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Abstract

The visualization of biological networks is critically important to aid researchers in under-

standing complex biological systems and arouses interest in designing efficient layout algo-

rithms to draw biological networks according to their topology structures, especially for

those networks with potential modules. The algorithms of grid layout series have an advan-

tage in generating compact layouts with overlap-free nodes compared to force-directed;

however, extant grid layout algorithms have difficulty in drawing modular networks and often

generate layouts of high visual complexity when applied to networks with dense or clustered

connectivity structure. To specifically assist the study of modular networks, we propose a

grid- and modularity-based layout algorithm (GML) that consists of three stages: network

preprocessing, module layout and grid optimization. The algorithm can draw complex bio-

logical networks with or without predefined modules based on the grid layout algorithm. It

also outperforms other existing grid-based algorithms in the measurement of computation

performance, ratio of edge-edge/node-edge crossings, relative edge lengths, and connec-

tivity F-measures. GML helps users to gain insight into the network global characteristics

through module layout, as well as to discern network details with grid optimization. GML

has been developed as a VisANT plugin (https://hscz.github.io/Biological-Network-

Visualization/) and is freely available to the research community.

Introduction

Network diagrams provide a fundamental conceptual framework for visualizing and mining

high-throughput biological datasets, as well as for gaining insights and interpreting the biologi-

cal implications by means of graph drawing algorithms [1–3]. With the advances in biotech-

nology, biological datasets have rapidly increased in size and complexity, bringing more

challenges to network-based data visualization[4–5]. For complex biological networks com-

posed of thousands of nodes, drawing algorithms may strive to grasp the global characteristics

of networks to clarify their complexity [2,6–7].

Modularization is one of the most significant global characteristics of biological networks,

where closely connected nodes (e.g., biomolecules) are usually organized as a module to carry

out a specific function [4,8–9]. Biological modules can be generated through clustering algo-

rithms (i.e., pseudomodules) that aim to identify sets of closely connected nodes from
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networks. Such modular architecture is significantly beneficial to reducing network complex-

ity and helping researchers understand inherent biological implications when complex net-

works are divided into pseudo- or predefined modules [10–11].

A biological module has two different states, expanded and collapsed. Expanded modules

display an internal subgraph (that is, places all descendent nodes with their connections into

the graph), while collapsed modules replace this subgraph with a single node [10]. This results

in problems with multiscale visualization when integrating information at different abstraction

scales into one network and makes drawing the network much more difficult because both the

modules and many descendant nodes embedded in these modules need to be handled

simultaneously.

Network layout algorithms seek to place nodes in 2-dimensional (2D) space according to

the network topology. The force-directed classical algorithm, which is available in most visuali-

zation tools (e.g., VisANT [12], Cytoscape [13–14] and CellDesigner [15]), models a network

as a physical system with repulsive forces assigned among all nodes and attractive forces

assigned between adjacent nodes [16]. In the layout of force-directed series, the adjacent nodes

are inclined to locate too closely and easily overlap each other [17–18]. To address the prob-

lem, a grid layout algorithm has been proposed to place the nodes on grid points to avoid node

overlap, and the interactions among nodes are specified with a cost function that is designed

based on the topological structure of the network. Grid layout algorithms generate compact

and biologically comprehensible layouts at the expense of computation performance [18–20].

To decrease computation costs, some algorithms are used in rigorous studies to improve the

grid-optimization process through special methods (e.g., reoptimization-after-perturbation
[18], sweep calculation [19] and subcellular localizations [21]). These algorithms outperform

for small-sized networks of several hundred nodes, whereas larger networks, especially those

with a dense connectivity structure, are hard to use to yield informative drawings, often lead-

ing to hairball layouts [2].

Recently, implicit modular information has been utilized to enhance the performance of

grid layout algorithms for the visualization of complex networks. Inoue et al. [20] presented a

hybrid grid layout algorithm using four different approaches, i.e., Spectral Analysis (H-SA),

Kamada-Kawai (H-KK), Fruchterman-Reingold (H-FR) and Gursoy-Atun (H-GA), to prepro-

cess the networks before distributing nodes to grid points. In particular, Spectral Analysis is a

clustering algorithm to divide complex networks into modules. He et al. [22] designed a grid-

based layout algorithm (GBL) that is specifically focused on drawing complex networks with

modular properties, where all modules are placed randomly on separated 2D spaces (fan-

shaped area). Compared with previous grid-series algorithms, both module-based algorithms

show better performance in network visualization characteristics such as computation speed,

edge-edge crossings, node-edge crossings, relative edge length and connectivity F-measures;

however, the connectivities among modules of output graphs remain poorly understood, and

these graphs still appear with high visual complexity, in that the modules are not organized

deliberately or located properly in a hierarchical structure.

We propose a new algorithm named the grid- and modularity-based layout (GML) that is

specifically focused on the modular properties of complex biological networks, where both

predefined and pseudo modules are arranged and placed on a 2D plane. GML optimizes the

node positions according to their modularity and connectivity through three stages (see Fig 1).

First, the nodes of some acquired metabolic pathways or protein complexes with special func-

tions are grouped as predefined modules, and then a clustering algorithm is applied to divide

the remaining nodes into pseudo modules in the network preprocessing stage; a module-lay-

out method is then executed to position all modules (regarded as single nodes) based on their
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intermodule connectivities; and finally, the method of grid optimization is applied to position

the descendant nodes of the modules based on the inter- and intra-module connectivities.

Fig 1. The flow chart of the GML algorithm. A network of 24 nodes is used for illustration of GML procedures. A) Nodes within the predefined modules (node 19, 20,

21, 22 and 24) are filtered out and the remainder is partitioned into modules using a clustering algorithm. Node 24 in the predefined module has no connection to the rest

of nodes. B) All modules are placed on the plane according to the method of module layout, where each module is expanded to the square area to ensure a large enough

space for placements of the nodes embedded in the module. C) The positions of all nodes are optimized in accordance with their inter/intramodule connectivity

simultaneously to minimize edge-edge crossings through the method of grid optimization.

https://doi.org/10.1371/journal.pone.0221620.g001
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Methods

A biological network can generally be converted into a graph where molecules are represented

as geometric points (nodes) and interactions between molecules are represented as straight

lines (edges). Under such a drawing convention, a layout can be achieved when all node coor-

dinates are determined through a specific optimization procedure to fulfill certain criteria.

Given a network of n nodes, the layout R can be denoted by R = R(r1, r2,. . ., rn) where ri = (xi,
yi) represents the coordinates. In the grid layout algorithm, all xi and yi are integers because

the nodes are restricted to grid points [17–18].

The original grid layout

The cost function of original grid layout. The original grid layout aims to find the best

layout by optimizing a cost function C (W, R)[17]:

CðW;RÞ ¼
P

wi j � di j ð1Þ

where wi j is the weight between nodes i and j, and the weights between all node pairs consti-

tute the weight matrix W. W represents the topology structure of the network and is set

according to the path lengths, which are defined as the number of steps along the shortest

paths of node-pairs. For detailed explanations of path length, please refer to [23]. The term di j
is the Manhattan distance between nodes i and j. In general, the weights between closely

related nodes are assigned larger values to place node-pairs close.

The procedures of original grid layout. An optimization procedure termed reoptimiza-
tion-after-perturbation is used in original grid optimization to improve algorithm performance

[18]. The procedure starts with a random layout, R, which undergoes the partial optimization

that moves every single node to its adjacent vacant grid point to reduce the cost C (W, R). To

avoid the local minimum and achieve the full optimization of R, the layout is perturbed by

moving each node to a randomly chosen neighboring grid point with a given probability. The

perturbed layout R’ is once again optimized, and the layout of the smaller cost score is selected

as the new input to repeat the optimization procedure until it reaches sufficient iteration time.

Grid- and Modularity-based layout (GML)

The cost function of GML. When the network includes modules, the optimization proce-

dure proceeds in two phases:

• Module layout: the positions of modules (represented by the points) are optimized and all

modules are expanded and placed on the 2D plane.

• Grid optimization: the positions of all descendent nodes of the modules are optimized, and

they are placed at grid points with minimized edge-edge crossings.

Modified from the original grid layout, the cost functions of optimizations are denoted as

follows:

CmoduleðWmodule;RmoduleÞ ¼
P
wh k � dh k Module layout ð2Þ

CnodeðWnode;RnodeÞ ¼
P
wi j � di j Grid optimization ð3Þ

• wh k: Weight of module h and k, the weights between all module-pairs constitute the weight

matrix Wmodule.
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• dh k: Manhattan distance between module h and k in the module layout.

• wi j: Weight of descendent node i and j; the weights between all node-pairs constitute the

weight matrix Wnode.

• di j: Manhattan distance between descendent nodes i and j in the layout of the stage of grid

optimization.

The variable dh k is defined by Eq (4) where (x, y) represents the coordinates of module and

larger dh k means greater physical distance between modules h and k (represented by the

points). It should be noted that dh k is defined as Manhattan distance rather than Euclidean

distance because the former has the advantage of less computation.

dh k ¼ jxh � xkj þ jyh � ykj ð4Þ

The network layout of GML is evaluated by two cost functions (Cmodule for the phase of

module layout and Cnode for grid optimization), which are defined as Eqs (2) and (3),

respectively.

Procedures of the GML algorithm. As shown in Fig 1, GML draws complex biological

networks in three stages.

Stage 1. Network preprocessing

The nodes of a biological network can be partitioned into modules using clustering algo-

rithms, except those embedded in the predefined modules, which have specific biological func-

tions and are predefined by researchers. The nodes within the same modules usually have

dense internal connections but sparse connections to the rest of the network, and the resulting

modules are often enriched with certain biological functions [24–25]. Note that predefined

modules may or may not have such topological features because they can be defined by varied

biological backgrounds, as shown in Fig 1A. The multilevel clustering algorithm has relatively

high network modularity and low computation time compared to conventional single-level

algorithms; therefore, it has been selected as the network preprocessing algorithm in this

study. The computational complexity of multilevel clustering is O (m log n), where m and n
are the number of edges and nodes of the biological network, respectively [26].

Stage 2. Modules layout

As shown in Fig 1B, the focus of this stage is to place all modules in a 2D plane. There are

two tasks in this stage: 1) determination of the relative positions of the modules; and 2) deter-

mination of the size of each module. For the first task, a new weight-setting strategy for mod-

ule-pairs is designed to improve algorithm performance, and the cost function Cmodule in Eq

(2) is optimized to determine the module positions. As shown in Fig 2A, for any module h and

k, the weight value wh k of Wmodule is set according to the number of edges (represented by var-

iable eh k) between the nodes embedded in modules h and k. The module-pairs with many

more edges are assigned larger weight values to force them to be located close together, there-

fore reducing the edge-edge crossings between modules.

For a network of n nodes and m edges, the computational complexity can be estimated as O
(n �m) in the worst-case because the number of modules is not larger than n.

The procedure of module layout is shown in Fig 2B. All modules are regarded as single

points and placed on grid points of a 2D plane. Then, their positions are optimized based on

the weight matrix Wmodule and iteration parameter niter_module through the reoptimization-
after-perturbation strategy.

The second task involves two main considerations. First, each module needs enough space

not only to host its descendant nodes but also to clearly display the connections between these

nodes. Second, the modules shall not overlap each other. From this perspective, the size of
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each modules is estimated by the function ExpandModule (R module) and the pseudocode,

shown in Fig 2C.

Each module is bound by a square area whose side length lh is empirically estimated based

on 2�
p
nh where nh is the number of nodes embedded in the hth module. The term Square (xh �

l’, yh � l’, xh � l’+ lh, yh �l’+ lh) in Fig 2C represents the square region with edge length lh for the

module h whose upper-left coordinate is (xh�l’, yh �l’). The multiplication of the coordinate (xh,
yh) for module h with edge length l ‘ (estimated based on the largest module) is designed to

ensure enough distance between adjacent modules to avoid potential overlaps, as shown in Fig

1B. The stage of module layout takes no more than O (n2) time in the worst case because the

number of modules and their descendant nodes are both less than n.

Stage 3. Grid optimization

The key challenge in this stage is to optimize the positions of all descendant nodes embedded

in the modules based on their inter- and intramodule connectivities simultaneously with mini-

mized edge-edge crossings, as detailed in Fig 1C. First, for the descendant nodes embedded in

the same module (node-pairs of intramodules), the weight values are set according to the path

lengths between node-pairs through searching their adjacent nodes. Following the criteria of

the algorithms of the grid layout series, the node-pairs of smaller path lengths are assigned

higher weights and those of larger path lengths are assigned lower or negative weights [17]. The

weight values for the node-pairs with path length 1, 2, 3 and beyond have been set as 40, 0 and

-10, respectively. For a given network V, the procedures of searching path lengths and generat-

ing the weight matrix are shown in the function SetNodeWeight (V) in Fig 2D (line 1–13). Note

that the weight values (i.e., 40, 0, -10) are assigned empirically based on comprehensive tests.

Second, for the nodes belonging to different modules and path length = 1 (node-pairs of inter-

modules), the extra weight values are added so that their positions will be automatically oriented

to the corresponding modules to minimize edge-edge crossings. As shown in Fig 1C(1), there

are serious edge-edge crossings due to the improper position of node pairs (2, 21), (9, 13), and

(3, 6), which can be eased if the locations of node 6, 9 and 21 are optimized as shown in Fig 1C

(2). We apply a direct and efficient strategy to address this problem by adding an extra weight

value of node-pairs between modules so that they will be attracted to the right sides of the corre-

sponding modules. The detailed procedure of weight matrix adjustment is also shown in Fig 2D

(line 14–20), where the extra weight is set as an empirical value to 40. Finally, the positions of all

nodes are optimized based on the weight matrix Wnode (generated by SetNodeWeight(V)), and

the iteration parameter niter_grid through reoptimization-after-perturbation strategy and the

pseudocodes of grid optimization are shown in Fig 2E.

The time cost of the grid optimization stage is focused on function SetNodeWeight (V)

whose time complexity can be estimated as O (n2). The time cost of the initialization process

(lines 1–5 in Fig 2D) is O (n2). Lines 6–13 in Fig 2D show the procedure to search for adjacent

nodes where the inner loop (lines 9–12) is designed to search the adjacent nodes of path = 2.

Because the time cost for the inner loop is no more than O (n), the cost time for the dual loop

is, therefore, also O (n2). The weight adjustments (lines 14–20) between intermodules take no

more than O (n2) time in the worst case.

Implementation

GML has been implemented as a VisANT plugin and developed in Java. As an integrative plat-

form for the visual analysis of biological networks, VisANT (http://www.visantnet.org)

Fig 2. The pseudocodes of GML. The 2nd stage of GML (Stage 2) includes the child processes (SetModuleWeight, ModuleLayout and

ExpandModule) which are described by pseudocode A, B and C, and the 3rd stage of GML (Stage 3) includes child processes

(SetNodeWeight and GridOptimization) that are described by pseudocode D and E.

https://doi.org/10.1371/journal.pone.0221620.g002
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provides rich graphical functionalities to support interactive operations on the graph drawings

and manipulations. It also provides the simple but flexible plugin API (Application Interface)

to make it easier to quickly develop the plugins. Fig 3 is an example network drawn using the

GML algorithm. By means of clustering algorithms, the network is divided into 13 modules

that are marked with different shapes and colors. The positions of modules and their descen-

dant nodes are optimized through module-layout and grid-optimization, respectively, which

separates the modules clearly, while their descendant nodes are placed relatively even in the

output layout.

Results

Comparison with other grid layout algorithms

There are six primary extant grid layout algorithms, including the original grid layout [17],

LucidDraw [18], hybrid grid layout [20], Cerebral [21], GBL layout [22] and SCCB-grid layout

[27]. The hybrid grid layout and GBL are modularity -based algorithms that achieve relatively

good performance compared with other grid layouts [20,22]. From this perspective, they have

been chosen as the reference algorithms to be compared against GML. The performance of the

hybrid grid layout is enhanced through four different preprocessor algorithms: H-SA, H-KK,

H-FR, and H-GA. In the following comparison sections, all selected algorithms are compared

independently with their default parameter settings.

Ten example networks have been selected to evaluate the performances for comparison

purposes (Table 1). These networks involve three different types (regulatory network, protein-

protein interaction network, and metabolic network) that represent a relatively wide range of

topological properties.

Fig 3. A layout of the yeast cell cycle regulatory network of 200 nodes visualized by the GML algorithm. A) random layout: the nodes were positioned randomly; B)

GML layout: the nodes were optimized with the GML algorithm.

https://doi.org/10.1371/journal.pone.0221620.g003
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All evaluations are based on averages of 10 runs on a Dell laptop (OS: windows 7 64 bit,

CPU: Intel Core i3-2330M 2.20 GHz, memory: 8.00 GB). All experimental data can be found

in S1 Table.

Computational efficiency. As discussed in the Methods section, the time complexity of

every stage is listed in Table 2, and the time complexity of GML can be estimated as O (m log

n) + O (m n)+ O (n2) + O (n2) = O (n (m + n)) for a network of m edges and n nodes.

We evaluated the computational efficiency of GML by comparing its computation time

against those of the hybrid grid layout and GBL, as shown in Fig 4. In general, H-FR is the fast-

est algorithm while GBL is the slowest one, and GML outperforms the other four layout algo-

rithms, except H-FR.

Modular characteristics. Two measurements characterize the modular features of the

GML algorithm.

Connectivity F-measure. The connectivity F-measure evaluates whether nodes with dense

connectivities are positioned together [20,37]. It is defined as the weighted harmonic average

of precision and recall, which are widely used in the area of information retrieval [37].

On a 2D plane, let #S be the number of nodes in set S and node i be the geometric center of

circle Bi(ri), the precision Pi(ri) for the i-th Bi(ri) is defined as

Pi rið Þ ¼
#fjjsj 2 BiðriÞ; ai j ¼ 1; j 6¼ ig

#fjjsj 2 BiðriÞ; j 6¼ ig
; ð5Þ

where sj is node j within circle Bi and ri is the radius of circle Bi. If node j is adjacent to node i,
the term ai j = 1. The precision Pi(ri) is the ratio of all the adjacent ones of node i to all nodes

located in Bi.

Table 1. The list of example networks used to evaluate the performance of selected algorithms.

Name Type Nodes number Edges number Density Mean node degree Ref.

1. Yeast cell cycle regulatory network 200 270 0.0129 2.580 [28]

2. Utez-screen protein-protein interaction 263 292 0.0082 2.179 [29]

3. Subnetwork of PAO1 metabolic network 290 374 0.0089 2.581 [30]

4. Ito-core protein-protein interaction 426 568 0.0062 2.556 [31]

5. Y2H-CCSB protein-protein interaction 964 1598 0.0032 3.200 [32]

6. PAO1 metabolic network 1294 1590 0.0019 2.449 [30]

7. L. lactis metabolic network 1489 3172 0.0029 4.260 [33]

8. S.cerevisiae iFF708 metabolic network 2879 5616 0.0013 3.884 [34]

9. Aspergillus niger metabolic network 3774 7967 0.0012 4.229 [35]

10. Aspergillus oryzae metabolic network 4976 11042 0.0009 4.446 [36]

https://doi.org/10.1371/journal.pone.0221620.t001

Table 2. Time complexity of GML (for a network of n nodes and m edges).

Three procedures of GML Time

complexity

Description

Stage 1: Network

preprocessing

O (m log n) Using clustering algorithm (multilevel clustering) to divide the

networks into module;

Stage 2: Modules layout O (n �m) Determining the relative positions of the modules;

O (n2) Determining the size of each module;

Stage 3: Grid optimization O (n2) Optimizing the positions of all descendant nodes embedded in the

modules

https://doi.org/10.1371/journal.pone.0221620.t002

A new grid- and modularity-based layout algorithm for complex biological networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0221620 August 29, 2019 9 / 17

http://interactome.dfci.harvard.edu/S_cerevisiae/download/Ito_core.txt
https://doi.org/10.1371/journal.pone.0221620.t001
https://doi.org/10.1371/journal.pone.0221620.t002
https://doi.org/10.1371/journal.pone.0221620


Next, the recall Ri(ri) is defined as:

Ri rið Þ ¼
#fjjsj 2 BiðriÞ; ai j ¼ 1; j 6¼ ig

#fjjai j ¼ 1; j 6¼ ig
; ð6Þ

Ri(ri) is the ratio of all the adjacent nodes of node i to all adjacent nodes in the network wher-

ever they are located in Bi. For a detailed explanation of Pi(ri) and Ri(ri), please see the exam-

ples in Fig 5.

Generally, higher precision favors a smaller ri, and higher recall favors a larger ri; the opti-

mal radius ri should be found in between. The optimal radius ri for each i is selected that maxi-

mizes the following F-measure with weight α [20,37], as shown in Eq (7) (α = 0.5 is used

throughout our experiments).

Fi rið Þ ¼ 1= a
1

PiðriÞ
þ ð1 � aÞ

1

RiðriÞ

� �

: ð7Þ

Finally, in the 2D plane, the connectivity F-measure is defined as the average over all N
nodes:

F ¼
PN

i¼1

FiðriÞ
N

: ð8Þ

From Eq (7), we can learn that larger Pi(ri) and Ri(ri) values will generate larger Fi(ri), which

means that more adjacent nodes are located within Bi(ri). Therefore, F can evaluate whether

densely connected nodes are placed together in layouts.

Fig 4. The comparison of computation time. The computation time for each test network was averaged on 10 runs

on a Dell laptop with an Intel Core i3-2330M processor.

https://doi.org/10.1371/journal.pone.0221620.g004
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Relative edge length. The relative edge length is used to examine whether the distributions

of nodes are compact in the layout space and is defined as the ratio of the sum of all edge

lengths (the Manhattan distance between connected nodes) divided by the product of the area

of layout space and the number of total edges. Larger connectivity F-measure and shorter rela-

tive edge length indicate better modular characteristics [22].

Visual complexity. The ratio of edge-edge crossings and the ratio of node-edge crossings

are used to assess the visual complexity of GML layouts. The former is defined as the number

of edge-edge crossings divided by the total number of edge pairs, and the minimization of the

ratio will avoid high visual complexity; the latter is defined as the number of node-edge cross-

ings divided by the total number of node-edge pairs [19,27,38–39], and decreasing this ratio

will avoid the misunderstanding of network connectivity when edges cross the nodes. In short,

a smaller ratio of edge-edge crossings and node-edge crossings means better layouts.

Fig 6 shows the characterization of the GML algorithm. To grasp the key features of the

algorithms, all measurements are summarized in Table 3, where each algorithm is ranked

according to Figs 4 and 6. For example, if H-FR performs the best and GBL the worst in

computational efficiency among six selected algorithms, then the rank value of H-FR is 1 and

that of GBL is 6.

As the cells marked in gray in Table 3 show, GML and H-FR achieve relatively good perfor-

mances on the whole. GML has the best modular characteristics (highest connectivity F-mea-

sure and lowest relative edge length) over the other five algorithms, which is not surprising

because GML groups densely connected nodes as modules with a clustering algorithm and

optimizes the module locations through the special method of module-layout. In addition,

GML also achieves the lowest ratio of edge-edge crossings. The high connectivity within mod-

ules and low connectivity between modules that result from the GML layout are the main

causes of the success of GML in this direction.

Fig 5. The examples of Pi(ri) and Ri(ri). A) Within the circle Bi(ri), node i has three adjacent nodes out of the eight nodes (black), and the precision value

Pi(ri) is 3/8; B) Node i has seven adjacent nodes (black) on the 2D plane and three adjacent nodes within the circle Bi(ri); therefore, the recall value Ri(ri) is 3/7.

https://doi.org/10.1371/journal.pone.0221620.g005
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Fig 6. Characterization of the GML algorithm. The hybrid layout algorithms with different preprocessors (H-SA, H-KK, H-FR, and H-GA) and GBL are used as

reference methods for comparison purposes. A) connectivity F-measure, B) relative edge length, C) ratio of edge-edge crossings, and D) ratio of node-edge crossings.

https://doi.org/10.1371/journal.pone.0221620.g006

Table 3. Characterizations of selected algorithms.

Computation efficiency Modular characteristics Visual complexity

Computation time Connectivity F-measure Relative edge length Ratio of edge-edge crossings Ratio of node-edge crossings

H-SA 3 6 6 6 6

H-KK 4 5 5 5 5

H-FR 1 4 2 3 1

H-GA 5 3 3 4 4

GBL 6 2 4 2 2

GML 2 1 1 1 3

https://doi.org/10.1371/journal.pone.0221620.t003
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H-FR is another outstanding grid layout algorithm, with the lowest ratio of node-edge

crossings and the best computation efficiency. However, it is not suitable for the drawing of

module networks because of its relatively low connectivity F-measure.

Overall, GML outperforms other algorithms in modular characteristics and achieves rela-

tively outstanding performance in visual complexity (best ratio of edge-edge crossings) and

computation efficiency (second-order fast algorithm) for all example networks, which makes

GML the best algorithm for the visualization of biological networks with module structures.

Layout results

As shown in Fig 7, a biological network (yeast cell cycle regulatory network) is drawn by the

hybrid layout, GBL and GML algorithms for comparison purpose.

In the graphs drawn by the H-KK, H-FR, and H-GA algorithms, the nodes are relatively

uniformly distributed in the 2D areas and the modular structures are not apparent. With the

help of clustering algorithms, the node distributions by H-SA, GBL and GML show relatively

distinct modular features. Moreover, the modules in GML are placed neatly on the plane with

lower edge-edge crossings owing to application of the method of module-layout.

Discussion and conclusions

GML is a novel layout algorithm that aims to clarify the network complexity according to its

inherent modular structure. With the method of module layout, GML optimizes the locations

of modules to effectively reduce visual complications and is particularly suited for visualiza-

tions of complex biological networks with modular features. Working with or without prede-

fined modules, GML provides great flexibility for the advanced analysis of complicated

biological networks.

Compared to non-grid layouts (e.g., force-directed), the grid-optimization series including

the GML algorithm outperform in the directions of modular characteristics and visual com-

plexity but have relatively high time costs [17–18,20]. Therefore, they are not suited to draw

large-scale networks in real-time environments.

The algorithms of grid-optimization series are heuristic algorithms composed of several

heuristic procedures. The layout results are usually acceptable solutions but not global optimi-

zation solutions. The grid layout is still selected as the basic algorithm in our research because

of its advantages in generating compact layouts without node overlapping. In particular, it can

be used to generate neat module layouts (see Fig 7), which is important and crucial to the visu-

alization of biological networks.

In the first stage of GML, the multi-level algorithm is selected as module detection algo-

rithm to give rise to predefined modules. Recently, the researches on the module detection

algorithms have achieved great progress. He DX et al. have presented a novel approach named

as NetMRF (network-specific Markov Random Field) that can encode the structural properties

of an irregular network in a cost function and generate the best community structures by opti-

mizing the function [40]. To detect link communities and effectively extract community sum-

maries in sentences for topic labeling, Jin D et al. have proposed a new unified probabilistic

model that explored the intrinsic correlation between communities and topics [41]. What’s

more, to solve the problem of semi-supervised community detection in attributed networks,

Jin D et al. have integrated the methods of MRF (Markov Random Fields) and GCN (Graph

Convolutional Networks) and designed an end-to-end deep learning algorithm termed

MRFasGCN [42]. Among above methods, the NetMRF can be integrated into GML directly as

the algorithm of module detection and we would like to design an optimized grid layout algo-

rithm to visualize larger networks based on NetMRF in future.
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Overall, we present a grid- and modularity-based layout algorithm, GML, to meet the needs

of visualization of complex biological networks. The algorithm outperforms other grid-optimi-

zation algorithms in modular characteristics with the special design of the module-layout pro-

cedure. With the VisANT plugin of GML, researchers can gain insights into global

characteristics as well as discern network details of biological networks.
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