs of which fluctuated between 1.6 × 106 and 1.0 × 107 g/mol,
whereas, in the salt solution, they adopted more regular, spherical, closed shapes, which
differed in weight from the spiral and close confirmations MWs of which varied from
1.5 × 106 to 4 × 108 g/mol [31].

2.3. Protein/Peptides

Flaxseed is an abundant source of proteins, which make up to 23% of the total seed
weight, and this amount increases to 35 to 40% in meal after oil extraction. A balanced
amino acid combination of flaxseed gives it a high protein quality score (82%), which is
even better than that of soybean [32]. Similarly, the lysine to arginine ratio of flaxseed of
0.37 is far lesser than that of soybean (0.88), which is indicative of its lower lipidemic and
atherogenic potential and, thus, heart friendliness (Table 1) [32]. Flaxseed mainly contains
two types of proteins, namely albumins and globulins, on the basis of solubility properties,
which are also known as linins and colinins. Globulins make up 80% of total proteins. They
consist of subunits with a high MW ranging between 252 and 298 kDa (18.6% nitrogen;
11–12S) and smaller percentages of alpha-helical (3%) and beta structures (17%) [33,34].

Flaxseed is considered a preferable source of protein because of the appreciable
amounts of sulfur-based amino acids, such as cysteine and methionine; branched-chain
amino acids, such as leucine, isoleucine, aline, and essential amino acids, such as tyrosine,
threonine, and lysine. Flaxseed is rich in storage proteins such as aspartic acid, glutamine,
asparagine, and arginine, like other seeds, which contribute to its high amide content [32].
Madhusudhan and Singh [33] isolated flaxseed globulins (FG) through SDS-PAGE in their
investigation. It was found that FG contained five subunits with MW lying between 11
and 61 kDa and six subunits with MW lying between 41 and 55 kDa linked with disulfide
bridges. When treated with mercaptoethanol, the larger subunits with MWs from 50 to
55 kDa disassociated into one acidic (40 kDa) and one basic smaller subunit (20 kDa).
Likewise, five types of globulins were sorted in another study on the basis of MWs from
flaxseeds with MWs of 14.4, 24.6, 30.0, 35.2, and 50.9 kDa, among which acidic subunits
were a little bigger than basic subunits [35]. A large protein fraction (365 kDa) was isolated
from defatted and dehulled flaxseed through anion-exchange chromatography, which was
later separated into three more fractions (20, 23, and 31 kDa) when subjected to reducing
SDS-PAGE. Four subunits of 11S globulin were identified from FP, which consisted of a pair
of α- and β-chains linked with disulfide bonds [32]. A small amount of 7S globulin subunits
(21 to 54 kDa) were also identified, along with other low MW (7 to 10 kDa) fractions.

Conlinins are a type of albumin found in the seeds of many plant species. It consists of
a polypeptide chain with a 16–18 MW and a 1.6–2 sedimentation coefficient. These proteins
have more organized confirmation due to greater disulfide bonds, which are overall com-
posed of 26% α-helices and 32% β-structures [32]. Furthermore, these albumins are rich in
lysine, arginine, cysteine, glutamine, and alanine [36]. Flaxseed is an important source of an-
other group of proteins or peptides called cyclolinopeptides, orbitides, or linosurbs. There
are more than 25 kinds of these compounds that have been distinguished [6]. Orbitides
mostly consist of 8–10 amino acids. The structure of one famous Cyclolinopeptide-A is as
follows: Pro-Pro-Phe-Phe-Leu-Ile-Ile-Leu-Val. These compounds have been found to pos-
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sess multiple beneficial traits, such as being immunosuppressive, anti-malarial, anti-tumor,
and a protectant against bone degeneration. Linosurbs are usually cyclic, hydrophilic in
nature, linked with N-C bonds, and are named on the basis of the first amino acid or prolyl
residue in the protein sequence. Orbitides are also present in many other plant species
and are used for the chemical synthesis of methionine sulfones, alcohol, and acetonitrile
solvates, which are useful for many health and biomedical uses [37].

2.4. Phenolic Compounds and Carotenoids

Phenolic substances possess numerous health advantages. Flaxseed has a variety
of phenolic compounds, which are divided into two categories, namely phenolic acids
and lignans (Table 1) and (Figure 1). The range of phenolic acids in a Canadian flaxseed
variety was found to be varying between 790–1030 mg/100 g, out of which chlorogenic
acid, p-hydroxy benzoic acid, ferulic acid, vanillic acid, and coumaric acid make the highest
portion, while lignans, namely matairesinol, pinoresinol, diphyllin, and secoisolariciresinol
made a smaller portion [16,38]. Lignans are low molecular weight phenolic dimers com-
prising of 2,3-dibenzylbutane as a base structure. They are mostly present in the outer
coat of the seed [16]. Secoisolariciresinol diglucoside (SDG) is a major lignan in flaxseed
averaging about 610–1300 mg/100 g [39]. Lignans are powerful anti-oxidant substances in
flaxseed, which has made them the center of attention for many studies in recent times [40].
The phenolic acid composition of flaxseed before and after fat extraction is presented in
Table 1, which shows that whole seeds have a lesser phenolic acid content than meal after
oil extraction. The maximum recovery ratio of lignans was obtained by Gutiérrez and
Rubilar [41] with 50% ethanol, 1:60 solid-to-liquid ratio, 30 min shaking, 200 rpm speed,
and at 25 ◦C.

Carotenoids are organic compounds with 40-carbon atoms in many seeds and fruits,
which gives them red, orange, and yellow colors, besides being precursors of vitamin
A [42]. β-Carotene is one such important pigment that has the highest pro-vitamin A activ-
ity [43]. The carotenoid content of flaxseed was found to be 0.7–3.1 mg/kg; however, Farag
and Elimam [44] reported a far greater amount of β-carotene in flaxseed oil (77 mg/kg).
Furthermore, there is a positive correlation between the amount of tocochromanol and
carotenoid levels in flaxseed and the number of sunshine hours received during the seed
maturation phase. Carotenoids play a crucial role against photo-oxidation, and thus it
holds special importance with reference to the high unsaturated lipid content of flaxseed.

3. Food Applications of Flaxseed and Its Components
3.1. Flaxseed Kernel

The consumption of flaxseed has been emphasized in recent times owing to its good
nutritional value, particularly the high amount of healthy fats, proteins, and lignans.
Flaxseed is available for human utilization in four forms, including oil, whole seeds,
ground, and defatted oilseed meal [45]. Commercially, flaxseed is being widely used in
packaged food products worldwide, for example, in cereals, bread, biscuits, fortified bars,
soups, snacks, etc., due to the same functional benefits (Table 2) [16].

Table 2. Food applications of flaxseed, its by-products, and bioactive compounds.

Flaxseed Form Method of Processing/
Products Name

Dose of Flaxseed
Supplementation Mechanism Reference

Fortification of flaxseed in dairy products

Flaxseed lignan
SDG

SDG stability in milk,
yogurt, whey drinks,

and cheese
1 g/10 L

↓SDG hydrolysis in cheese by the presence of
lactic acid bacteria and enzymes. ↓SDG 25%

due to the ↓pH of the whey drinks.
↑Temperature pasteurization of milk and

whey. SDG was found stable.

[46]
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Table 2. Cont.

Flaxseed Form Method of Processing/
Products Name

Dose of Flaxseed
Supplementation Mechanism Reference

HMPC and LMPI Ice cream 0.5% and 1%

↑HMPC ↑Viscosity, LMPI did not affect the
viscosity of ice cream; LMPI reduced sensory
score more than gelatin. ↑Ice cream is overrun

by ↑HMPC but ↓by higher LMPI. LMPI
provides a better overrun than gelatin.

[47]

MEFOP Fermentation or Indian
yogurt 1–3%

↑The acidity of fortified yogurt samples may
be due to lactose in the MFOP. ↑Gelling

properties may be due to the capability of
proteins to entrap without syneresis.

↑Peroxide value during storage due to FO,
susceptible to oxidation.

[48]

FO Ice cream 0–12% ↑Meltdown rate, ↓ice cream hardness linear
to concentration. [49]

Flaxseed as
additive

Microstructure of
flaxseed in butter 0.8–1.6%

Microstructure of flaxseed, globules, and
cellular microstructure ↑butter structure,

↓degree of destruction.
[50]

Fortification of flaxseed in baked products

Whole flaxseed
flour Bagels 30 g per bagel

Flax and grain ↑aroma and flavor, cinnamon
raisin bagel ↓aroma and flavor, ↑sweet aroma

and taste. Cinnamon raisin bagels had a
higher acceptance rate of flavor compared to

sunflower, sesame, and plain bagels.

[51]

Flaxseed meal and
flour

Bagels and pretzel-type
bakery products 5, 10, and 15%

The sample with 15% of flaxseed; ↓flavor
5% flaxseed ↓lightness or brightness values

(L), whereas 10 and 15% flaxseed
supplementation: ↓Fracture force,

Formulation up to 10%; ↑crumb redness and
darkness, has significant overall acceptability,

nutritious and healthy substitute
to consumers.

[52]

Flaxseed flour Bread 15% ↓Loaf volume of bread, bright crust, and
darker crumb [53]

Flaxseed meal Bread 15%
Flaxseed bread was evaluated during a period

of 8 weeks in storage ↑crumb firmness, no
significant differences in sensory attributes.

[54]

Raw and roasted
ground flaxseed Bread 10 g/100 g

Flaxseed enriched bread ↑water absorption,
dough stickiness, and crumb softness.
↓Protein digestibility than the control.

[55]

Flaxseed hull
extracts Chinese steamed bread 1% (w/w) ↑Phytochemical content, ↑DPPH, ↑total

phenolic content, ↑antioxidant activity. [56]

Flaxseed flour Bread 10, 15, 20, and 25%

Ground flaxseed 10%: ↑loaf volume, Dallman
degree, nutritional content (linolenic acid and
γ-tocopherol), and ↓staling brad. Flaxseed
flour used with 15% ↑sensory acceptability.

[57]

Coated and
uncoated ground

flaxseed
Taftoon bread 5, 15, and 25%

↑Coated and uncoated ground flaxseed,
↓water absorption due to rich in oil can coat

starch and gluten ↑stability, ↑dough
development, and relaxation time. Ground

flaxseed with Arabic gum ↑water absorption,
↑oxidative stability for 80 days at 25 ◦C.

[58]

Ground flaxseed Yeast bread and
muffins 15, 25, and 30%

Flaxseed improved the color of both bread
and muffins due to the presence of leutin or
zeaxanthin and the high protein content of
flaxseed. 30% ground flaxseed appropriate

formulations for bread.

[59]

Roasted flaxseed
flour Pan bread and pizza 10, 15, and 20% Flaxseed with 15% ↑protein, ↑fat, ↑fiber,

↓carbohydrates, and ↓total serum cholesterol. [60]



Foods 2022, 11, 3307 9 of 25

Table 2. Cont.

Flaxseed Form Method of Processing/
Products Name

Dose of Flaxseed
Supplementation Mechanism Reference

Full fat and
partially defatted

flaxseed flour
Unleavened flatbread 4, 8, 12, 16, and

20%

↑Acceptability of unleavened flatbreads with
maximum flaxseed containing 12% full-fat

flour and 16% partially defatted flour,
↑soluble and insoluble total dietary fiber, and

↑essential amino acids.

[61]

Flaxseed cake flour Pita bread 5, 10, 15, and 20%

15 and 20% flaxseed: ↑Water absorption due
to protein and mucilage, ↑mixing time

(4.43 min) of dough, ↑extension (elasticity) of
dough, ↑water holding capacity, ↑moisture

content, ↑flaxseed cake flour, ↑alkaline water
retention capacity.

[62]

Whole flaxseed
flour High Protein Cookies 12% (w/w)

↑Cookies hardness due to high protein,
↑darker and browner appearance, ↑sensory of

6 and 12% flaxseed, up to 12% flaxseed
without negatively affecting the quality,

[63]

Golden flaxseed
flour Cereal bars 6, 12, and 18%

↑Nutritional qualities incorporated up to 12%
without affecting their sensory and quality,
↑consumer acceptability, and no distinction

between the control and 12% flaxseed
cereal bars.

[64]

Roasted flaxseed,
flour Biscuits 10, 25, and 43%

10% flaxseed ↑quality (Moisture content,
fortification, dark color, texture) and

nutritional value without undesirable change.
[65]

Flaxseed flour Biscuits 20, 30, and 40%

Flaxseed flour with 30% acceptable and 40%
unacceptable, and product appearance was

affected, i.e., the darker color and bitter taste
were found by the panel.

[66]

Whole flaxseed
flour Muffin or snack bar 30 g per muffin

or bar

↑Flax aroma, ↓sweetness, ↓vanilla aroma,
↑bitter taste, while no intensities on

gingerbread raisin snack, ↑spice aroma,
↑nutritional value.

[67]

Flaxseed Flaxseed boll 1 g per each boll

Flax balls under a cooking treatment balanced
ω-3/ω-6 ratio, stable fatty acids profile, ↓CG,
16 days after anthesis bolls were more stable
compared to 8 days after anthesis under heat

treatment with good taste, texture,
and aroma.

[68]

Defatted and
non-defatted
flaxseed flour

Wheat bread 10% NDF, 15% DF

DF and NDF fortified wheat flour: ↑protein,
↑fiber, ↑ash, ↓and carbohydrates, while 15%

DF: ↓fat, ↑carbohydrates, ↑High-density
lipoprotein-cholesterol, ↑triglycerides, ↓very
low-density lipoprotein, ↓total cholesterol,

↓low-density lipoprotein.

[69]

Flaxseed flour ω-3 rice paper 10% (w/w) ↑Antioxidant activity (231.7 mmol TE/g),
↑nutritional value. [70]

Germinated and
non-germinated

flaxseed flour
Whole wheat bread 0, 5, 10, 15, and 20

% (w/w)

Germinated and non-germinated flaxseed:
10% acceptable for bread baking and sensory,
↑loaf volume, ↑and overall acceptability.

Germinate flaxseed used in bread:
↑nutritional value, ↓decreased anti-nutrients
↑bioavailability, ↑nutritional absorption.

[71]

Whole flaxseed and
crushed; FO and
crushed flaxseed

Flaxseed bread roll and
cinnamon roll

5% whole seed
flour + 3% crushed
seed, 13% FO + 1%

crushed

In storage for 5 days at room temperature
with no rancid odor detected, soft and

remaining moisture content based on sensory
panel and instrumental measurement.

[72]

Flaxseed flour Corn snack Up to 20% ↓Puffy extruded, probably due to protein and
fat competition for water with starch [73]



Foods 2022, 11, 3307 10 of 25

Table 2. Cont.

Flaxseed Form Method of Processing/
Products Name

Dose of Flaxseed
Supplementation Mechanism Reference

Ground flaxseed Spaghetti 2.5–15%
↑Dough development time and strength,
↑dark color. Smaller flaxseed flour size, better

food quality produced
[74]

Flaxseed flour Muffins 2%, 5%

↑Flaxseed flour proportion, ↑viscosity,
↑Firmness, ↓elastic texture, ↑dark color with
less redness, yellowness based on the Hunter

scale, and no anti-staling effect.

[75]

Flaxseed flour White bread 5–20%

Addition of flaxseed flour above 10%: ↑water
absorption capacity, ↓dough stability and

strength, ↑dough development time, ↑bread
volume, ↓darker color of the crust, and ↑the

value of crumb.

[76]

Fortification of flaxseed in other products

FM extract Salad dressing 0–1.5%

↑Protein content, ↑surface active properties,
↑emulsion stability at pH 6.0 and 2.0, ↑FM

extract concentration in salad dressing,
↑viscosity, ↓and oil droplet size. Above

mucilage concentration 0.45% (w/w),
↑stabilizing effect.

[77]

FP extract (high in
protein and

carbohydrate)
Potato dextrose agar 5%

Antifungal activity against (50%) Penicillium
sp, Fusarium gramineaum, Aspergillus flavus,

and 40% against Pencillium chrysogenum
(under the conditions: 72 ◦C and 15 s), ↓acidic

pH, ↑fungistatic activity.

[78]

Flaxseed extracts
and meal Pork meat 1.5% and 3%

↑Extended shelf life of meat, ↓oxidation of
cholesterol and fatty acid, ↓peroxide value,
and thiobarbituric acid-reactive substance.

[79]

Flaxseed
cyclolinopeptides Beef 100–200 µM ↓Listeria monocytogene activity during

beef storage. [80]

Flaxseed powder Beef sausages 0,3, and 6%
↓Nitric content during storage, ↑linolenic

acid, and no adverse effect on the
sensory evaluation.

[81]

Flaxseed oil and
extract Liver pate 20% and 0.5–0.25%

↓Lipid oxidation, ↓monoenoic and saturated
fatty acids, ↑polyene fatty acids,

↑phytosterols, and improve the oxidative
stability of the product.

[82]

FO = flaxseed oil, FP = flaxseed protein, FM = flaxseed mucilage, SDG = secoisolariciresinol diglucoside,
CG = gyanogenic glycoside, DF = defatted flaxseed, NDF = non-defatted, HMPC = high mucilage protein concen-
trate, LMPI = low mucilage protein isolate, MEFOP = microencapsulated FO powder.

There is a growing demand among customers for plant-based proteins due to their
health-promoting effects, in addition to the broad range of social concerns associated with
the consumption of animal products [83]. Therefore, flaxseed and its derived products
are gaining significance as an important dietary constituent due to their favorable lipid
composition, high protein, lignan, and balanced amino acid contents. Apart from the
nutritional value, flaxseed ingredients have the ability to enhance the functional charac-
teristics of food products, such as emulsifying, foaming, and viscosity properties. It also
has the potential to be utilized as an alternative bulk protein ingredient and thickener in
sauces and salad dressings, replacing egg, with the added advantage of lignan and fiber
components (Figure 2) [16]. Flaxseed flour, when added to wheat-based baked goods after
roasting, improved the physical strength of the dough by increasing its water absorption,
binding ability, protein content, and crumb softness and reduced the overall carbohydrate
contents [72,76]. However, when the level of supplementation exceeded 20%, it negatively
affected the textural properties of wheat bread, such as crumb softness, extensibility, color,
and volume, by interfering with gluten development [53,75].
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The consumer does not prefer any food that is not palatable and acceptable in terms
of color, appearance, taste, aroma, and texture qualities. Several characteristics of flaxseed
can offset the flavor profile of foods where it is utilized. For example, high oil content in
products can make them susceptible to oxidation or rancidity, which eventually leads to
the development of a bitter taste. The addition of flaxseed up to a certain level does not
negatively impact the food’s flavor [53,72]. However, flaxseed, when added in significant
quantities to the foods, such as bagels, muffins, and meat products, gives them a character-
istic nutty flavor and aroma, which reduces their overall acceptability [47,52,84]. Flaxseed
milk has been launched in the market as an alternative to animal-derived milk with some
added advantages, such as high ALA content, zero cholesterol, and lactose content, along
with ease of consumption and preservation [5]. Another interesting prospect of flaxseed is
that it retards the growth of some food spoilage microorganisms [78]. Supplementation of
flaxseed as an ingredient in many food formulations, such as bread, muffins, pasta, pork,
meats, etc., was found to extend not only the shelf life of food, but also contributed toward
their nutritional and functional benefits depending upon the composition, addition level,
and processing methods [85].
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3.2. Flaxseed Oil

Flaxseed oil has gained popularity among buyers worldwide due to its plentiful
nutritional advantages and food applications. However, the susceptibility of flaxseed oil to
oxidative degeneration is the main limiting factor, which limits its use in foods and other
applied purposes. Earlier research has shown that some natural antioxidants can slow
down the oxidation process of flaxseed oil and prevent it from rancidity (Figure 2). Condori
and Chagman [86] reported that lycopene can significantly enhance the antioxidant capacity
of flaxseed oil by reducing the storage stability degradation kinetics by 42%, which in turn
prolonged shelf life by 31%.

The use of flaxseed in a nano-emulsion or microencapsulated form has been found
to significantly enhance the bioavailability of ω-3 polyunsaturated fatty acids. These
technologies are frequently being used by the food and health industry in modern times
for the protection of sensitive ingredients from heat, light, oxygen, water, and digestive
processes and thus making possible their delivery at target sites in an effective manner [87].
Flaxseed components are mostly spray- or freeze-dried and sometimes are also subjected
to complex aggregation or coacervation before being encapsulated, which further extends
their shelf life [15]. Milk proteins, particularly casein and whey, were found to be better
emulsifying agents for polyunsaturated fatty acids derived from flaxseed than commonly
used surfactants Tween and Citrem when equated for antioxidative ability and tolerance
through in vitro digestion testing schemes [88].

Nano-emulsion technology was also analyzed for the encapsulation of flaxseed oil.
It not only provided protection against heat, oxidative deterioration, and nutritive losses
but, in combination with natural antioxidants, also was a good replacement for synthetic
antioxidants, which are considered extremely harmful to human health. Nano-emulsions
were thus proven to form a dispersion of flaxseed components with favorable stability,
solubility, rheology, and non-toxic characteristics [89].

Nasrabadi and Goli [90] formulated composite particles of flaxseed proteins (FP) and
soluble portions of flaxseed mucilage (SFM) and analyzed their effect on the stability of
Pickering emulsions. The composite particles (FP-SFM) withstood the storage stresses and
attributed to the stability and solubility of emulsions in a better manner than when flaxseed
proteins were utilized alone. Therefore, these composite particles (FP-SFM) provide promis-
ing future prospects for the encapsulation of oleophilic and phytoactive substances for their
utilization in food and pharmaceutical preparations [15].

Another study was conducted in pursuit of a plant-based antioxidant system, where
pea protein and tannic acid complexes were investigated for providing stability to flaxseed
emulsions against oxidative rancidity. These aggregates not only attributed a strong
antioxidant ability to oil emulsion but also bore the stresses of gastric digestion; thus,
they can be a good carrier of flaxseed emulsions in living organisms for achieving various
nutraceutical uses [91]. Consequently, the selection of an appropriate emulsifier and
technique for delivery has a crucial role in optimizing the bioavailability of a substance.

Flaxseed oil and its fractions were assessed in various studies to examine the effect of
its supplementation on the quality of animal feed that ultimately improved the quality of
animal products such as milk, meat, and eggs. When flaxseed-derived PUFA was added to
broiler chicken feed along with selenium and vitamins E and C, it increased the amount of
ω-3 fatty acids in poultry meat but also prevented it from oxidation at the carcass, storage,
freezing, and cooking stages [92]. Likewise, when flaxseed oil was supplemented to the
cows’ rations, it increased the milk yield as well as improved the percentage of functional
fatty acids, specifically α-linoleic acid, conjugated linoleic acid, and vaccenic acid in the
milk, while reducing the percentage of saturated fatty acids [93]. In another research by
Moallem and Lehrer [94], the effect of α-linoleic acid addition from flaxseed was checked on
the health of cows that were about to undergo parturition; it was revealed ALA improved
milk yield, unsaturated fatty acids percentage, and fertility while decreased the incidence
of ketosis, metritis, and mortality of calves.
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Tilapia fish meat was evaluated for lipid composition after the inclusion of 7% flaxseed
oil in their diet. It enhanced both the nutritional and physiological quality of meat but also
affected its fatty acid composition in a favorable manner by increasing the proportion of n-3
fatty acids and lowering the proportion of saturated and n-6 fatty acids [95]. Furthermore,
the potential of increasingω-3 fatty acids in pork was reviewed by Huang and Chiba [96].
It was inferred that flaxseed lipids could improve the percentage of ALA and EPA in ham,
which is beneficial for humans, but the rate of conversion of ALA to DHA was still found
as a limitation that needs to be ameliorated in the future. Flaxseed oil was tested to produce
a spreadable, low-trans-fat shortening with butter fat and palm stearin. As the percentage
of flaxseed oil was increased from 2–10%, it caused a remarkable increase in α-linolenic
acid percentage from 5.6–26% while at the same time significantly reduced the saturated
acid content, trans-fat levels, and atherogenic index of the resulting shortening [97].

3.3. Protein

Flaxseed contains mainly two types of proteins called linins and colinins, which were
first isolated by Vassel and Nesbitt [98] through a multistep extraction method including
different reagents, namely petroleum ether, phosphate salt, glycol, sodium hydroxide, and
final acidification with HCl to the isoelectric point (pI) which is 4.75 pH. All processing
stages, such as dehulling, milling, and oil extraction, increased the amount, digestibility, and
solubility of proteins, which was attributed to the removal of other nutritive constituents
from the whole meal, such as the lipid portion [99]. The homogeneity of the flaxseed slurry
depends upon the positive or negative charges on its proteins or repulsive forces among
them, which maintains their solubility. However, when the pH of this matrix approaches
near pI, the net charge on its proteins decreases, causing them to coalesce together, and
thus they no longer retain their solubility. Flaxseed proteins are separated from the main
slurry in this manner to be employed for various uses. The solubility of flaxseed proteins is
also affected by heat; for example, the process of oil extraction reduced their solubility from
73.2 to 44.9%. Boiling similarly reduced the solubility of proteins, which was suggested to
be caused by protein denaturation and the leaching of a non-protein-nitrogen fraction [16].

Flaxseed proteins possess some unique functional properties, which make them a
preferred plant-based alternative to eggs or other animal-derived proteins. Firstly, flaxseed
protein has a strong emulsification capacity (EC), due to which it can form a strong emulsion
in many food systems by forming a coating around the oil droplets. The EC of flaxseed
protein is significantly affected by heat, pH, and extraction conditions. The EC of alkali-
solubilized flaxseed proteins was better than soy protein, gelatin, or whey protein. High
heat caused structural damage to the flaxseed proteins, which reduced both their solubility
and EC. Flaxseed proteins exhibited good EC in both acidic and basic conditions; thus,
they can also be used as an emulsification agent in nano-emulsions for the delivery of
bioactive compounds. The emulsification ability of FP got increased when they were
used in combination with flaxseed mucilage, and it can be further enhanced by causing
alterations in FP confirmations [100].

The second remarkable functional property of FP is its ability to form foam or foaming
capacity that remains stable under a wide range of pH and temperatures. Plant foams
perform better under acidic conditions. FP formed a very stable foam with a 25% volume
increase from 2–6 pH. The FC increased further until pH 8, but the resultant foam was
less stable. Similarly, the FC of flaxseed protein remained constant until 45 ◦C, but a
marked increase in FC was noticed when the heat was between 45 and 80 ◦C. After the
threshold of 80 ◦C, a progressive decline in FC was observed, which was attributed to
protein denaturation and lowering of solubility. Furthermore, flaxseed produces foam with
better stability than soy protein under all pH conditions [33,36].

Water and fat absorption capacity (AC) is another remarkable functional property that
flaxseed proteins attribute to a food system. AC is the amount of water or fat that a protein
can hold in a biological matrix without undergoing significant structural damage. This trait
of FP originates from its polar amino acids, which play a significant role in holding a large
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amount of lipid content within flaxseed kernel while it also contributes to the good mouth
feel and taste of food. The water and fat absorption capacity of flaxseed protein are even
better than soy protein and gelatin. Flaxseed protein can be used as a meat extender owing
to this property which can prevent the fat and weight loss of product during the cooking
process [100].

3.4. Polysaccharide/Mucilage

Gum or mucilage is an important component of flaxseed, which is mostly located on
the outer layers of the seed. It constitutes almost 8–10% of the whole seed weight [101].
FG attributes unique functional properties to foods owing to their unique polysaccharide
composition, such as improving viscosity, emulsifying ability, rheology, and foaming ability.
The hot water extraction method was found to be the best treatment for obtaining flaxseed
gum that yielded polysaccharides with better stability, consistency, functional abilities, and
commercial value. The properties of flaxseed gums vary on the basis of extraction methods
and plant varieties. They can also be further altered through chemical or physical methods
to achieve the desired purpose [26].

Cui and Mazza [102] reported that when FG was extracted at a high temperature from
85–90 ◦C with ion exchange chromatography, two fractions of FG gums were obtained with
different properties, namely neutral fraction or arabinoxylans with higher viscosity and
acidic fraction or rhamnogalacturonans with lesser viscosity due to smaller size polysaccha-
ride units. Kaushik and Dowling [103] found that the temperature had a direct relationship
to the ratio of neutral to acidic fractions in flaxseed gum obtained during this process. High
separation temperatures increased the proportion of acidic fraction in flaxseed gum, thus,
negatively affecting the viscosity, emulsification properties, and absorption capacity of the
resultant mucilage.

Ding and Cui [104] discovered that dietary fibers make up 20% of the weight of
flaxseed kernels, which are composed of both soluble and insoluble types. They separated
five different kinds of soluble dietary fiber fractions on the basis of their solubility in various
solvents in a sequential procedure and proposed that these soluble dietary fibers from
flaxseed kernel can be utilized in different applications for attaining desirable viscosity
without much thickening and added advantage of prebiotic and antioxidant activities.
Fabre and Lacroux [105] tested three different physical methods for dietary fiber extraction
from flaxseed, namely the microwave-assisted method, magnetic stirring, and ultrasound-
assisted method. He found out that the ultrasound-assisted method with some magnetic
stirring produced the best yields in a minimal time. The microwave method was not
effective as it wasted a lot of energy. The ultrasound method decreased the viscosity of
resultant mucilage to a small amount, which can be helpful for its further utilization.

Flaxseed mucilage and its novel forms, such as hydrogel and aerogel, can be used as a
hydrocolloid in foods, cosmetics, pharmaceuticals, and biomaterials for obtaining various
functional properties. FM is used in most applications for adding viscosity. At concentra-
tions above 0.5%, FM exhibited shear thinning behavior where a decrease in viscosity was
observed with the increasing amount of pressure, however at concentrations lower than
0.3%, FM exhibited non-Newtonian fluid behavior where its viscosity remained constant
regardless of the amount of pressure applied [106]. These unique viscosity characteristics
of FM are due to its two types of compositional fractions. The neutral fractions or arabi-
noxylans with large molecular weight polysaccharides gave shear thinning abilities to FM,
whereas the acidic fractions with lower molecular weight sugars attributed non-Newtonian
fluid behavior, which makes FM employable in a range of products [102].

The quality of flaxseed mucilage depends upon different factors during the extraction
procedure; for example, high temperatures decrease the viscosity of FM by causing the
breakdown of neutral polysaccharides into smaller acidic fractions along with protein
denaturation [107]. Likewise, the pH conditions have a significant impact on the properties
of FM. Under an acidic environment, the charges on building molecules of FM get sup-
pressed, which decreases its viscosity. Whereas, under basic conditions, FM undergoes
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depolymerization, which also negatively affects its viscosity; therefore, FM with a sound
structure and functional properties is obtained in a neutral pH zone (5–8 pH). Moreover,
the presence of salt in a medium during the FM separation process decreased its viscosity
by introducing repulsive forces and reducing the size of polysaccharide units [108]. FM
has a greater solubility in water as compared to other plant-based gums. Flaxseed polysac-
charides have comparable water binding and emulsification capacities with gum Arabica.
The polar nature of sugars that compose FM is termed the reason for the wide range of its
functional properties [16].

FM is increasingly being utilized as a steric stabilizer for salad dressings. The most
stable emulsion of FM was obtained at a concentration of 0.75%, 2.5% salt, and pH = 4 [77].
Flaxseed mucilage is being successfully used as a meat binder due to its particular syner-
gistic interactions with meat protein, thermal stability, desirable storage modulus, and gel
stability, even under environments with greater salt percentages [109]. Flaxseed mucilage
was found to significantly impact the quality of pork meat products by positively attribut-
ing to their moisture retention, yield, and texture [110]. Flaxseed gum, in combination with
carrageenan and gellan gum, was utilized as a meat extender in meat sausages to replace
starches and non-meat proteins. These improved the texture, color, stability, cohesiveness,
water retention, and springiness of meat sausages and prevented fluid and fat losses during
cooking to retain the quality of meat sausages [111]. FM has been utilized successfully as
an additive in plant juices, dairy items, and flour products, where it contributed to the
properties of thickness, emulsion stability, foam capacity, gelling ability, color, flavor, and
nutrient retention [112,113].

Gel beads made from FM were employed for oil adsorption from the -water by Long,
Zu [114], and it was revealed that their performance surpassed the abilities of activated
carbon which is routinely being used for this purpose. FM also provides an additional
advantage of being an environment-friendly, recyclable biomaterial than its other synthetic,
non-degradable counterparts. FM is a good source of soluble dietary fiber, which has been
found useful in the prevention of chronic ailments like diabetes, obesity, cardiovascular
diseases, and even certain types of cancers like colon and rectal melanomas [115]. FM is
increasingly being preferred by food manufacturers in their products over other food gums
because it is required in much lesser quantity for obtaining the right viscosity and thus
protects them from getting over-texturized [116].

3.5. Lignans

Lignans are macromolecules that exist in flaxseed, mainly in the form of SDG. The
content of SDG in bread is influenced by various factors such as the amount of lignan or
flaxseed meal added to the bread, the form of flaxseed used, and the type of bacterial or
yeast cultures utilized in the leavening process. It was found that a significant quantity of
SDG (73–75%), both in free and complex forms, was recovered from the samples, which
indicated that SDG tolerated heat during the processes of milling, fermentation, and
cooking [117]. In another study, Hyvärinen and Pihlava [46] observed the stability of
SDG when added to both cold and hot dairy products such as milk, cheese, yogurt, and
whey drinks. SDG withstood the temperature changes of fermentation, pasteurization,
and refrigeration without much loss. Similarly, it was revealed that bread with added
whole flaxseed and defatted flaxseed flour retained a high quantity of lignan content after
processing steps of dough development, proofing, baking, and storage [118]. On the basis of
evidence from these studies, it can be said that lignans undergo 10–25% recovery loss during
cooking operations which can be further reduced by optimizing temperatures during
heating treatments and studying the individual and combined impacts of all variables like
flaxseed form, processing time, temperature, storage conditions, and microbial strains on
the final SDG content of food products. Hyvärinen and Pihlava [46] reported that the SDG
content of fermented foods like bread, cheese, and yogurt remained unaltered by starter
bacterial strains like lactic acid bacteria even after long incubation times, which is a good
sign that the desired nutritional benefits can be obtained from these fermented products.
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Microbial strains, which are routinely used in culturing of various food products, need to be
characterized for their ability to retain or degrade lignan contents for maximizing functional
advantage. Hall and Manthey [119] analyzed the thermal stability of flaxseed-fortified
macaroni, which demonstrated that both the SDG and ALA content of the extruded product
remained intact even after undergoing varying heat treatments during milling, drying,
ultra-high temperatures, and shelf storage. The SDG depicted appreciable heat tolerability
both in combined and separate forms. Shim and Olivia [120] produced gluten-free flour,
dough, and bread with flaxseed meal and subjected them to storage study at various cold
temperatures (4, −18, and −23 ◦C) and multiple sampling at 0, 1, 2, and 4 weeks intervals.
The authors reported that the SDG content of all treatments remained constant throughout
the entire study and unaffected by processing and storage temperatures.

4. Role of Flaxseed Compounds in the Maintenance of Gut Microbes and Human Health

The gut biome is the microbial composition of human intestines, which plays a sig-
nificant role in the maintenance of human health, immunity, cognitive functions, and the
prognosis of different diseases. Flaxseed-derived compounds have been found to produce
positive changes in the intestinal microbiota that help in the prevention and mitigation
of various morbid conditions (Figure 3). The microbiome of a living being consists of
trillions of microscopic organisms such as bacteria, viruses, yeasts, and protozoans [121].
Bifidobacteria is regarded as the most important genera that make up a large proportion
of the intestinal flora of mammals. It is involved in the digestion and assimilation of
the breakdown products of carbohydrate and lipid metabolism, which lead to beneficial
changes in gut microbiota [122].
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When flaxseed polysaccharides were subjected to in vitro fermentation, they generated
a significant amount of xylose, arabinose, and rhamnose, which underwent further break-
downs to produce short-chain fatty acids like butyric or propionic acids [123]. These SCFAs
are an important source of energy and anti-inflammatory action for various parts of the di-
gestive tract. Propionate, butyrate, and acetate are produced inside the gut from the action
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of bacterial species like Bifidobacteria longum and Eubacteria rectale [124]. Flaxseed lignans are
also transformed stepwise into their useful derivatives like secoisolariciresinol, enterodiol,
and enterolactone by the action of various bacteria like Bacillus, Clostridium, Klebsiella, Eu-
bacterium, Peptostreptococccus, Ruminococcus, Nocardia, and Streptomyces species, which then
play an important role in human defense mechanisms against various diseases [125,126].

Beneficial changes in gut microbiota were linked with the consumption of polyun-
saturated fatty acids in the human diet in many recent investigations [127]. It was found
that the inclusion of flaxseed increased the percentage of ω-3 fatty acids, and prebiotic
substances in the diet promoted an abundance of Bifidobacteria in the colon [128]. Different
in vitro and in vivo models were employed by scientists to study the digestion of flaxseed
components, which elucidated that the absorption process begins from the frontal portion
of the small intestine [129,130]. Firstly, SCFAs are rapidly absorbed by intestinal epithelial
cells into the blood, while medium and long-chain fatty acids are transported across them
with the help of special proteins like fatty acid transport protein (FATP4), CD36, and fatty
acid binding protein plasma membrane [131].

Fatty acids synthesized by gut bacteria are either utilized in the body for various
processes or become part of triacylglycerol (TAG), the main energy storage molecules
inside cell cytoplasm by the intricate enzymatic action of the endoplasmic reticulum. Some
of the TAGs are later converted to chylomicrons by a multi-stage process inside the complex
endoplasmic reticulum and Golgi apparatus, which then become part of systemic and
lymphatic circulatory systems [132]. Gut bacteria also contribute to the metabolism of
PUFA from ALA. The essential amino acid, alpha-linoleic acid (ALA), is situated at the
Sn-2 position in TAG and cannot be hydrolyzed in living organisms, so it becomes the
building block of other long-chain polyunsaturated fatty acids [133]. The absorption of
ALA in the body by bacteria was greater in the emulsified form, which can contribute in a
better manner towards metabolic processes [134].

Flaxseed substances have demonstrated their role in obesity prevention by making
the desired changes in the gut microbiota of living beings. For example, there is a delicate
balance of firmicutes and bacteriodes in our intestines; if the value of this ratio is high,
it causes greater energy production from foods and increased storage of triglycerides in
tissues [135]. Flaxseed mucilage reduces this F/B ratio by promoting the relative abundance
of firmicutes along with the regulation of blood sugar levels, decreasing fat storage by
suppressing the production of fasting-induced adipose factors, and contributing to satiety
through its greater dietary fiber content, which altogether contributes to weight loss and
obesity prevention [136,137]. The second mechanism through which flaxseed proteins were
found to decrease weight among mice is by favoring the growth of certain bacterial species
in cecal microbiota that have known roles in fat catabolism, such as Bifidobacterium sp. and
Akkermansia muciniphila which are mucin degrading by nature, that prevent lipogenesis, fat
deposition in liver and adipose tissue [137].

Another study has revealed the role of gut microbiota in bile acid metabolism, which
can prevent fatty liver disease [138]. When mice were fed a flaxseed-enriched diet, it
favored the growth of certain bacterial species, Lactobacilli, Bifidobacterium, Clostridium, and
Bacteroides, which prevented the occurrence of non-alcoholic steatohepatitis disease by
increasing the production of bile salt hydrolases and regulation of lipid metabolism via
gut-axis pathway [139]. Similarly, various bacterial species from the genus Lactobacillus
were analyzed for their effect on obesity prevention in multiple investigations, and it was
discovered that Lactobacillus gasseri and reuteri inhibited free fatty acid absorption from
intestines and lipid droplets formation in tissues that served as the reason for healthy
weight loss [140–142].

Various aspects of the gut microbiome on the maintenance of human health have
been reported, but the effect of flaxseed substances on their composition still needs to be
discovered [5]. Flaxseed lignans are mainly metabolized by gut bacteria and transformed
into mammalian lignans that perform a range of physiological functions inside the human
body, out of which anti-cancer action is regarded as the most crucial one. Consumption
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of flaxseed brings a gradual shift in intestinal microbial composition by causing a greater
prevalence of the bacteria that metabolize its polysaccharides, such as Akkermansia, Bifi-
dobacterium, Clostridium, Enterococcus, Lactobacillus, Megamonas, Phascolarctobacterium, and
Prevotella species [143]. These changes in gut bacteria have been found to play a role in
decreasing inflammation and colitis, healing of gut lining, increasing insulin sensitivity,
protecting against intestinal tumors, and slowing disease progression [144–151].

The gut microbiome has a huge influence on the mental well-being of a person as its
bacterial residents are involved in the production of various substances, which are essential
for nervous coordination, such as neurotransmitters, specific metabolites, brain-derived
neurotrophic factors, short-chain fatty acids, tryptophan, GABA, etc. The dysregulation of
those can lead to stress-related disorders, endocrine problems, and inflammatory diseases
that occur when the homeostasis of these chemicals get disturbed from the negative changes
in cecal bacterial composition [152–156]. The brain, nervous system, digestive system, and
endocrine system are all interlinked through a system of sympathetic and para-sympathetic
nerves, which constitute the brain–gut axis and have a direct impact on the normal phys-
iological functioning of body organs and the immune system of mammals [153,157,158].
For example, flaxseed oil was found useful in the cure of polycystic ovarian syndrome
among female rats due to the promotion of the growth of beneficial bacteria Lactobacillus,
Allobaculum, Desulfovibrio, and Bifidobacterium and dis-favoring the growth of Actinobacteria,
Bacteroides, Proteobacteria, and Streptococcus, which reduced the inflammation, disturbance
of sex-steroid hormones, body weight, dyslipidemia, and insulin resistance through the
gut–vaginal axis [159].

5. Conclusions and Future Perspective

Flaxseed is a nutrient and bioactive ingredient-rich plant crop. It possesses a high
amount of fat, proteins, dietary fiber, lignans, vitamins, and minerals. The nutritional,
functional, probiotic, and phytoactive properties of flaxseed are grabbing the attention of
sensible consumers and food manufacturers alike. Flaxseed and its derived products can
be utilized for a wide range of techno-functional purposes in the food industry, besides
their newly discovered role in the regulation of intestinal microbiome and defense against
various diseases. The consumption of flaxseed increases the probiotic bacteria in the gut
and also produces metabolites that play crucial roles in lipid and glucose metabolism
and immune and homeostasis pathways. The mechanisms by which flaxseed leads to
positive changes in gut bacteria and improvement of various bodily functions need to be
further investigated. The present investigation has also highlighted some areas that need
to be worked upon to make the utilization of flaxseed bioactive compounds even better.
(1) Flaxseed oil contains a large amount of polyunsaturated fatty acids, which are prone
to rancidity during the later storage and processing stages. Thus it is necessary to find
mechanisms for slowing down their oxidation and extending their shelf life. (2) Suitable
emulsifiers need to be identified to improve the bioavailability of flaxseed components in
microcapsules or emulsions forms. (3) Flaxseed oil is rich in linoleic and α-linoleic acids; it
is important to trace the metabolic pathways which lead to the conversion of these fatty
acids into essential fatty, eicosapentaenoic, and docosahexaenoic acids that are required for
normal human body growth and functioning. (4) Mechanisms need to be researched by
which flaxseed oil exerts various functional properties for improving the conversion rate to
essential fatty acids and enhancing its gastrointestinal bioavailability. (5) Flaxseed lignans
are converted into important mammalian lignans inside the human body by gut microbes
that improve their absorption and bioavailability; it is necessary to find ways to further
improve this conversion ratio, especially for lignan-fortified food products. (6) Flaxseed
polysaccharides are a special research focus as they impart distinct functional properties
to food when dissolved in solutions, such as the enhancement of viscosity, emulsification,
gelation, and foaming properties, besides their known nutritional values. Methods need to
be formulated for the production of FM biomaterials with consistent physicochemical and
functional properties such as nano-gel, hydrogel, microgel, etc., and improve their overall
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digestion and absorption processes. (7) FM is a hydrocolloid; its properties and interaction
with coexisting proteins need to be sorted out to make possible the delivery of bioactive
compounds at the target sites. (8) Amino acid sequences of flaxseed proteins need to be
determined, which can be helpful in generating peptides of desired nutritive purposes,
biological activities, functional properties, and protease resistances that will make peptides
maintain their integrity throughout the gastrointestinal tract. (9) Finally, more in vitro,
in vivo, and nutritional interventional studies need to be conducted to assess the efficacy
and efficiency of flaxseed products on the gut microbiome, human health, and protection
against various diseases.
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7. Saka, İ.; Baumgartner, B.; Özkaya, B. Usability of microfluidized flaxseed as a functional additive in bread. J. Sci. Food Agric. 2022,
102, 505–513. [CrossRef]

8. Puligundla, P.; Lim, S. A Review of Extraction Techniques and Food Applications of Flaxseed Mucilage. Foods 2022, 11, 1677.
[CrossRef]

9. Tvrzicka, E.; Kremmyda, L.-S.; Stankova, B.; Zak, A. Fatty acids as biocompounds: Their role in human metabolism, health and
disease-a review. Part 1: Classification, dietary sources and biological functions. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc
Czech Repub. 2011, 155, 117–130. [CrossRef]

10. Yaqoob, N.; Bhatti, I.A.; Anwar, F.; Mushtaq, M.; Artz, W.E. Variation in physico-chemical/analytical characteristics of oil among
different flaxseed (Linum usitatissimum L.) cultivars. Ital. J. Food Sci. 2016, 28, 83–89.

11. Ishag, O.A.O.; Khalid, A.A.; Abdi, A.; Erwa, I.Y.; Omer, A.B.; Nour, A.H. Proximate Composition, Physicochemical Properties and
Antioxidant Activity of Flaxseed. Annu. Res. Rev. Biol. 2019, 34, 1–10.

12. Rubilar, M.; Gutiérrez, C.; Verdugo, M.; Shene, C.; Sineiro, J. Flaxseed as a source of functional ingredients. J. Soil. Sci Plant Nutr.
2010, 10, 373–377. [CrossRef]

13. Zhang, Z.-S.; Wang, L.-J.; Li, D.; Li, S.-J.; Özkan, N. Characteristics of flaxseed oil from two different flax plants. Int. J. Food Prop.
2011, 14, 1286–1296. [CrossRef]

14. Herchi, W.; Sakouhi, F.; Khaled, S.; Xiong, Y.; Boukhchina, S.; Kallel, H.; Curtis, J.M. Characterisation of the glycerophospholipid
fraction in flaxseed oil using liquid chromatography–mass spectrometry. Food Chem. 2011, 129, 437–442. [CrossRef] [PubMed]

15. Yang, J.; Wen, C.; Duan, Y.; Deng, Q.; Peng, D.; Zhang, H.; Ma, H. The composition, extraction, analysis, bioactivities, bioavailability
and applications in food system of flaxseed (Linum usitatissimum L.) oil: A review. Trends Food Sci. Technol. 2021, 118, 252–260.
[CrossRef]

16. Bekhit, A.E.-D.A.; Shavandi, A.; Jodjaja, T.; Birch, J.; Teh, S.; Ahmed, I.A.M.; Al-Juhaimi, F.Y.; Saeedi, P.; Bekhit, A.A. Flaxseed:
Composition, detoxification, utilization, and opportunities. Biocatal. Agric. Biotechnol. 2018, 13, 129–152. [CrossRef]

http://doi.org/10.3390/foods9020204
http://www.ncbi.nlm.nih.gov/pubmed/32079106
http://doi.org/10.3390/nu11051171
http://www.ncbi.nlm.nih.gov/pubmed/31130604
http://doi.org/10.3390/molecules23102444
http://doi.org/10.1002/jsfa.11378
http://doi.org/10.3390/foods11121677
http://doi.org/10.5507/bp.2011.038
http://doi.org/10.4067/S0718-95162010000100010
http://doi.org/10.1080/10942911003650296
http://doi.org/10.1016/j.foodchem.2011.04.096
http://www.ncbi.nlm.nih.gov/pubmed/30634249
http://doi.org/10.1016/j.tifs.2021.09.025
http://doi.org/10.1016/j.bcab.2017.11.017


Foods 2022, 11, 3307 20 of 25

17. Guimarães Drummond e Silva, F.; Hernández-Ledesma, B.; Amigo, L.; Netto, F.M.; Miralles, B. Identification of peptides released
from flaxseed (Linum usitatissimum) protein by Alcalase® hydrolysis: Antioxidant activity. LWT Food Sci. Technol. 2017, 76, 140–146.
[CrossRef]

18. El-Beltagi, H.; Salama, Z.; El-Hariri, D. Evaluation of fatty acids profile and the content of some secondary metabolites in seeds of
different flax cultivars (Linum usitatissimum L.). Gen. Appl. Plant Physiol. 2007, 33, 187–202.

19. Guo, X.; Wu, Y.; Xiang, N.; Gao, F.; Qiu, C. Effect of Ultrasonic Pretreatment on the Biosynthesis of Tocopherols, Tocotrienols and
Carotenoids in Flax Sprouts (Linum Usitatissimum L.). J. Nat. Fibers 2021, 1–10. [CrossRef]
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