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The liver is the organ for iron storage and regulation; it senses circulating iron concentrations in the body through the BMP-SMAD
pathway and regulates the iron intake from food and erythrocyte recovery into the bloodstream by secreting hepcidin. Under iron
deficiency, hypoxia, and hemorrhage, the liver reduces the expression of hepcidin to ensure the erythropoiesis but increases the
excretion of hepcidin during infection and inflammation to reduce the usage of iron by pathogens. Excessive iron causes system
iron overload; it accumulates in never system and damages neurocyte leading to neurodegenerative diseases such as Parkinson’s
syndrome. When some gene mutations affect the perception of iron and iron regulation ability in the liver, then they decrease
the expression of hepcidin, causing hereditary diseases such as hereditary hemochromatosis. This review summarizes the source
and utilization of iron in the body, the liver regulates systemic iron homeostasis by sensing the circulating iron concentration,
and the expression of hepcidin regulated by various signaling pathways, thereby understanding the pathogenesis of iron-related
diseases.

1. Introduction

Iron is the maximum trace element in the body. As a transi-
tion metal, iron readily donates and accepts electrons to
participate in biologic processes like oxygen transport, mito-
chondrial respiration, nucleic acid replication, intermediary,
xenobiotic metabolism, and cell signaling [1]. Iron is so
important is that its deficiency is one of the major risk fac-
tors for disability and death worldwide, and it is estimated
to affect 2 billion people [2, 3]. On the other hand, excessive
iron is harmful; it damages the liver and the brain, causing
oxidative stress on the nerve to cause neurodegenerative dis-
eases such as Parkinson’s syndrome. Mutations in multiple
iron-regulated pathways lead to heredity iron overload
diseases like hereditary hemochromatosis (HH) and iron-
refractory iron deficiency anemia (IRIDA) [4].

2. Absorption of Iron in the Food and Cellular
Iron Acquisition

Dietary iron includes the heme iron and nonheme iron; 90%
of them are nonheme iron, mainly present as the form of
Fe(OH)3 complexation. Nonheme dietary iron is absorption
at the brush border of duodenal enterocytes and exhibited
diurnal rhythms [5]. The cytochrome b (Dcytb) on the duo-
denal enterocyte membrane reduced Fe3+ to Fe2+, then the
Fe2+ through the divalent metal transporter 1 (DMT1) on
the membrane into the cell. The heme iron absorption
mainly uptakes by the heme carrier protein 1 (HCP-1) [6,
7]. When the heme gets into the cell, it is degraded into iron,
carbon monoxide, and biliverdin by heme oxygenase 1 or 2
(HO-1/2) [8]. Intracellular iron is efflux to the extracellular
by the ferroportin1(FPN1), the only iron transmembrane
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efflux protein in vertebrate cells [9–11]. Excess cellular iron is
stored in ferritin, which has a large cavity to store thousands
of iron atoms; it prevents dissociative iron from causing oxi-
dative damage to cells [12]. After the Fe2+ efflux into the cir-
culation, it oxidized to Fe3+ by the ferroxidases such as
hephaestin (HEPH) or its homologue ceruloplasmin (CP)
[13, 14] and succeedingly loaded onto the transferrin (Tf)
and transported by the bloodstream.

The majority of the blood iron participates in hematopoi-
esis in the bone marrow, and a minor part transports to the
liver. The liver is the essential organ for the body to store
the iron, and the iron in hepatocytes is mainly stored in fer-
ritin. For the excess iron, it is engulfed by the Kupffer cells
of the reticuloendothelial system and deposited in the system
as the form of hemosiderin [15].

Iron in the blood binds to the cell surface transferrin
receptor (TfR), Tf-Fe/TfR complex sag, and endocytose into
the cell, subsequently the conformational of the complex is
changed triggered by the acidified endosomes [16, 17], which
releases iron from the Tf [18]. The iron in the endosome is
restored to Fe2+ by prostate six-transmembrane epithelial
antigen of prostate 3 (STEAP3) and transported into the
cytolymph by DMT1 [19]. The apo-Tf and TfR complex
in the endosome are recycled to the cell surface. The
sorting nexin 3 (SNX3) is one of the proteins of the
phosphoinositide-binding protein family [20], is required
for the recycling of Tf/TfR in endocytisis, and increases
iron absorption by Tf recycling and bound ability [21].
We summarized the iron absorption and cellular iron
acquisition in Figure 1.

2.1. Iron Cycle Is Associated with the Production and
Clearance of Erythrocyte. In humans, 200 billion red blood
cells are producing every day, requiring more than 2 × 1015
iron atoms per second to maintain erythropoiesis. The
demand for iron is majorly obtained from recycling erythro-
cytes, so the production and clearance of erythrocytes are
critical for iron homeostasis [22].

The erythropoiesis occurs in the erythroblastic island of
the late fetal liver and adult bone marrow which surrounds
a central macrophage, termed as nurse macrophage. The
nurse macrophage promotes erythropoiesis in the erythro-
blastic island niche [23], phagocytosing the nuclei expelled
from erythroid precursor cells in the late stage of erythropoi-
esis [24]. Other than that, macrophage in the erythroblastic
island produces and releases ferritin by exocytosis [25]; then,
the ferritin is endocytosed into the erythroblasts [26]. After
entering the cell, iron releases from ferritin after acidification
and proteolysis, which is used for heme production during
the development of erythrocytes [27]. It seems that macro-
phages provide ferritin to nurture erythroblastic but have
others also point out that the transferrin is the sole iron
source during erythropoiesis; ferritin endocytosis is just a
tiny force for the erythroblastic acquisition iron [28].

While the life of the erythrocyte is about to end or get
irreparable damage, the bloodstream takes their last ride to
the reticuloendothelial system in the splenic and hepatic.
There, it is known that splenic red pulp macrophage cleans
up senescent and damaged red blood cells then recycles iron

for erythropoiesis after hemoglobin catabolism [29]. There,
firstly, the residential macrophage scrutinizes the passaged
erythroid [30], then triggered engulf and digest the erythro-
cytes when macrophages contact to erythrocyte receptors
and detect the specific markers on its surface [31], like phos-
phatidylserine and band 3 [32, 33]. Whereafter, the red blood
cell is phagocytosed by macrophages into macrophage
phagolysosome, causing hemoglobin breakdown and the
heme release [34]. Subsequently, heme in phagolysosome is
exported to the cytosol via the heme transporter (HRG1)
and is decomposed into iron by HO-1/HO-2 [35, 36], then
the iron is utilized by macrophages or effluxed extracellular
by FPN1. [8]. Macrophages for the iron cycle are shown in
Figure 1.

Fe3+ in food is reduced to Fe2+ by Dcytb on the duodenal
epithelium; it absorbs Fe2+ from the intestinal cavity through
DMT1. HCP1 intakes heme in food, and HO-1 degrades it
into Fe2+ in the cytoplasm. Excessive iron storage in the fer-
ritin and other export into the blood through by FPN1; after
that, Fe2+ is oxidized by CP and HEPH at the basolateral side
then loads onto Tf.

Macrophage phagocytosed erythrocytes and releases
heme in the phagolysosome. HRG1 exports heme from pha-
golysosome into the cytosol; then, HO-1 degrades heme into
Fe2+ and efflux into the bloodstream by FPN1.

Tf-Fe combine with TfR on cytomembrane. SNX3-
induce Tf-TfR sag and endocytose into the cell. Acidified
endosomes release Fe3+ and restored to Fe2+ by STEAP3
and Fe2+ into the cytoplasm through the DMT1. Apo-Tf
and TfR complex is recycled to the cell surface, and Tf is
released into the blood.

The miR-Let-7d and miR-16 family decreases DMT1
expression. Hepcidin internalizes and degrades FPN1.
miR-485-3p and miR-20b regulate the expression of
FPN1. miR-200b induces downregulation of ferritin, and
miR-320 suppresses the expression of TfR1.

2.2. Hepcidin-FPN1 Axis Sensing and Regulating the Systemic
Iron Homeostasis in the Liver. Except for the storage of iron,
the liver is the most important organ to regulate the systemic
iron homeostasis by secreting the hepcidin. Hepcidin
(HAMP) is a polypeptide that synthesizes regulatory hor-
mone; it regulates iron homeostasis by combining FPN1 at
extracellular to internalize and degrade FPN1 in the lyso-
some [37]. Iron in the blood loads on the Tf and transports
with the bloodstream after being exported from the FPN1.
While the concentration of circulating iron floats, hepato-
cytes sense and regulate hepcidin expression through the
BMP/SMAD pathway to regulate the iron output from
FPN1 [38]. This way, hepatocyte controls the amount of iron
in circulation within the normal range, and unregulated hep-
cidin in the liver can cause iron deficiency or iron overload.

In the BMP/SMAD pathway, bone morphogenetic pro-
tein (BMP) and its coreceptor hemojuvelin (HJV) are the
most critical hepcidin that regulate signaling pathway in
quantitation [39]. BMP6 is predominantly secreted from
liver endothelial cells [40]; its expression is regulated by iron
[41], so it reflects the hepatic iron level [42, 43]. BMP6 and
HJV together activate the BMP serine threonine kinase
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receptor- (BMPR-) I/II complex [44, 45]. BMP6/HJV com-
plex as a ligand combines with the BMPR I (Alk2 and Alk3)
[46], and BMPR II (ActR2a andBMPR2) [47] promotes phos-
phorylation downstream BMP media such as SMAD1,
SMAD5, and SMAD8 (SMAD1/5/8) [48]. Phosphorylated
SMAD1/5/8 combines with the cytoplasmic SMAD4 as an
active transcriptional complex and moves into the nucleus;
the complex combines with the BMP reaction element
(BMP-RE1 and BMP-RE2) and then activates transcription
of theHAMP [49, 50]. MT-2 (matriptase-2, TMPRSS6, trans-
membrane protease serine 6) is ubiquitously expressed in the
liver, invalid of MT-2 due to genetic mutation causes iron-
refractory iron deficiency anemia (IRIDA) [51, 52], and
MT-2 is also downregulated by iron and BMP6 [53, 54].
HJV is a glycophosphatidylinositol- (GPI-) anchored protein

[55];MT-2 cleavage themembraneHJV (m-HJV) to a formof
soluble HJV (s-HJV) to decreases the affinity for BMP6 [56];
thus, the MT-2 expression increases during iron deficiency
[57]. However, recent research shows that MT-2 indepen-
dently cleaves HJV to regulate hepcidin expression, and it also
cleaves other components in the BMP/SMAD pathway other
than HJV [58]. The furin family of proprotein convertases
expressed in the liver also produces s-HJV by cleaving the
HJV, but different with MT-2; sHJV generated by furin nega-
tively regulated BMPwhile theMT-2 only reduces the combi-
nation [56]; this process is regulated by iron deficiency or
hypoxia [59]. Others like endofin, ATOH8, and SMAD7 also
affect the signal transduction of the BMP/SMAD pathway
[60–62], which is the perceptron and messenger of iron
concentration.
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Figure 1: Systemic iron homeostasis.
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As the iron concentration in the blood, it is sensed by the
liver through the Tf-Fe competing with HFE binding to TfR
(TfR1/TfR2) on the hepatocyte cytomembrane [63]. The dif-
ference in the ability of Tf and HFE to bind to TfR transmits a
signal of concentration of the blood iron in hepatocyte [64].
The capability of Tf-Fe combined with TfR1 is stronger than
HFE, and Tf-Fe combined with TfR1 is far stronger than
TfR2 [65]. While the systemic iron fluxes at a high concen-
tration, the saturation of iron binding to TfR1 and the
excessive Tf-Fe binding to TfR2, at the same time, the
HFE having no choice but combining with TfR2 or free
on the cell surface, both of these states transmit signals to
stimulate the expression of hepcidin. While the systemic
iron fluxes, the high concentration of the Tf-Fe saturated
binding to all TfR1 and the rest excessive Tf-Fe binding to
TfR2, at the same time, the HFE only binds to TfR2 or dis-
sociation on the cytomembrane, the combination of TfR2
with either Tf-Fe or HFE can transmit the signals to stimu-
late the expression of hepcidin [66]. When the iron in circu-
lating decreases, TfR1 combines all of Tf-Fe and partial
HFE, uncombined TfR2 weaken the effects of the stimula-
tion and decreasing the expression of hepcidin to augment
the intestinal iron absorption [55].

It is not completely clear how TfR2, HFE, and HJV affect
hepcidin expression, but there have been experiments shown
in HFE and TfR2 knockout mice that the conduction of the
BMP/SMAD signaling pathway was impaired [67, 68].
Recent research shows that the noncompetitive binding of
HFE and TfR2 to HJV causes changes in hepcidin expression

[55]; in addition, HFE also has the ability to regulate the
BMP/SMAD signaling pathway by binding to ALK3 [69].
Neogenin is also involved in the regulation of the hepcidin
by being a scaffold of binding HJV and ALK3 [22, 70]; it
increases the stability of the HJV protein and suppressing
HJV secretion [71]. Besides that, neogenin inhibits the
BMP-2-induced phosphorylation of the Smad1/5/8 [72]
and facilitates the cleavage of HJV by matriptase-2 or furin
[70, 73]. There are others pointout the HJV-neogenin inter-
action dose not only exist in the liver but also in other tissues
[70]. Signal pathways in hepatocytes regulate hepcidin
expression as shown in Figure 2.

BMP/SMAD signaling pathway: BMP6 and its coreceptor
HJV activate BMPR I/II, leading to phosphorylation of
SMAD (1/5/8) and complexes with SMAD4 as an active
transcriptional complex. The complex combines with the
BMP-RE onHAMP then activates transcription of the hepci-
din. SMAD2promotes the phosphorylation of SMAD (1/5/8).
SMAD7, endofin, and ATOH8 reduce the signaling of
BMP/SMAD. HJV is cleaved by MT-2 and furin to reduced
binding capacity to BMP6. miR-130a and miR-122 inhibit
AIL2 and BMP/SMAD to regulate the expression of hepcidin.

High concentrations of Tf-Fe induce HFE and Tf-Fe
which combine with TfR2 and HJV together to promote
BMP/SMAD signaling pathway. HFE interacts with ALK3
increasing hepcidin excrete.

Hypoxia induces the HIF-determined EPO/ERFE con-
centration in the blood circulation; all of them increase the
systemic iron concentration through the BMP/SMAD
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Figure 2: Hepatocyte pathways regulate iron homeostasis.
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pathway. HIF promotes MT2 and furin to cleavage HJV, and
miR-210 inhibits it to reduce hepcidin expression. Iron
increases BMP6 expression.

In inflammation, IL-6 combines with its receptor IL-6R
to activate the JAK, triggering the phosphorylates of STAT3
that forms as a complex move into the nucleus and promotes
the transcription of HAMP. IL6 increases the BMP/SMAD
pathway by promoting ALK3.

2.3. Role of Inflammation, Hypoxia, and MicroRNA in Iron
Regulation. Infection and inflammation induce hepcidin
production [74], which inhibits iron efflux from intestinal
and promotes iron chelation in macrophages, thus reducing
the concentration of blood iron [75]. During inflammation,
the secretion of proinflammatory cytokines (such as IL-6)
increases. Interleukin-6 (IL-6) is one kind of cytokine that
regulates the transcription of hepcidin [76]. It combines with
the IL-6 receptor (IL-6R) on the membrane, then activates
JAK and phosphorylates STAT3 protein in hepatocytes. The
phosphorylated STAT3 protein moves into the nucleus, regu-
lating the expression of HAMP by binding to the STAT3-
specific site [77]. IL-6 not only affects hepcidin expression
through the JAK/STAT3 pathway but also combines one of
the BMPR I receptor Alk3 [78]; this indicates that the JAK-
STAT3 pathway has cross action with the BMP/SMAD path-
way [79]. In acute inflammatory condition, the stimulation of
Toll-like receptor reduces FPN1 inmacrophages, blocking the
iron excretion frommacrophages which is recovered from red
blood cells and rapidly induced hypoferremia [80]. Then, the
heme, required by the proerythroblast to complete its termi-
nal differentiation stage, is exported from macrophages by
FLVCR1 [81]. High hepcidin lowers the pathogens available
in iron; it is a strategy to starve the pathogens to limit
their growth [82]. But as one of the defensin-like peptide
hormones, the innate immunity functions of hepcidin have
a connection to antimicrobial peptides and inflammation;
perhaps, the role of hepcidin in immunity could bypass
iron and be directly related to hosting defense (Figure 2).

The body compensates for the oxygen content by intensi-
fying the erythropoiesis when hypoxia, blood loss, or the
other causes. In response to the erythropoiesis, erythropoietin
(EPO) is secreted by the kidney. According to the severity of
hypoxia, EPO has a hundred times of differing in serum
[83], it controls iron absorption, erythroid progenitor cell pro-
liferation, maturation, and survival [84, 85]. Erythroferrone
(ERFE) is a soluble protein released by EPO-stimulated ery-
throid precursors; it suppresses the expression of hepcidin
[86]. EPO and ERFE suppress the expression of hepcidin by
BMP/SMAD pathway target genes [87–89]. But in the IRIDA,
due to the MT-2 restriction, the EPO/ERFE-mediated hepci-
din downregulation in the BMP/SMAD pathway is
obstructed, the blocked signal transmission leads both the
EPO and the ERFE, and hepcidin simultaneously maintained
elevated levels even in the patients with anemia [90]. The
hypoxia-inducible factor (HIF) is a transcription factor of
EPO, and the content of the EPO is completely dependent
on HIF-2α [91]. HIF-2α promotes erythropoiesis, including
increases in the production of EPO, which enhances iron
uptake and utilization [92]. Therefore, hypoxia increases

cthe demand for iron and reduces the expression of hepci-
din by HIF and EPO [93]. Hepcidin promoter contains
several HIF1 and HIF2 sites, regulating the hepcidin by the
hypoxia-oxygen-sensing regulatory pathway [94]. Besides
that, HIF participates in the BMP/SMAD pathway by affect-
ing the MT-2 and increasing the furin mRNA level [95, 96]
(Figure 2).

MicroRNAs are a class of small noncoding RNAs
(~22 nt) that bind to the 3′ untranslated region (3′UTR) of
the target messenger RNA (mRNA), thereby negatively
regulating gene expression, and many miRNAs are involved
in posttranscriptional regulation of iron. miR-485-3p and
miR-17 seed family member miR-20a and miR-20b, as the
concurrent modulator to regulate the expression of FPN1
[97–99]. miR-Let-7d and miR-16 family (miR-15b, miR-16,
miR-195, and miR-497) bind the 3′UTR of DMT1-IRE
mRNA then decrease DMT1 expression levels, causing iron
accumulation in the endosomes, or hoarded in ferritin or
used for iron-related proteins [100–102]. MiR-320 is
another microRNA related to cellular iron uptake, which
inhibits TfR1 expression and prevents cell proliferation
[103], and miR-200b induces downregulation of ferritin
[104]. In the BMP-SMAD signaling, ALK2 as primary
endogenous BMP type I receptors is involved in systemic
iron regulation; miR-130a targets 3′UTR of ALK2 to inhibit
BMP-SMAD signaling and the expression of hepcidin; it
was upregulated in the iron deficiency mice [105].

In the regulation of hypoxia, HIF-1α hypoxia response
element-binding site was identified in the promoter of
miR-210; the miR-210 is specifically induced by HIF-1α
during hypoxia [106]. Iron-sulfur cluster scaffold protein
(ISCU) is an iron homeostasis essential molecule; iron defi-
ciency induces miR-210 expression through HIF-1α, and
miR-210 directly inhibits ISCU and TfR to maintain the sys-
temic iron homeostasis [107]. miR-122 is a very important
microRNA that is selectively expressed in the liver and par-
ticipates in a variety of regulation, including maintaining
iron homeostasis. It controls hepcidin mRNA transcription
by inhibiting the expression of Hfe, Hjv, and Bmpr1a in the
liver, thereby preventing iron deficiency [108], thus activat-
ingHampmRNA expression. miRNAs related to iron regula-
tion are summarized in Figures 1 and 2.

2.4. Diseases Related to Disorders of Iron Metabolism

2.4.1. Iron Overload Causes Cell Oxidative Damaged-
Ferroptosis. Ferroptosis is a form of regulated cell death;
unlike other forms of regulated cell death, ferroptosis is
unnecessary for the caspases [109]. Ferroptosis is character-
ized by the overwhelming iron-dependent oxidative injury
and accumulation of lipid hydroperoxides to lethal levels.
The excessive iron produces ROS (reactive oxygen species)
by Fenton reaction in cells. In cells, the ROS has multiple
sources; iron and its derivatives are essential for the ROS-
producing enzymes.

Ferroptosis is related to amino acid metabolism. Gluta-
thione (GSH) protects cells from oxidative stress damage,
but the availability of cysteine limits the GSH biosynthesis
[110]; therefore, the cysteine is contributed to protecting cells
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from oxidative stress. Cysteine is produced by the reduction
of cystine which is transported into cells by the cystine/gluta-
mate reverse transport system xc-, then for the GSH synthe-
sis. Cells not only rely on the system xc- to import cystine but
also bypass the system xc- by the transsulfuration pathway to
biosynthesize the cysteine from methionine.

The depletion of GSH inactivation of the GSH peroxidase
4 (GPX4) ultimately causes the ferroptosis. Erastin, an onco-
genic RAS-selective lethal small molecule [111], induces
ferroptosis by inducing GSH depletion and inactivation of
the phospholipid peroxidase GPX4 and inhibits import of
cystine [112]. So amino acid metabolism is closely linked to
ferroptosis [113]; furthermore, studies on the association of
ferroptosis and various diseases have provided a new per-
spective and have become a new research aspect, such as
Parkinson’s disease, Alzheimer’s disease, Huntington’s dis-
ease, stroke, apoplexy, ischemia-reperfusion injury, cardiop-
athy, carcinogenesis, periventricular leukomalacia, and
brain injury [110].

2.4.2. Parkinson’s Disease. Parkinson’s disease (PD) is a pro-
gressive neurological disorder, primarily from the death of
dopaminergic neurons in the substantia nigra [114]. Studies
have shown that Parkinson’s disease is caused by biochemical
abnormalities, including oxidative stress and mitochondrial
dysfunction [115, 116], and in recently, some studies have
also shown the correlation between PD and ferroptosis [117].

Iron accumulation in neurons induces oxidative stress by
Fenton’s reaction generating ROS. ROS induces iron release
from mitochondrial iron-sulfur cluster protein and other
iron storage proteins; it leads the further ROS generation
through Fenton’s reaction [118], then the ROS damage
DNA and mtDNA by epigenetic mechanism and oxidize
protein [118–120]. The most significant characteristic of
Parkinson’s disease is the progressive degeneration in the
substantia nigra, but current research is still incomprehensi-
ble why neurodegeneration only exists in certain nuclei while
the other iron-accumulation tissue remains unaffected and
the mechanism of neurotoxicity [121].

Mitophagy, the spontaneous and selectively autophagic
elimination of damaged or dysfunctional mitochondria, is
regulated by accumulation of iron, Parkin, and PINK1
(PTEN-induced putative kinase protein 1) and mediated by
autophagosomes. There are reports that show the loss of iron
in neuronal triggering mitophagy in a PINK1/Parkin-inde-
pendent manner [122, 123], and in contrast, the accumula-
tion of cellular iron obstructed the mitophagy, so that the

cells unable to eliminate the damaged mitochondria to main-
tain normal physiological status.

PINK1 is stably localized on damaged mitochondria with
low membrane potential [124], and the Parkin, an E3 ubiqui-
tin ligase, is selectively recruited from cytosol to dysfunc-
tional mitochondria [125] and liberates the activity of the
E3 by the PINK1-dependent mitochondrial localization
[124], then Parkin ubiquitination outer mitochondrial
membrane proteins to trigger mitophagy [126]. So, the
PINK1 and Parkin together sense the distress of mitochon-
dria and selectively target them for degradation [127], and
the mutations of PINK1 or Parkin fail to clear damaged
mitochondria [128, 129], causing neuronal damage [130],
leading to Parkinson’s disease [131].

2.4.3. Hereditary Iron Disease. Hereditary hemochromatosis
(HH) mainly inWestern populations causes iron overloaded.
HH is caused by multiple genetic defects like HFE, TfR2,
HJV, TMPRSS6, FPN1, and HAMP. According to different
mutant genes, HH is divided into HFE hemochromatosis
(type1), juvenile hemochromatosis (type 2), TfR2 hemochro-
matosis (type 3), and ferroportin hemochromatosis.

The majority of the HH is typ1 and typ2; it is due to the
homozygosity for the C282Y mutation in the HFE and
G320V, etc. in the HJV genes [132–135]. HFE and HJV
mutations alone or simultaneously affect the expression of
hepcidin through the BMP/SMAD pathway. In type 3 HH,
the mutation was identified on human chromosome 7q22
homozygous recessive Y250X in TfR2 [136]; type 3 HH is less
severe than typ1 and typ2 HH. Type 3 HH pathogenesis is
demonstrated in the mutation experiment of mice; the muta-
tion of TfR2 caused the inability of TF and HFE to bind to it,
weakened the signal transmission, and resulted in the down-
regulation of hepcidin expression [137], which ultimately
caused iron overload in multiple organs. As a receptor for
hepcidin, FPN1 has C326 residue and is necessary for the
binding of hepcidin [138]. Ferroportin hemochromatosis is
associated with the mutation of C326 residue, it is an autoso-
mal dominant genetic disease with similar clinical and phe-
notypic features to other HH, and the mutation of C326
suffices to cause FPN1 resistance of hepcidin [138, 139].
The loss-of-function mutation of TMPRSS6 causes IRIDA,
and its molecular basis was first identified in 2008 [140,
141]. Microcytic hypochromic anemia, low Tf saturation,
and excessive hepcidin are the main characteristic of IRIDA;
however, oral iron supplementation is futile in relieving the
symptoms. In the IRIDA, the most frequent mutation is
S304L; besides that, 40 different mutations in the TMPRSS6

Table 1: Genetic mutation causes iron metabolism disorders.

Protein Gene Mutation site Downstream effect Phenotype Reference

HFE HFE C282Y Iron concentration perception Regulation hepcidin expression by binding TfR [133]

TfR2 TFR2 Y250X Tf, HFE receptor C282Y homozygote modifier [144]

HJV HJV G320V, etc. Activate BMP-SMAD Regulation hepcidin expression [134]

MT2 TMPRSS6 A736V Cleavage HJV
Determining protease activity, influences the

hepcidin response to iron
[140]

FPN1 SLC40A1 C326S Cellular iron effluxion Resistance combine hepcidin [145, 146]
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gene have been described including K225E, K253E, G228D,
R446W, V736A, and V795I [142], but the latest research
shows thatALK2 gene mutation is also involved in the IRIDA
[143]. Including the gene mutations mentioned above, we
summarized the various genetic variations that caused hered-
itary iron disease in Table 1.

2.4.4. Perspectives. As one of the most important elements in
the body, after the decades of research, we have been clear
about the effect of the liver on iron metabolism and regula-
tion, but we are still constantly discovering new methods to
affect iron metabolism directly or indirectly. As the secretory
organ of hepcidin, the study of microRNA and gene muta-
tions has opened a new horizon for iron regulation in hepa-
tocyte. The discovery of more potential regulators raises
more awareness of iron metabolism, and more drugs can be
developed to treat iron-related diseases, such as inhibitors
or agonist of key genes. Due to the importance of iron in
the body, the molecular mechanism of iron sensing and reg-
ulation and its interaction needed to fully comprehend.
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