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Abstract
Type	2	diabetes	mellitus	(T2DM)	is	an	independent	risk	factor	of	Alzheimer's	disease	
(AD).	Therefore,	identifying	periphery	biomarkers	correlated	with	mild	cognitive	im-
pairment	(MCI)	is	of	importance	for	early	diagnosis	of	AD.	Here,	we	performed	platelet	
proteomics in T2DM patients with MCI (T2DM- MCI) and without MCI (T2DM- nMCI). 
Pearson	analysis	of	the	omics	data	with	MMSE	(mini-	mental	state	examination),	Aβ1- 
42/Aβ1- 40 (β- amyloid), and rGSK- 3β(T/S9) (total to Serine- 9- phosphorylated glycogen 
synthase kinase- 3β) revealed that mitophagy/autophagy- , insulin signaling- , and gly-
colysis/gluconeogenesis pathways- related proteins were most significantly involved. 
Among	them,	only	the	increase	of	optineurin,	an	autophagy-	related	protein,	was	si-
multaneously	correlated	with	the	reduced	MMSE	score,	and	the	increased	Aβ1- 42/
Aβ1- 40 and rGSK- 3β(T/S9), and the optineurin alone could discriminate T2DM- MCI 
from T2DM- nMCI. Combination of the elevated platelet optineurin and rGSK- 3β(T/
S9)	 enhanced	 the	 MCI-	discriminating	 efficiency	 with	 AUC	 of	 0.927,	 specificity	 of	
86.7%, sensitivity of 85.3%, and accuracy of 0.859, which is promising for predicting 
cognitive decline in T2DM patients.
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1  |  INTRODUC TION

Type	2	diabetes	mellitus	 (T2DM)	and	Alzheimer's	disease	 (AD)	are	
age- related disorders that affect millions of populations worldwide 
(Chornenkyy et al., 2019; Exalto et al., 2012). Increasing epidemio-
logical	data	suggest	that	T2DM	is	an	independent	risk	factor	for	AD	
(Huang	et	al.,	2014;	Janson	et	al.,	2004;	Strachan	et	al.,	2011).	It	is	also	
shown that T2DM patients have an increased risk of dementia (73%) 
compared to non- T2DM patients, and the cognitive decline seems 
to begin in the insulin resistance stage of prediabetes (Biessels et al., 
2006; Koekkoek et al., 2015). Because of the lifestyle changes, such 
as diet, overweight and lack of exercise, the incidence of T2DM is 
rapidly increasing in recent years (Carracher et al., 2018; Kahn et al., 
2014).	T2DM	and	AD	have	many	commonalities	in	pathophysiology,	
such as amyloidosis, oxidative stress, endothelial dysfunction, and 
abnormal enzyme activities (de Matos et al., 2018). It is believed that 
the	increasing	incidence	of	AD	may	be	not	only	related	to	aging	but	
also to the increasing diabetes (Prince et al., 2013).

Mild cognitive impairment (MCI) is another independent risk fac-
tor	of	AD.	Populations	with	MCI	generally	developed	into	AD	after	
decades, which provides a valuable window period for the inter-
vention	 (Hodson,	 2018).	 Aβ deposition and neurofibrillary tangles 
formed by the phosphorylated tau proteins are the main pathologi-
cal	features	of	AD	(Jack	et	al.,	2010).	However,	the	accumulation	of	
Aβ has already appeared 10– 15 years before the appearance of the 
clinical phenotypes (Hodson, 2018). The cerebrospinal cord (CSF) 
level	 of	Aβ1-	42,	 a	marker	of	 amyloidosis,	 and	 the	 level	 of	Aβ- PET 
are	recognized	as	effective	diagnostic	biomarkers	for	AD	(Hansson	
et al., 2019). However, these methods are invasive or expensive, so 
that they are hardly popularized in the clinic.

Many evidences suggest that platelets, the fragments shed by 
megakaryocytes, have many biological similarities with neurons 
(Chornenkyy et al., 2019; Veitinger et al., 2014). For instance, level 
of	MAO-	B,	which	is	closely	related	to	neuronal	activity,	is	increased	
significantly	in	AD	platelets	(Forlenza	et	al.,	2011).	It	is	also	reported	
that	 CD62P	 (P-	selectin)	 in	 platelets	 is	 activated	 in	 AD	 patients	
(Sevush et al., 1998), while thrombin receptor activating peptide 6 
(TRAP-	6),	a	molecule	related	to	platelet	activation,	 is	decreased	 in	
AD	(Jaremo	et	al.,	2013).	Interestingly,	like	peripheral	synaptic	vesi-
cles, platelets share many of the same secretory pathways and trans-
porters as the synaptic terminals of neurons during neurotransmitter 
uptake	and	packaging	(Kaneez	&	Saeed,	2009;	Walther	et	al.,	2003).	
The	amyloidosis-	related	protein	BACE1	and	tau	hyperphosphoryla-
tion related protein glycogen synthase kinase- 3β (GSK- 3β), were sig-
nificantly	activated	in	AD	platelets	(Colciaghi	et	al.,	2002;	Veitinger	
et al., 2014). We have also reported that the platelet GSK- 3β activity 
is increased in T2DM with MCI (T2DM- MCI) patients compared to 

T2DM	without	MCI	(T2DM-	nMCI)	(Z.	P.	Xu	et	al.,	2016).	Therefore,	
platelets contain abundant information related to the central sys-
tem and are stable in the peripheral region, which makes it a perfect 
model for exploring the peripheral biomarkers.

Proteomics is widely used in neuroscience (Bader et al., 2020; 
Xiong et al., 2019), due to its unique value in deciphering complex 
pathological mechanisms and screening diagnostic biomarkers. In 
the present study, we performed an in- depth and comprehensive 
proteomic analysis in T2DM- MCI and T2DM- nMCI patients. We 
found that mitophagy/autophagy, insulin signaling, and glycolysis/
gluconeogenesis pathways- related proteins were most significantly 
deregulated in T2DM- MCI patients with elevated levels of plate-
let rGSK- 3β	 and	 Aβ1-	42/Aβ1- 40 ratio. The increase of optineurin 
(OPTN) alone can discriminate T2DM- MCI from T2DM- nMCI, and 
combination of the elevated platelet OPTN with rGSK- 3β has greatly 
increased the discriminating efficiency.

2  |  RESULTS

2.1  |  Participants information and their platelet 
protein network alterations during progression of 
T2DM to MCI

The platelets from two cohorts of T2DM patients were collected 
for candidate biomarkers screening (10 cases T2DM- nMCI, 9 cases 
T2DM- MCI) and their validation (30 cases T2DM- nMCI, 34 cases 
T2DM- MCI), respectively (Table 1).

By using TMT- LC- MS/MS proteomics, a total of 2994 platelet 
proteins were captured, of which 46 differentially expressed pro-
teins (DEPs) were identified in T2DM- MCI vs. T2DM- nMCI (p < 0.05) 
(Figure 1a, Excel S1). To further understand the biological function of 
DEPs and the signaling events, PPI network analysis was performed 
based	on	KEGG	database.	As	shown	in	Figure	1b,	the	complex	net-
work regulation of the DEPs was mainly involved in endocytosis, 
peroxidase, ErbB, phosphatidylinositol signaling pathways.

Based on metascape online analysis software, the top 8 gene 
disease network (DisGeNET) with - log10 (p- value) was obtained, in-
cluding amyloidosis, peripheral neuropathy and peripheral nervous 
system diseases (Figure 2a). Specifically, the proteins involved in 
amyloidosis, including optineurin (OPTN), ras- related protein Rab- 
21 (Rab21), dynamin 1 (DNM1), peroxisomal bifunctional enzyme 
(EHHADH),	 fermitin	 family	 homolog	 2	 (FERMT2),	 E3	 ubiquitin-	
protein ligase UBR1 were increased in T2DM- MCI compared with 
T2DM- nMCI (Figure 2b). The peripheral nervous system diseases 
related	proteins,	such	as	microtubule-	associated	protein	4	(MAP4),	
myotubularin	 (MTM1),	unconventional	myosin-	Va	 (MYO5A),	WAS/

Project of Medicine in Shenzhen, Grant/
Award	Number:	SZSM201611090 K E Y W O R D S

Alzheimer's	disease,	mild	cognitive	impairment,	optineurin,	peripheral	biomarkers,	platelet,	
proteomics, type 2 diabetes mellitus
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WASL-	interacting	protein	family	member	1	(WIPF1),	and	ganglioside-	
induced	differentiation-	associated	protein	1	(GDAP1)	were	also	in-
creased in T2DM- MCI compared with T2DM- nMCI (Figure 2c).

These data together reveal the complex platelet protein network 
alterations during progression of T2DM to MCI, providing a valuable 
resource for their systematic discovery and validation.

2.2  |  Potential platelet biomarkers associated with 
MCI in T2DM patients

During patient selection for this proteomic analysis, we payed spe-
cial	attention	to	ApoE	genetype,	olfactory	function,	and	rGSK-	3β(T/
S9), because changes of these factors are correlated to the cogni-
tive decline in T2DM patients (Michaelson, 2014; Rahayel et al., 
2012;	Zhang	et	al.,	2018).	Although	a	strong	trend	of	increase	was	
shown for platelet rGSK- 3β(T/S9), the difference did not reach sta-
tistical significance between T2DM- MCI and T2DM- nMCI groups 
(GSK- 3β- Total: p = 0.760; GSK- 3β: p = 0.237; rGSK- 3β: p = 0.122) 
(Figure	3a-	c).	No	significant	difference	was	shown	for	ApoE	gene-
type or olfactory function between the two groups (Table 1), which 
may be due to the relatively small sample size. We also detected 

plasma	 levels	of	Aβ1-	40	and	Aβ1- 42, because the β- amyloidosis is 
the	common	pathology	in	both	AD	and	diabetes	patients	(de	Matos	
et	al.,	2018).	We	 found	 that	Aβ1- 40 was decreased in T2DM- MCI 
compared with T2DM- nMCI patients while no significant differ-
ence	was	detected	for	Aβ1- 42 (p = 0.400), consequently, the ratio 
of	 Aβ1-	42/Aβ1- 40 was increased in T2DM- MCI vs T2DM- nMCI 
(Figure 3e- g). Furthermore, a negative correlation between MMSE 
score	and	ratio	of	Aβ1-	42/Aβ1- 40 was shown (r =	−0.626,	p = 0.004; 
Figure 3h)). Though the increase of rGSK- 3β was not statistically 
significant (Figure 3a- c), we also detected a negative correlation 
between MMSE score and rGSK- 3β (Figure 3d). Therefore, we also 
employed	Aβ1-	42/Aβ1- 40 and rGSK- 3β as the parameters for plate-
let new biomarker screening in addition to MMSE score.

By Pearson analysis, a total of 150 correlated proteins were iden-
tified in T2DM- MCI vs T2DM- nMCI groups, among which MMSE, 
Aβ1-	42/Aβ1- 40 and rGSK- 3β- correlated proteins were respec-
tively accounted for 40, 53, and 65 with r values of 0.456– 0.726 
(Figure 4a and Excel S2) and relative abundance values shown in 
Figure 4b and Excel S3. The KEGG pathway analyses showed that 
the MMSE- correlated proteins (n = 40) were mainly related to mi-
tophagy	(OPTN,	SQSTM1	and	Atg3),	and	 lysosome,	such	as	solute	
carrier	family	17	member	5	(SLC17A5)	and	phospholipase	A2	group	

TA B L E  1 Information	for	T2DM-	MCI	and	T2DM-	nMCI	patients

Characteristic

Proteomics- Discover set

p- value

Western blot- Validation set

p- value
T2DM- nMCI 
(n = 10)

T2DM- MCI 
(n = 9)

T2DM- nMCI 
(n = 30)

T2DM- MCI 
(n = 34)

Age,	mean	(SD),	year 71.30 (2.67) 73.3 (5.41) 0.305 63.67 (5.62) 64.47 (6.92) 0.615

Sex (male, female) 4 M, 6F 3 M, 6F 0.764 15 M, 15F 12 M, 22F 0.312

Olfactory score 6.80 (1.03) 7.67 (1.94) 0.233 7.50 (1.43) 8.32 (1.36) 0.022

HbA1c 8.53 (1.99) 7.73 (1.41) 0.376 7.84 (2.05) 8.11 (1.55) 0.591

Diabetes duration, year 11.80 (5.33) 14.00 (8.29) 0.496 7.87 (6.37) 7.24 (6.09) 0.687

Insulin treatment, n (%) 5 (50.0%) 6 (66.7%) 0.653 15 (50.0%) 10 (29.4%) 0.125

Diabetic complications, n (%) 6 (60.0%) 4 (44.4%) 0.498 17 (56.7%) 19 (55.9%) >0.999

Hypertension, n (%) 5 (50.0%) 8 (88.9%) 0.069 15 (50.0%) 17 (50.0%) >0.999

Hyperlipidemia, n (%) 4 (40.0%) 5 (55.6%) 0.498 16 (53.3%) 13 (38.2) 0.315

CHD, n (%) 4 (40.0%) 4 (44.4%) 0.845 6 (20.0%) 9 (26.5%) 0.571

APOE	ε2 (+), n (%) 2 (20.0%) 0 (0.0%) 0.474 3 (10.0%) 6 (17.6%) 0.483

APOE	ε3 (+), n (%) 10 (100%) 9 (100%) >0.999 30 (100%) 30 (88.2%) 0.116

APOE	ε4 (+), n (%) 0 (0.0%) 0 (0.0%) >0.999 3 (10.0%) 7 (20.6%) 0.313

GSK−3β (Total) (SD) 2.62 (2.30) 2.99 (2.90) 0.760 2.15 (1.83) 2.75 (1.99) 0.218

GSK−3β (S9) (SD) 3.90 (4.11) 2.09 (1.67) 0.237 4.37 (4.51) 2.26 (2.63) 0.024

rGSK−3β (Total/S9) (SD) 0.76 (0.21) 3.52 (5.38) 0.122 0.66 (0.38) 2.09 (2.70) 0.006

Aβ1- 40 (SD) 268.50 (117.70) 95.56 (102.80) 0.004 194.50 (95.17) 177.80 (95.92) 0.487

Aβ1- 42 (SD) 63.51 (24.66) 74.23 (29.44) 0.400 61.54 (21.68) 61.90 (20.40) 0.945

Aβ1- 42/1- 40 (SD) 0.32 (0.28) 1.40 (1.06) 0.006 0.40 (0.27) 0.60 (0.71) 0.165

MMSE 28.70 (0.67) 20.11 (3.41) <0.001 28.67 (0.71) 22.97 (2.53) <0.001

Abbreviations:	APOE,	Apo	lipoprotein	E;	CHD,	Coronary	heart	disease;	GSK-	3β, glycogen synthase kinase- 3β;	HbA1c,	hemoglobin	A1c;	MCI,	mild	
cognitive impairment; MMSE, the Minimum Mental State Examination; rGSK3β, GSK- 3β- total/GSK- 3β- S9; T2DM, type 2 diabetes mellitus; T2DM- 
MCI, T2DM with MCI group; T2DM- nMCI, T2DM without MCI group.
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XV	 (PLA2G15)	 (Figure	 4c-	d).	 The	 Aβ1-	42/Aβ1- 40- correlated pro-
teins were mainly involved in glycolysis, gluconeogenesis, and insulin 
signaling pathway (n = 53), such as proteasome subunit alpha type- 3 
(PSMA3),	 cAMP-	dependent	 protein	 kinase	 type	 I-	alpha	 regulatory	
subunit	 (PRKAR1A),	 phosphoenolpyruvate	 carboxykinase	 [GTP]	
(PCK2),	 fructose-	bisphosphate	 aldolase	 A	 (ALDOA)	 (Figure	 4c-	d).	
The rGSK- 3β- correlated proteins (n = 65) were mainly related to mi-
tophagy,	insulin,	and	PI3K-	Akt	signaling	pathways	(Figure	4c-	d).

To describe the signal transduction pathway more intuitively, cy-
toscape (3.7.0) software and its wiki pathway, KEGG plug- in were 
used	to	specifically	display	the	signal	regulation	pathway.	As	shown	
in Figure S1a, TBC1D15 is involved in autophagy encapsulation of 
mitochondria, while OPTN and SQSTM1 (P62) can bind to ubiquiti-
nation	 substrates	 and	 promote	 protein	 degradation.	 Additionally,	
PKA	regulation	subunits,	PRKAR1A	and	PRKAR2B,	were	correlated	
with	 Aβ1-	42/Aβ1-	40,	 and	 AMPK	 subunit	 PRKAA1,	 PRKAG1	 cor-
related with rGSK3β, which are involved lipid metabolism in the in-
sulin signaling pathway (Figure S1b).

All	 proteins	 involved	 in	 the	 pathways	 were	 ranked	 according	
to their correlation coefficient (Figure 4d), and the relative abun-
dance of each protein in each sample is represented by a heat map 
(Figure 4d and Excel S4). By integrating correlated proteins involved 
in the above signaling pathways, we obtained a mixed correla-
tion matrix combining pathological/clinical features and proteins 

(Figure 4e and Excel S5). Interestingly, we found some closely cor-
related proteins in the data list, such as mitophagy proteins OPTN, 
SQSTM1, and TBC1D15 (r = 0.50– 0.61) (Figure 4e), which were also 
widely	correlated	with	 the	proteins	enriched	 in	PI3K-	Akt	signaling	
pathway (r = 0.46– 0.71). In addition, OPTN and SQSTM1 were also 
strongly	correlated	with	PRKAR1A	(r =	0.59)	and	PRKAA1	(r = 0.59) 
in	AMPK	subunit	(Figure	4e	and	Figure	S2).

These data together suggest that proteins associated with de-
regulated mitophagy/autophagy, insulin signaling, and glycolysis/
gluconeogenesis pathways could be potential platelet biomarkers 
for cognitive decline in T2DM patients.

2.3  |  OPTN elevation in identifying MCI from 
T2DM patients

Next, we performed venn logic analysis to determine the correla-
tion of the DEPs with MMSE (n =	15),	Aβ1-	42/Aβ1- 40 (n = 6), and 
rGSK- 3β (n = 4), respectively (Figure 5a- f). The MMSE- correlated 
DEPs were mainly involved in amyloidosis (DNM1, UBR1, OPTN, 
FERMT2),	 CNS	 disorder	 (WIPF1)	 and	 energy	 metabolism	 (COA6,	
COX7C,	 PDPR)	 processes	 (Figure	 5a	 and	 d).	 The	 Aβ1-	42/Aβ1- 40- 
correlated DEPs included OPTN, pyruvate dehydrogenase phos-
phatase regulatory subunit (PDPR), Ras- related GTP- binding protein 

F I G U R E  1 Differentially	expressed	proteins	(DEPs)	and	protein-	protein	interaction	(PPI)	networks	in	T2DM-	MCI	vs	T2DM-	nMCI.	(a)	46	
DEPs were identified in the platelet of T2DM- MCI patients compared with the T2DM- nMCI (p < 0.05, increased proteins: red; decreased 
proteins: blue). (b) The PPI networks indicate the interactions of DEPs with each other in T2DM- MCI vs T2DM- nMCI, and endocytosis, 
peroxidase, ErbB, and phosphatidylinositol signaling system are closely associated

(a) (b)
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F I G U R E  2 Integrating	information	on	human	disease-	associated	DPEs.	(a)	GO	term	of	top	8	gene	disease	network	(DisGeNET)	with	
- log10 (p- value). (b, c) Relative expression abundance of amyloidosis and peripheral neuropathy, peripheral nervous system diseases. 
*p < 0.01 vs. the T2DM- nMCI subjects
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D	(RRAGD),	BolA-	like	protein	2	(BOLA2),	polymeric	immunoglobulin	
receptor	(PIGR),	BRISC	and	BRCA1-	A	complex	member	2	(BABAM2)	
(Figure 5b and e). The rGSK- 3β- correlated DEPs included OPTN, 
dehydrogenase/reductase SDR family member 4 (DHRS4), recep-
tor protein serine/threonine kinase (TC2N), deubiquitinating protein 
VCIP135 (VCPIP1) (Figure 5c and f).

We found excitingly that among the above DEPs, only the elevated 
OPTN (Figure 5g) was significantly correlated with MMSE (r =	−0.571,	
p =	0.011;	Figure	5h),	Aβ1-	42/Aβ1- 40 (r = 0.458, p = 0.049; Figure 5i), 
and rGSK- 3β (r = 0.532, p = 0.019; Figure 5j) in T2DM- MCI patients, 
suggesting a strong power of OPTN as a biomarker for identifying 

MCI in T2DM patients. Studies have shown that the OPTN- mediated 
autophagy	pathway	is	closely	related	to	the	degradation	of	Aβ and Tau 
proteins (Du et al., 2017; Y. Xu et al., 2019).

To further verify whether the above predicted OPTN elevation 
can be used as a biomarker for the clinic to identify MCI in T2DM 
patients, we analyzed the OPTN by Western blotting. Consistent 
with the proteomic results, the level of platelet OPTN was signifi-
cantly increased in T2DM- MCI patients (n = 34) compared with the 
T2DM- nMCI patients (n =	30)	(Figure	5k-	l).	An	age-	dependent	ele-
vation	of	OPTN	was	also	detected	 in	5xFAD	and	the	control	mice	
(Figure 5m- n).

F I G U R E  4 Proteins	correlated	with	MMSE,	Aβ1-	42/Aβ1- 40, and rGSK- 3β(T/S9) in platelet proteomics. (a) Correlation analysis of MMSE, 
Aβ1-	42/Aβ1- 40, and rGSK- 3β to the entire omics data analyzed by Pearson (p < 0.05) (positive correlation, red; negative correlation, blue). 
(b)	Heatmap	of	the	relative	abundance	of	all	MMSE,	Aβ1-	42/Aβ1- 40, and rGSK- 3β- correlated proteins in each sample (increased proteins: 
red; decreased proteins: blue). (c) Enriched KEGG pathway of all correlated proteins (the significance of the enriched pathway was defined as 
overlap	proteins	≥3,	p <	0.01).	(d)	KEGG	pathway	enriched	by	MMSE,	Aβ1-	42/Aβ1- 40, and rGSK- 3β-	correlated	proteins.	All	proteins	involved	
in the pathway were ranked according to their correlation coefficient. MMSE- correlated proteins were mainly involved in mitophagy (1,3,4) 
and	lysosome	(2,	5).	Aβ1-	42/Aβ1- 40- correlated proteins were mainly involved in proteasome (1, 2, 6, 7), insulin signaling (3, 5, 8, 10) and 
glycolysis or gluconeogenesis (4, 8, 9). The rGSK- 3β- correlated proteins were mainly involved in mitophagy (5, 8, 9), insulin signaling (2, 3, 6) 
and	PI3K-	Akt	signaling	(1,	3,	4,	7).	(e)	The	correlation	matrix	of	all	proteins	involved	in	panel	d

(a) (b) (c)

(d) (e)
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F I G U R E  5 Elevated	platelet	OPTN	can	discriminate	T2DM-	MCI	from	T2DM-	nMCI.	(a-	c)	Overlap	of	proteins	significantly	different	in	
T2DM- MCI vs.	T2DM-	nMCI	with	proteins	correlated	to	MMSE,	Aβ1-	42/Aβ1- 40, and rGSK- 3β (p < 0.05). (d- f) Correlation of proteins with 
MMSE	(d),	Aβ1-	42/Aβ1- 40 (e), and rGSK3β (f). Proteins with corresponding p values <0.05 are labeled in yellow. Overlap of proteins have 
been	marked	in	red	dot.	OPTN	is	the	only	protein	correlated	with	MMSE,	Aβ1-	42/Aβ1- 40, and rGSK- 3β. (g) Dot plots represent the relative 
expression level of OPTN in different samples (p < 0.05). (h- j) Correlation of OPTN with MMSE (h; r =	−0.571,	p =	0.011),	Aβ1-	42/Aβ1- 40 (i; 
r = 0.458, p = 0.049), and rGSK- 3β (j; r = 0.532, p = 0.019). (k, l) Relative levels of platelet OPTN in T2DM- MCI compared to T2DM- nMCI. 
Data were shown as mean ±SEM. ***p < 0.001; T2DM- nMCI: n = 30; T2DM- MCI: n = 34. (m, n) Relative levels of hippocampal OPTN in 5-  
and	10-	month	old	5xFAD	mice	compared	to	age-	matched	WT	mice.	Data	were	shown	as	mean	±SEM. *p < 0.05, **p < 0.01 and ***p < 0.001, 
n = 5

(a) (b) (c)

(d) (e) (f)

(g) (h) (k) (l)

(i) (j) (m) (n)
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2.4  |  Combined platelet OPTN and rGSK3β 
elevation in discriminating T2DM- MCI from T2DM- 
NMCI patients

By	 using	 PLS-	DA	 analysis,	 we	 further	 identified	 the	 contribu-
tion of different variables in discriminating MCI in T2DM patients 
(Figure 6a). The results showed that four factors, that is OPTN, 
rGSK- 3β, olfactory score, and GSK- 3β- Ser9, have the greatest contri-
bution in distinguishing T2DM- MCI from the T2DM- nMCI patients 
(Figure 6b).

By logistic regression algorithm analysis, we further calculated 
the significance level of the coefficient (Sig.) and 95% confidence 
intervals (95% CI) for OPTN, rGSK- 3β, olfactory score, and GSK- 3β- 
Ser9 (Figure 6c). We found that OPTN and rGSK- 3β (Sig. <0.05) were 
strongly associated with MCI in T2DM patients (Table S1). Leave- 
one- out (LOO) cross- validation was used to test the diagnostic ef-
ficiency of OPTN and rGSK- 3β in discriminating MCI from T2DM 
patients	 (Figure	 6c).	 A	 positive	 correlation	 between	 the	 elevated	
OPTN and rGSK- 3β was detected (r = 0.371, p = 0.03; Figure 6d), 
in which the efficiency of the elevated rGSK- 3β in identifying MCI 
in	T2DM	patients	had	been	reported	in	our	previous	study	(Z.	P.	Xu	
et al., 2016). Machine- learning results showed that both the elevated 
platelet	OPTN	(AUC	= 0.799, accuracy = 76.6%, cut off = 1.23, sen-
sitivity = 70.6% and specificity = 83.3%) and rGSK- 3β	(AUC	= 0.875, 
accuracy = 78.1%, cut off = 0.967, sensitivity = 73.5% and specific-
ity = 83.3%) could efficiently discriminate T2DM- MCI from T2DM- 
nMCI patients in validation set (Figure 6e- f and Figure S3).

By combining OPTN and rGSK- 3β, we generated a ROC curve 
with	an	AUC	of	0.927	and	accuracy	of	85.9%,	sensitivity	of	85.3%,	
and specificity of 86.7% (Figure 6g) in the validation set (Figure 6h). 
These data indicate that combining the elevated platelet OPTN and 
rGSK- 3β can most efficiently distinguish T2DM- MCI from T2DM- 
nMCI patients.

3  |  DISCUSSION

Type 2 diabetes mellitus (T2DM) is an independent risk factor for 
AD	(Huang	et	al.,	2014;	Janson	et	al.,	2004;	Strachan	et	al.,	2011),	
therefore, predicting who, in T2DM populations, will suffer from 
dementia	is	 important	for	early	diagnosis	and	intervention	of	AD.	
By employing a highly sensitive TMT- LC- MS/MS, bioinformatics 
and machine learning, we carried out a comprehensive proteomic 
analysis in T2DM- MCI (n = 9) and T2DM- nMCI (n = 10) patients. 
A	 total	 of	 4165	 proteins	 were	 identified,	 of	 which	 2994	 were	
captured in each group. Further analysis demonstrated that the 
significantly altered platelet proteins were mainly involved in en-
docytosis, phosphatidylinositol signaling system, amyloidosis and 
peripheral nervous system, which could be the target pathways for 
the cognitive decline in T2DM patients. These data provide a valu-
able resource for exploring potential periphery platelet biomarkers 
and the molecular mechanisms underlying the cognitive impair-
ments in T2DM patients.

We have recently demonstrated that platelet rGSK- 3β elevation, 
olfactory	dysfunction	and	APOE	ε4 genetype were positively cor-
related	 to	 the	 cognitive	 decline	 in	 T2DM	patients	 (Z.	 P.	 Xu	 et	 al.,	
2016). Here, we did not find statistical difference in these factors 
in proteomics screening cohort, which may be due to the relatively 
small sample size used for the proteomics. In the validation cohort, 
we found a significantly increased rGSK- 3β in T2DM- MCI group 
with	a	negative	correlation	to	MMSE	score.	As	β- amyloidosis is co-
morbidity	for	both	T2DM	and	AD,	we	measured	plasma	Aβ	level.	A	
significantly	elevated	Aβ1-	42/Aβ1- 40 was detected in the proteom-
ics cohort with a negative correlation to the reduced MMSE score. 
Therefore,	we	brought	MMSE,	Aβ1-	42/Aβ1- 40 and rGSK- 3β into the 
following new biomarker studies. By which, we discovered that the 
significantly changed proteins were mainly enriched in the deregu-
lated mitophagy/autophagy pathway (OPTN, SQSTM1, TBC1D15), 
insulin	signaling	pathway	(PRKAR1A,	PRKAR2B,	PRKAA1,	PRKAG1),	
and	 glycolysis/gluconeogenesis	 pathway	 (GALM,	 PCK2,	 ALDOA).	
Among	them,	OPTN	is	the	only	differentially	expressed	protein	cor-
related with all three factors (i.e., decreased MMSE score, increased 
Aβ1-	42/Aβ1- 40 and rGSK- 3β), and elevation of OPTN showed 
a strong power in discriminating T2DM- MCI from T2DM- nMCI 
patients.

OPTN is an autophagy receptor, which links ubiquitinated sub-
strates to autophagy membrane, and thereby mediates PINK1- 
driven clearance of the damaged mitochondria (Richter et al., 2016). 
OPTN	also	mediates	clearance	of	Aβ (Du et al., 2017) and soluble tau 
through autophagy pathway, while SQSTM1, another autophagy re-
ceptor, targets clearance of insoluble tau proteins (Y. Xu et al., 2019). 
We found in the current study that OPTN was significantly increased 
in platelets of T2DM- MCI patients and the hippocampus of aged 
5xFAD,	which	was	also	observed	 in	 the	brain	of	AD	patients	 (Cho	
et	al.,	2014).	PRKAA1	can	mediate	the	binding	of	ubiquitin	substrate	
linked	with	OPTN	 to	MAP1LC3,	 by	which	 it	 promotes	 autophagy	
degradation (Cho et al., 2014). It is well recognized that dysfunction 
of	autophagy	pathway	 leading	to	Aβ and tau accumulation plays a 
pivotal	role	 in	the	chronic	progression	of	AD	pathologies	(Nixon	&	
Cataldo,	2006)	(Zare-	Shahabadi	et	al.,	2015)	(Fang	et	al.,	2019).	Tau	
accumulation can in turn aggravate autophagy deficit which forms 
a vicious cycle, and the autophagosome- lysosome fusion deficit 
caused by tau accumulation induces autophagy flow inhibition (Feng 
et al., 2020). Based on these observations, we speculate that inhibi-
tion of autophagy flow may be involved in OPTN- related cognitive 
decline, though the detailed mechanisms need further investigation.

In	addition	 to	OPTN,	changes	of	FEMT2,	RAB21,	DNM1	were	
also observed in T2DM- MCI group. FERMT2 is a high- risk gene for 
AD	(Karch	&	Goate,	2015),	and	epidemiological	data	show	that	it	is	
stage- dependently associated with brain amyloidosis, and most sig-
nificant	in	MCI	(Apostolova	et	al.,	2018).	RAB21	is	mainly	involved	
in the process of endocytosis and autophagy, and it can promote 
γ- secretase internalization and translocation to the endosome/lyso-
some,	and	thus	exacerbate	Aβ	production	in	AD	(Sun	et	al.,	2018).	
Increased levels of mitochondrial fission- associated protein DNM1 
promotes mitochondrial fragmentation, mitochondrial dynamics 



    |  9 of 13YU et al.

disorder,	 and	 thus	 exacerbating	 Aβ clearance disorder (Manczak 
et al., 2011). Therefore, further validation of these proteins in larger 
populations will confirm their role to be a periphery biomarker for 
predicting cognitive decline in T2DM patients.

It is well known that T2DM patients always show peripheral ner-
vous	damages,	such	as	microangiopathy	(Zochodne,	2007).	We	also	
observed that proteins enriched in GO term of peripheral nervous 
system	disease,	including	MAP4,	MTM1,	MYO5A	and	GDAP1,	were	
significantly	increased	in	T2DM-	MCI	patients.	As	a	family	member	
of	microtubule-	associated	proteins,	MAP4	plays	a	role	in	stabilizing	

microtubules, but it is not expressed in neurons (Nguyen et al., 1997). 
MTM1 is primarily involved with congenital myopathies through 
phosphatidylinositol	 signaling	 (Blondeau	 et	 al.,	 2000).	 MYO5A	 is	
highly expressed in the brain mainly at synapses, where it promotes 
the	transport	of	AMPA	glutamate	receptors	to	the	synapse	and	par-
ticipating in the development of the synapse (Ultanir et al., 2014). 
GDAP1	 is	 highly	 expressed	 in	 neurons	 and	 localized	 in	 the	 outer	
membrane of mitochondria, which mainly affects mitochondrial dy-
namics, mitochondrial distribution along axons and oxidative stress 
process (Gonzalez- Sanchez et al., 2019). How these proteins were 

F I G U R E  6 Combined	platelet	OPTN	and	rGSK3β discriminates T2DM- MCI from T2DM- nMCI with high efficiency. (a) Discrimination 
power	of	the	patient	information	and	OPTN	analyzed	by	PLS-	DA	analysis.	(b)	OPTN,	rGSK-	3β, olfactory score, and GSK- 3β- Ser9 (VIP>1.5) 
were selected by predictive variable importance in projection (VIPpred) analysis (Red plot: VIP >1.5; Black plot: VIP <1.5). (c) The workflow 
of machine- learning strategy: logistic regression and leave- one- out (LOO) cross- validation were used to test the diagnostic efficiency of 
potential combination biomarkers. (d) Correlation of OPTN with rGSK- 3β (r = 0.371, p =	0.03).	(e-	g)	AUC	values	for	discriminating	efficiency	
of T2DM- MCI from T2DM- nMCI with OPTN (e), rGSK- 3β (f) and in combination of OPTN and rGSK- 3β (g) analyzed by LOO algorithm. (h) 
The confusion matrix of the combined biomarkers

(a) (c) (d)

(b) (e) (f)

(g) (h)
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transported between the brain and the periphery platelet deserves 
further	 investigation.	 According	 to	 the	 previous	 report	 (Reinhold	
&	Rittner,	2017),	we	speculate	that	destruction	of	nerve	barrier	or	
brain blood barrier during T2DM progression may be involved.

Consistent with our previous findings that rGSK- 3β has the 
highest efficiency in identifying MCI from T2DM patients, com-
pared	with	other	characteristic	 factors,	such	as	aging,	ApoE	gene-
type,	and	olfaction	(Z.	P.	Xu	et	al.,	2016),	we	confirmed	the	role	of	
rGSK- 3β in the current study. We further identified that the rGSK- 
3β-	correlated	 proteins	 were	 enriched	 in	 the	 AD-	related	 lipid	 me-
tabolism	 (PRKAA1,	 PRKAG1)	 and	mitophagy/autophagy	 pathways	
(OPTN, SQSTM1, TBC1D15). The elevated OPTN was positively 
correlated with rGSK- 3β in validation set. Furthermore, combination 
of the elevated platelet OPTN and rGSK- 3β remarkably enhanced 
the	MCI-	discriminating	efficiency	from	T2DM	patients	with	AUC	of	
0.927 and accuracy of 0.859. In future studies, such an incredible 
combination will be verified on larger cohorts.

In summary, recent brain/CSF proteomic data show that auto-
phagy pathways, glucose metabolism, and amyloidosis- related pro-
teins	are	significantly	dysregulated	in	AD	patients	(Bai	et	al.,	2020;	
Johnson	et	al.,	2020;	Wang	et	al.,	2020).	By	an	in-	depth	and	compre-
hensive platelet proteomic analysis in T2DM- MCI vs T2DM- nMCI 
patients, we demonstrated that the differentially expressed proteins 
were mainly enriched in amyloidosis, mitophagy/autophagy and in-
sulin signaling pathways. Machine learning further identified OPTN 
and rGSK- 3β as the most distinctive MCI- related platelet biomark-
ers. In addition, this study has also provided the first- hand data on 
the understanding of platelets in T2DM patients with or without 
MCI. Longitudinal follow- up studies on large cohort will further vali-
date the efficiency of these periphery biomarkers in predicting who 
in	T2DM	population	is	more	vulnerable	to	AD.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Participants information

All	 the	 type	2	diabetes	mellitus	 (T2DM)	patients	 from	the	Central	
Hospital of Wuhan were divided into two groups: the T2DM with-
out mild cognitive impairment (T2DM- nMCI) group and the T2DM 
with mild cognitive impairment group (T2DM- MCI), which met 
the	 National	 Institute	 on	 Aging	 and	 the	 Alzheimer's	 Association	
Guidelines	 (Albert	 et	 al.,	 2011),	 and	 received	 mini-	mental	 State	
Examination (MMSE) test scores (Folstein et al., 1975) (Table 1). In 
this study, platelets from two cohorts were used for candidate bi-
omarker screening (10 T2DM- nMCI, 9 T2DM- MCI) and validation 
(30	T2DM-	nMCI,	34	T2DM-	MCI),	respectively.	All	samples	excluded	
traumatic brain injury, brain tumors, drug abuse, alcohol addiction, 
and psychiatric disorders. Diabetes, hypertension, hyperlipidemia 
and	coronary	heart	disease	(CHD),	olfactory	score,	Apo	lipoprotein	
E	(APOE)	were	considered	systematically	(Table	1).

The study was approved by the Tongji Medical School Ethics 
Committee, complies with the Helsinki Declaration II, and includes 

written informed consent from all participants. The project “Early 
Detection of Cognitive Dysfunction in Diabetes” was registered in the 
Chinese Clinical Trial Registry (https://clini caltr ials.gov; NCT01830998).

5×FAD	 [B6.	 Cg-	Tg(APPSwFlLon,PSEN1*M146L*L286V)6799V]	
and the age/sex- matched wild- type control mice were purchased 
from	 the	 Jackson	 Laboratory	 (Maine,	USA).	 Animals	were	 housed	
in a 12– 12- h light- dark cycle environment with unlimited access to 
drinking water and food. The animal study was also reviewed and 
approved by Ethics Committee of the Shenzhen Center for Disease 
Control and Prevention.

4.2  |  Sample preparation

The fresh blood stored in the anticoagulant tube was centrifuged 
at 200 g for 20 min to remove rich red and white blood cells from 
the plasma, and 2/3 of the platelets rich supernatant was brought 
into the new tube and centrifuged at 120 g for 6 min to remove re-
maining white blood cells, and centrifuged at 1500 g for 10 minutes 
to obtain relatively pure platelet precipitate. Further, the platelet 
precipitate	 was	 washed	 with	 tyrode's	 solution	 (143.0	 mM	 NaCl,	
5.4 mM KCl, 0.25 mM NaH2PO4, 1.8 mM CaCl2, 0.5 mM MgCl2, 
5.0 mM HEPES, pH 7.4; Solarbio, T1420, Beijing, China) and cen-
trifuged at 120g for 4 min to obtain purified platelet samples and 
stored	at	−80℃.

The platelet samples were completely lysed by ultrasound (120s, 
4 s on and 6 s off) after adding the lysis buffer (8 M urea, pH 8.0, 1 
cocktail, 1 mM PMSF), and then lysed on ice for 30 min, and centri-
fuged at 12000 g for 10 minutes to obtain the pure protein solution.

4.3  |  TANDEM mass TAG (TMT) labeling

After	mass	spectrometry	 trypsin	 (Promega,	V5072)	cleavage,	each	
TMT label (ThermoFisher 90406) was attached to each sample 
(n = 19). The samples with different TMT labels were mixed together 
and divided into 15 components by high performance liquid chroma-
tography (HPLC) step by step for subsequent experiments.

4.4  |  Data collection of TMT- labeled peptides using 
LC- MS/MS

The	 dried	 components	 were	 dissolved	 in	 0.1%	 formic	 acid	 (FA),	
and captured with a silica gel capillary column filled with C18 resin 
(Varian,	 Lexington,	MA,	USA)	 for	 subsequent	Q	Exactive	 (Thermo	
Scientific,	NJ,	USA)	mass	spectrometer	analysis.	Full	scan	in	Orbitrap	
mass	analyzer	in	data-	dependent	acquisition	(DDA)	mode,	the	spe-
cific parameters are set as follows: 400– 1, 800 m/z, 70000 reso-
lution;	MS/MS	scans	 (100−1800	m/z).	Using	Proteome	Discoverer	
2.1 software (Thermo Scientific) to retrieve MS/MS data according 
to Uniport- human database (2020– 05). The searching parameters 
were modified on the previous research settings (B. Xu et al., 2019).

https://clinicaltrials.gov
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4.5  |  Bioinformatics analysis

Normalized data were uploaded to Perseus platform, and proteins 
with p < 0.05 were evaluated by t- test and considered differentially 
expressed (Bereczki et al., 2018). R studio (v.0.99.489) and heatmap 
gplots package have been widely used for cluster analysis and heat-
map drawing. Prism 8.0 is used for volcano map and heatmap analy-
sis.	Metascape	(http://metas	cape.org),	WEB-	based	GEne	SeT	AnaLysis	
Toolkit	 (http://www.webge	stalt.org)	 and	DAVID	version	6.7	 (https://
david - d.ncifc rf.gov/) were used to pathways and functional analysis. 
Cytoscape 3.6.1 and STRING (v10; https://strin g- db.org/) plug- in were 
used for visual analysis of protein- protein interaction (PPI) network. 
KEGG	Mapper–	Search	&	Color	Pathway	 (https://www.kegg.jp/kegg/
tool/map_pathw ay2.html) was used for pathway enrichment analysis.

4.6  |  ELISA and western blotting

Plasma	Aβ40	and	Aβ42	were	detected	by	a	commercial	ELISA	kit	(E-	
EL- H0542c 90 and E- EL- H0543c, Elabscience, China). The platelet 
OPTN	level	was	detected	by	Western	blotting	 (ab213556,	Abcam)	
routinely used in our laboratory.

4.7  |  Machine learning

SIMCA	(version	14.0)	software	was	used	for	partial	least	squares	dis-
crimination	analysis	(PLS-	DA).	The	protein	of	predictive	variable	im-
portance in projection larger than 1.5 (VIPpred >1.5) was considered 
to be meaningful for sample discrimination. Logistic regression (LR), 
a widely used machine- learning algorithm, was used to calculate the 
95% confidence interval (95% CI) of the biomarker for diagnosis of 
MCI. The samples were trained and evaluated in a leave- one- out 
(LOO) cross- validation manner using scikit- learn python package, 
which was used for model training and parameter optimization in the 
life sciences was used for model training and parameter optimization 
(Bader et al., 2020; Shu et al., 2020). More specifically, 63 samples 
were randomly selected from 64 samples each time for modeling, 
and the remaining one was used for validation. Thus, 64 cycles are 
carried out to achieve the purpose of full data demonstration and 
cross- validation. Confusion matrix was used to assess the specificity 
and sensitivity of biomarkers in the diagnosis of MCI.

4.8  |  Statistical analysis

The data were expressed as mean ±s.e.m. with SPSS 24.0 software 
(Statistical	 Program	 for	 Social	 Sciences	 Inc.,	 Chicago,	 IL,	USA).	 The	
student's	t-	test	was	used	to	evaluate	the	level	of	significance	between	
the two groups, and p values <0.05 was considered to be significant.

For the workflow of the analytic procedure, please also see 
Figure S4.
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