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Abstract
Type 2 diabetes mellitus (T2DM) is an independent risk factor of Alzheimer's disease 
(AD). Therefore, identifying periphery biomarkers correlated with mild cognitive im-
pairment (MCI) is of importance for early diagnosis of AD. Here, we performed platelet 
proteomics in T2DM patients with MCI (T2DM-MCI) and without MCI (T2DM-nMCI). 
Pearson analysis of the omics data with MMSE (mini-mental state examination), Aβ1-
42/Aβ1-40 (β-amyloid), and rGSK-3β(T/S9) (total to Serine-9-phosphorylated glycogen 
synthase kinase-3β) revealed that mitophagy/autophagy-, insulin signaling-, and gly-
colysis/gluconeogenesis pathways-related proteins were most significantly involved. 
Among them, only the increase of optineurin, an autophagy-related protein, was si-
multaneously correlated with the reduced MMSE score, and the increased Aβ1-42/
Aβ1-40 and rGSK-3β(T/S9), and the optineurin alone could discriminate T2DM-MCI 
from T2DM-nMCI. Combination of the elevated platelet optineurin and rGSK-3β(T/
S9) enhanced the MCI-discriminating efficiency with AUC of 0.927, specificity of 
86.7%, sensitivity of 85.3%, and accuracy of 0.859, which is promising for predicting 
cognitive decline in T2DM patients.
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1  |  INTRODUC TION

Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are 
age-related disorders that affect millions of populations worldwide 
(Chornenkyy et al., 2019; Exalto et al., 2012). Increasing epidemio-
logical data suggest that T2DM is an independent risk factor for AD 
(Huang et al., 2014; Janson et al., 2004; Strachan et al., 2011). It is also 
shown that T2DM patients have an increased risk of dementia (73%) 
compared to non-T2DM patients, and the cognitive decline seems 
to begin in the insulin resistance stage of prediabetes (Biessels et al., 
2006; Koekkoek et al., 2015). Because of the lifestyle changes, such 
as diet, overweight and lack of exercise, the incidence of T2DM is 
rapidly increasing in recent years (Carracher et al., 2018; Kahn et al., 
2014). T2DM and AD have many commonalities in pathophysiology, 
such as amyloidosis, oxidative stress, endothelial dysfunction, and 
abnormal enzyme activities (de Matos et al., 2018). It is believed that 
the increasing incidence of AD may be not only related to aging but 
also to the increasing diabetes (Prince et al., 2013).

Mild cognitive impairment (MCI) is another independent risk fac-
tor of AD. Populations with MCI generally developed into AD after 
decades, which provides a valuable window period for the inter-
vention (Hodson, 2018). Aβ deposition and neurofibrillary tangles 
formed by the phosphorylated tau proteins are the main pathologi-
cal features of AD (Jack et al., 2010). However, the accumulation of 
Aβ has already appeared 10–15 years before the appearance of the 
clinical phenotypes (Hodson, 2018). The cerebrospinal cord (CSF) 
level of Aβ1-42, a marker of amyloidosis, and the level of Aβ-PET 
are recognized as effective diagnostic biomarkers for AD (Hansson 
et al., 2019). However, these methods are invasive or expensive, so 
that they are hardly popularized in the clinic.

Many evidences suggest that platelets, the fragments shed by 
megakaryocytes, have many biological similarities with neurons 
(Chornenkyy et al., 2019; Veitinger et al., 2014). For instance, level 
of MAO-B, which is closely related to neuronal activity, is increased 
significantly in AD platelets (Forlenza et al., 2011). It is also reported 
that CD62P (P-selectin) in platelets is activated in AD patients 
(Sevush et al., 1998), while thrombin receptor activating peptide 6 
(TRAP-6), a molecule related to platelet activation, is decreased in 
AD (Jaremo et al., 2013). Interestingly, like peripheral synaptic vesi-
cles, platelets share many of the same secretory pathways and trans-
porters as the synaptic terminals of neurons during neurotransmitter 
uptake and packaging (Kaneez & Saeed, 2009; Walther et al., 2003). 
The amyloidosis-related protein BACE1 and tau hyperphosphoryla-
tion related protein glycogen synthase kinase-3β (GSK-3β), were sig-
nificantly activated in AD platelets (Colciaghi et al., 2002; Veitinger 
et al., 2014). We have also reported that the platelet GSK-3β activity 
is increased in T2DM with MCI (T2DM-MCI) patients compared to 

T2DM without MCI (T2DM-nMCI) (Z. P. Xu et al., 2016). Therefore, 
platelets contain abundant information related to the central sys-
tem and are stable in the peripheral region, which makes it a perfect 
model for exploring the peripheral biomarkers.

Proteomics is widely used in neuroscience (Bader et al., 2020; 
Xiong et al., 2019), due to its unique value in deciphering complex 
pathological mechanisms and screening diagnostic biomarkers. In 
the present study, we performed an in-depth and comprehensive 
proteomic analysis in T2DM-MCI and T2DM-nMCI patients. We 
found that mitophagy/autophagy, insulin signaling, and glycolysis/
gluconeogenesis pathways-related proteins were most significantly 
deregulated in T2DM-MCI patients with elevated levels of plate-
let rGSK-3β and Aβ1-42/Aβ1-40 ratio. The increase of optineurin 
(OPTN) alone can discriminate T2DM-MCI from T2DM-nMCI, and 
combination of the elevated platelet OPTN with rGSK-3β has greatly 
increased the discriminating efficiency.

2  |  RESULTS

2.1  |  Participants information and their platelet 
protein network alterations during progression of 
T2DM to MCI

The platelets from two cohorts of T2DM patients were collected 
for candidate biomarkers screening (10 cases T2DM-nMCI, 9 cases 
T2DM-MCI) and their validation (30 cases T2DM-nMCI, 34 cases 
T2DM-MCI), respectively (Table 1).

By using TMT-LC-MS/MS proteomics, a total of 2994 platelet 
proteins were captured, of which 46 differentially expressed pro-
teins (DEPs) were identified in T2DM-MCI vs. T2DM-nMCI (p < 0.05) 
(Figure 1a, Excel S1). To further understand the biological function of 
DEPs and the signaling events, PPI network analysis was performed 
based on KEGG database. As shown in Figure 1b, the complex net-
work regulation of the DEPs was mainly involved in endocytosis, 
peroxidase, ErbB, phosphatidylinositol signaling pathways.

Based on metascape online analysis software, the top 8  gene 
disease network (DisGeNET) with -log10 (p-value) was obtained, in-
cluding amyloidosis, peripheral neuropathy and peripheral nervous 
system diseases (Figure 2a). Specifically, the proteins involved in 
amyloidosis, including optineurin (OPTN), ras-related protein Rab-
21 (Rab21), dynamin 1 (DNM1), peroxisomal bifunctional enzyme 
(EHHADH), fermitin family homolog 2 (FERMT2), E3 ubiquitin-
protein ligase UBR1 were increased in T2DM-MCI compared with 
T2DM-nMCI (Figure 2b). The peripheral nervous system diseases 
related proteins, such as microtubule-associated protein 4 (MAP4), 
myotubularin (MTM1), unconventional myosin-Va (MYO5A), WAS/
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WASL-interacting protein family member 1 (WIPF1), and ganglioside-
induced differentiation-associated protein 1 (GDAP1) were also in-
creased in T2DM-MCI compared with T2DM-nMCI (Figure 2c).

These data together reveal the complex platelet protein network 
alterations during progression of T2DM to MCI, providing a valuable 
resource for their systematic discovery and validation.

2.2  |  Potential platelet biomarkers associated with 
MCI in T2DM patients

During patient selection for this proteomic analysis, we payed spe-
cial attention to ApoE genetype, olfactory function, and rGSK-3β(T/
S9), because changes of these factors are correlated to the cogni-
tive decline in T2DM patients (Michaelson, 2014; Rahayel et al., 
2012; Zhang et al., 2018). Although a strong trend of increase was 
shown for platelet rGSK-3β(T/S9), the difference did not reach sta-
tistical significance between T2DM-MCI and T2DM-nMCI groups 
(GSK-3β-Total: p = 0.760; GSK-3β: p = 0.237; rGSK-3β: p = 0.122) 
(Figure 3a-c). No significant difference was shown for ApoE gene-
type or olfactory function between the two groups (Table 1), which 
may be due to the relatively small sample size. We also detected 

plasma levels of Aβ1-40 and Aβ1-42, because the β-amyloidosis is 
the common pathology in both AD and diabetes patients (de Matos 
et al., 2018). We found that Aβ1-40 was decreased in T2DM-MCI 
compared with T2DM-nMCI patients while no significant differ-
ence was detected for Aβ1-42 (p = 0.400), consequently, the ratio 
of Aβ1-42/Aβ1-40 was increased in T2DM-MCI vs T2DM-nMCI 
(Figure 3e-g). Furthermore, a negative correlation between MMSE 
score and ratio of Aβ1-42/Aβ1-40 was shown (r = −0.626, p = 0.004; 
Figure 3h)). Though the increase of rGSK-3β was not statistically 
significant (Figure 3a-c), we also detected a negative correlation 
between MMSE score and rGSK-3β (Figure 3d). Therefore, we also 
employed Aβ1-42/Aβ1-40 and rGSK-3β as the parameters for plate-
let new biomarker screening in addition to MMSE score.

By Pearson analysis, a total of 150 correlated proteins were iden-
tified in T2DM-MCI vs T2DM-nMCI groups, among which MMSE, 
Aβ1-42/Aβ1-40 and rGSK-3β-correlated proteins were respec-
tively accounted for 40, 53, and 65 with  r  values of 0.456–0.726 
(Figure 4a and Excel S2) and relative abundance values shown in 
Figure 4b and Excel S3. The KEGG pathway analyses showed that 
the MMSE-correlated proteins (n = 40) were mainly related to mi-
tophagy (OPTN, SQSTM1 and Atg3), and lysosome, such as solute 
carrier family 17 member 5 (SLC17A5) and phospholipase A2 group 

TA B L E  1 Information for T2DM-MCI and T2DM-nMCI patients

Characteristic

Proteomics-Discover set

p-value

Western blot-Validation set

p-value
T2DM-nMCI 
(n = 10)

T2DM-MCI 
(n = 9)

T2DM-nMCI 
(n = 30)

T2DM-MCI 
(n = 34)

Age, mean (SD), year 71.30 (2.67) 73.3 (5.41) 0.305 63.67 (5.62) 64.47 (6.92) 0.615

Sex (male, female) 4 M, 6F 3 M, 6F 0.764 15 M, 15F 12 M, 22F 0.312

Olfactory score 6.80 (1.03) 7.67 (1.94) 0.233 7.50 (1.43) 8.32 (1.36) 0.022

HbA1c 8.53 (1.99) 7.73 (1.41) 0.376 7.84 (2.05) 8.11 (1.55) 0.591

Diabetes duration, year 11.80 (5.33) 14.00 (8.29) 0.496 7.87 (6.37) 7.24 (6.09) 0.687

Insulin treatment, n (%) 5 (50.0%) 6 (66.7%) 0.653 15 (50.0%) 10 (29.4%) 0.125

Diabetic complications, n (%) 6 (60.0%) 4 (44.4%) 0.498 17 (56.7%) 19 (55.9%) >0.999

Hypertension, n (%) 5 (50.0%) 8 (88.9%) 0.069 15 (50.0%) 17 (50.0%) >0.999

Hyperlipidemia, n (%) 4 (40.0%) 5 (55.6%) 0.498 16 (53.3%) 13 (38.2) 0.315

CHD, n (%) 4 (40.0%) 4 (44.4%) 0.845 6 (20.0%) 9 (26.5%) 0.571

APOE ε2 (+), n (%) 2 (20.0%) 0 (0.0%) 0.474 3 (10.0%) 6 (17.6%) 0.483

APOE ε3 (+), n (%) 10 (100%) 9 (100%) >0.999 30 (100%) 30 (88.2%) 0.116

APOE ε4 (+), n (%) 0 (0.0%) 0 (0.0%) >0.999 3 (10.0%) 7 (20.6%) 0.313

GSK−3β (Total) (SD) 2.62 (2.30) 2.99 (2.90) 0.760 2.15 (1.83) 2.75 (1.99) 0.218

GSK−3β (S9) (SD) 3.90 (4.11) 2.09 (1.67) 0.237 4.37 (4.51) 2.26 (2.63) 0.024

rGSK−3β (Total/S9) (SD) 0.76 (0.21) 3.52 (5.38) 0.122 0.66 (0.38) 2.09 (2.70) 0.006

Aβ1-40 (SD) 268.50 (117.70) 95.56 (102.80) 0.004 194.50 (95.17) 177.80 (95.92) 0.487

Aβ1-42 (SD) 63.51 (24.66) 74.23 (29.44) 0.400 61.54 (21.68) 61.90 (20.40) 0.945

Aβ1-42/1-40 (SD) 0.32 (0.28) 1.40 (1.06) 0.006 0.40 (0.27) 0.60 (0.71) 0.165

MMSE 28.70 (0.67) 20.11 (3.41) <0.001 28.67 (0.71) 22.97 (2.53) <0.001

Abbreviations: APOE, Apo lipoprotein E; CHD, Coronary heart disease; GSK-3β, glycogen synthase kinase-3β; HbA1c, hemoglobin A1c; MCI, mild 
cognitive impairment; MMSE, the Minimum Mental State Examination; rGSK3β, GSK-3β-total/GSK-3β-S9; T2DM, type 2 diabetes mellitus; T2DM-
MCI, T2DM with MCI group; T2DM-nMCI, T2DM without MCI group.
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XV (PLA2G15) (Figure 4c-d). The Aβ1-42/Aβ1-40-correlated pro-
teins were mainly involved in glycolysis, gluconeogenesis, and insulin 
signaling pathway (n = 53), such as proteasome subunit alpha type-3 
(PSMA3), cAMP-dependent protein kinase type I-alpha regulatory 
subunit (PRKAR1A), phosphoenolpyruvate carboxykinase [GTP] 
(PCK2), fructose-bisphosphate aldolase A (ALDOA) (Figure 4c-d). 
The rGSK-3β-correlated proteins (n = 65) were mainly related to mi-
tophagy, insulin, and PI3K-Akt signaling pathways (Figure 4c-d).

To describe the signal transduction pathway more intuitively, cy-
toscape (3.7.0) software and its wiki pathway, KEGG plug-in were 
used to specifically display the signal regulation pathway. As shown 
in Figure S1a, TBC1D15 is involved in autophagy encapsulation of 
mitochondria, while OPTN and SQSTM1 (P62) can bind to ubiquiti-
nation substrates and promote protein degradation. Additionally, 
PKA regulation subunits, PRKAR1A and PRKAR2B, were correlated 
with Aβ1-42/Aβ1-40, and AMPK subunit PRKAA1, PRKAG1 cor-
related with rGSK3β, which are involved lipid metabolism in the in-
sulin signaling pathway (Figure S1b).

All proteins involved in the pathways were ranked according 
to their correlation coefficient (Figure 4d), and the relative abun-
dance of each protein in each sample is represented by a heat map 
(Figure 4d and Excel S4). By integrating correlated proteins involved 
in the above signaling pathways, we obtained a mixed correla-
tion matrix combining pathological/clinical features and proteins 

(Figure 4e and Excel S5). Interestingly, we found some closely cor-
related proteins in the data list, such as mitophagy proteins OPTN, 
SQSTM1, and TBC1D15 (r = 0.50–0.61) (Figure 4e), which were also 
widely correlated with the proteins enriched in PI3K-Akt signaling 
pathway (r = 0.46–0.71). In addition, OPTN and SQSTM1 were also 
strongly correlated with PRKAR1A (r = 0.59) and PRKAA1 (r = 0.59) 
in AMPK subunit (Figure 4e and Figure S2).

These data together suggest that proteins associated with de-
regulated mitophagy/autophagy, insulin signaling, and glycolysis/
gluconeogenesis pathways could be potential platelet biomarkers 
for cognitive decline in T2DM patients.

2.3  |  OPTN elevation in identifying MCI from 
T2DM patients

Next, we performed venn logic analysis to determine the correla-
tion of the DEPs with MMSE (n = 15), Aβ1-42/Aβ1-40 (n = 6), and 
rGSK-3β (n  =  4), respectively (Figure 5a-f). The MMSE-correlated 
DEPs were mainly involved in amyloidosis (DNM1, UBR1, OPTN, 
FERMT2), CNS disorder (WIPF1) and energy metabolism (COA6, 
COX7C, PDPR) processes (Figure 5a and d). The Aβ1-42/Aβ1-40-
correlated DEPs included OPTN, pyruvate dehydrogenase phos-
phatase regulatory subunit (PDPR), Ras-related GTP-binding protein 

F I G U R E  1 Differentially expressed proteins (DEPs) and protein-protein interaction (PPI) networks in T2DM-MCI vs T2DM-nMCI. (a) 46 
DEPs were identified in the platelet of T2DM-MCI patients compared with the T2DM-nMCI (p < 0.05, increased proteins: red; decreased 
proteins: blue). (b) The PPI networks indicate the interactions of DEPs with each other in T2DM-MCI vs T2DM-nMCI, and endocytosis, 
peroxidase, ErbB, and phosphatidylinositol signaling system are closely associated

(a) (b)
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F I G U R E  2 Integrating information on human disease-associated DPEs. (a) GO term of top 8 gene disease network (DisGeNET) with 
-log10 (p-value). (b, c) Relative expression abundance of amyloidosis and peripheral neuropathy, peripheral nervous system diseases. 
*p < 0.01 vs. the T2DM-nMCI subjects
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D (RRAGD), BolA-like protein 2 (BOLA2), polymeric immunoglobulin 
receptor (PIGR), BRISC and BRCA1-A complex member 2 (BABAM2) 
(Figure 5b and e). The rGSK-3β-correlated DEPs included OPTN, 
dehydrogenase/reductase SDR family member 4 (DHRS4), recep-
tor protein serine/threonine kinase (TC2N), deubiquitinating protein 
VCIP135 (VCPIP1) (Figure 5c and f).

We found excitingly that among the above DEPs, only the elevated 
OPTN (Figure 5g) was significantly correlated with MMSE (r = −0.571, 
p = 0.011; Figure 5h), Aβ1-42/Aβ1-40 (r = 0.458, p = 0.049; Figure 5i), 
and rGSK-3β (r = 0.532, p = 0.019; Figure 5j) in T2DM-MCI patients, 
suggesting a strong power of OPTN as a biomarker for identifying 

MCI in T2DM patients. Studies have shown that the OPTN-mediated 
autophagy pathway is closely related to the degradation of Aβ and Tau 
proteins (Du et al., 2017; Y. Xu et al., 2019).

To further verify whether the above predicted OPTN elevation 
can be used as a biomarker for the clinic to identify MCI in T2DM 
patients, we analyzed the OPTN by Western blotting. Consistent 
with the proteomic results, the level of platelet OPTN was signifi-
cantly increased in T2DM-MCI patients (n = 34) compared with the 
T2DM-nMCI patients (n = 30) (Figure 5k-l). An age-dependent ele-
vation of OPTN was also detected in 5xFAD and the control mice 
(Figure 5m-n).

F I G U R E  4 Proteins correlated with MMSE, Aβ1-42/Aβ1-40, and rGSK-3β(T/S9) in platelet proteomics. (a) Correlation analysis of MMSE, 
Aβ1-42/Aβ1-40, and rGSK-3β to the entire omics data analyzed by Pearson (p < 0.05) (positive correlation, red; negative correlation, blue). 
(b) Heatmap of the relative abundance of all MMSE, Aβ1-42/Aβ1-40, and rGSK-3β-correlated proteins in each sample (increased proteins: 
red; decreased proteins: blue). (c) Enriched KEGG pathway of all correlated proteins (the significance of the enriched pathway was defined as 
overlap proteins ≥3, p < 0.01). (d) KEGG pathway enriched by MMSE, Aβ1-42/Aβ1-40, and rGSK-3β-correlated proteins. All proteins involved 
in the pathway were ranked according to their correlation coefficient. MMSE-correlated proteins were mainly involved in mitophagy (1,3,4) 
and lysosome (2, 5). Aβ1-42/Aβ1-40-correlated proteins were mainly involved in proteasome (1, 2, 6, 7), insulin signaling (3, 5, 8, 10) and 
glycolysis or gluconeogenesis (4, 8, 9). The rGSK-3β-correlated proteins were mainly involved in mitophagy (5, 8, 9), insulin signaling (2, 3, 6) 
and PI3K-Akt signaling (1, 3, 4, 7). (e) The correlation matrix of all proteins involved in panel d

(a) (b) (c)

(d) (e)
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F I G U R E  5 Elevated platelet OPTN can discriminate T2DM-MCI from T2DM-nMCI. (a-c) Overlap of proteins significantly different in 
T2DM-MCI vs. T2DM-nMCI with proteins correlated to MMSE, Aβ1-42/Aβ1-40, and rGSK-3β (p < 0.05). (d-f) Correlation of proteins with 
MMSE (d), Aβ1-42/Aβ1-40 (e), and rGSK3β (f). Proteins with corresponding p values <0.05 are labeled in yellow. Overlap of proteins have 
been marked in red dot. OPTN is the only protein correlated with MMSE, Aβ1-42/Aβ1-40, and rGSK-3β. (g) Dot plots represent the relative 
expression level of OPTN in different samples (p < 0.05). (h-j) Correlation of OPTN with MMSE (h; r = −0.571, p = 0.011), Aβ1-42/Aβ1-40 (i; 
r = 0.458, p = 0.049), and rGSK-3β (j; r = 0.532, p = 0.019). (k, l) Relative levels of platelet OPTN in T2DM-MCI compared to T2DM-nMCI. 
Data were shown as mean ±SEM. ***p < 0.001; T2DM-nMCI: n = 30; T2DM-MCI: n = 34. (m, n) Relative levels of hippocampal OPTN in 5- 
and 10-month old 5xFAD mice compared to age-matched WT mice. Data were shown as mean ±SEM. *p < 0.05, **p < 0.01 and ***p < 0.001, 
n = 5

(a) (b) (c)

(d) (e) (f)

(g) (h) (k) (l)

(i) (j) (m) (n)
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2.4  |  Combined platelet OPTN and rGSK3β 
elevation in discriminating T2DM-MCI from T2DM-
NMCI patients

By using PLS-DA analysis, we further identified the contribu-
tion of different variables in discriminating MCI in T2DM patients 
(Figure 6a). The results showed that four factors, that is OPTN, 
rGSK-3β, olfactory score, and GSK-3β-Ser9, have the greatest contri-
bution in distinguishing T2DM-MCI from the T2DM-nMCI patients 
(Figure 6b).

By logistic regression algorithm analysis, we further calculated 
the significance level of the coefficient (Sig.) and 95% confidence 
intervals (95% CI) for OPTN, rGSK-3β, olfactory score, and GSK-3β-
Ser9 (Figure 6c). We found that OPTN and rGSK-3β (Sig. <0.05) were 
strongly associated with MCI in T2DM patients (Table S1). Leave-
one-out (LOO) cross-validation was used to test the diagnostic ef-
ficiency of OPTN and rGSK-3β in discriminating MCI from T2DM 
patients (Figure 6c). A positive correlation between the elevated 
OPTN and rGSK-3β was detected (r = 0.371, p = 0.03; Figure 6d), 
in which the efficiency of the elevated rGSK-3β in identifying MCI 
in T2DM patients had been reported in our previous study (Z. P. Xu 
et al., 2016). Machine-learning results showed that both the elevated 
platelet OPTN (AUC = 0.799, accuracy = 76.6%, cut off = 1.23, sen-
sitivity = 70.6% and specificity = 83.3%) and rGSK-3β (AUC = 0.875, 
accuracy = 78.1%, cut off = 0.967, sensitivity = 73.5% and specific-
ity = 83.3%) could efficiently discriminate T2DM-MCI from T2DM-
nMCI patients in validation set (Figure 6e-f and Figure S3).

By combining OPTN and rGSK-3β, we generated a ROC curve 
with an AUC of 0.927 and accuracy of 85.9%, sensitivity of 85.3%, 
and specificity of 86.7% (Figure 6g) in the validation set (Figure 6h). 
These data indicate that combining the elevated platelet OPTN and 
rGSK-3β can most efficiently distinguish T2DM-MCI from T2DM-
nMCI patients.

3  |  DISCUSSION

Type 2 diabetes mellitus (T2DM) is an independent risk factor for 
AD (Huang et al., 2014; Janson et al., 2004; Strachan et al., 2011), 
therefore, predicting who, in T2DM populations, will suffer from 
dementia is important for early diagnosis and intervention of AD. 
By employing a highly sensitive TMT-LC-MS/MS, bioinformatics 
and machine learning, we carried out a comprehensive proteomic 
analysis in T2DM-MCI (n = 9) and T2DM-nMCI (n = 10) patients. 
A total of 4165 proteins were identified, of which 2994 were 
captured in each group. Further analysis demonstrated that the 
significantly altered platelet proteins were mainly involved in en-
docytosis, phosphatidylinositol signaling system, amyloidosis and 
peripheral nervous system, which could be the target pathways for 
the cognitive decline in T2DM patients. These data provide a valu-
able resource for exploring potential periphery platelet biomarkers 
and the molecular mechanisms underlying the cognitive impair-
ments in T2DM patients.

We have recently demonstrated that platelet rGSK-3β elevation, 
olfactory dysfunction and APOE ε4 genetype were positively cor-
related to the cognitive decline in T2DM patients (Z. P. Xu et al., 
2016). Here, we did not find statistical difference in these factors 
in proteomics screening cohort, which may be due to the relatively 
small sample size used for the proteomics. In the validation cohort, 
we found a significantly increased rGSK-3β in T2DM-MCI group 
with a negative correlation to MMSE score. As β-amyloidosis is co-
morbidity for both T2DM and AD, we measured plasma Aβ level. A 
significantly elevated Aβ1-42/Aβ1-40 was detected in the proteom-
ics cohort with a negative correlation to the reduced MMSE score. 
Therefore, we brought MMSE, Aβ1-42/Aβ1-40 and rGSK-3β into the 
following new biomarker studies. By which, we discovered that the 
significantly changed proteins were mainly enriched in the deregu-
lated mitophagy/autophagy pathway (OPTN, SQSTM1, TBC1D15), 
insulin signaling pathway (PRKAR1A, PRKAR2B, PRKAA1, PRKAG1), 
and glycolysis/gluconeogenesis pathway (GALM, PCK2, ALDOA). 
Among them, OPTN is the only differentially expressed protein cor-
related with all three factors (i.e., decreased MMSE score, increased 
Aβ1-42/Aβ1-40 and rGSK-3β), and elevation of OPTN showed 
a strong power in discriminating T2DM-MCI from T2DM-nMCI 
patients.

OPTN is an autophagy receptor, which links ubiquitinated sub-
strates to autophagy membrane, and thereby mediates PINK1-
driven clearance of the damaged mitochondria (Richter et al., 2016). 
OPTN also mediates clearance of Aβ (Du et al., 2017) and soluble tau 
through autophagy pathway, while SQSTM1, another autophagy re-
ceptor, targets clearance of insoluble tau proteins (Y. Xu et al., 2019). 
We found in the current study that OPTN was significantly increased 
in platelets of T2DM-MCI patients and the hippocampus of aged 
5xFAD, which was also observed in the brain of AD patients (Cho 
et al., 2014). PRKAA1 can mediate the binding of ubiquitin substrate 
linked with OPTN to MAP1LC3, by which it promotes autophagy 
degradation (Cho et al., 2014). It is well recognized that dysfunction 
of autophagy pathway leading to Aβ and tau accumulation plays a 
pivotal role in the chronic progression of AD pathologies (Nixon & 
Cataldo, 2006) (Zare-Shahabadi et al., 2015) (Fang et al., 2019). Tau 
accumulation can in turn aggravate autophagy deficit which forms 
a vicious cycle, and the autophagosome-lysosome fusion deficit 
caused by tau accumulation induces autophagy flow inhibition (Feng 
et al., 2020). Based on these observations, we speculate that inhibi-
tion of autophagy flow may be involved in OPTN-related cognitive 
decline, though the detailed mechanisms need further investigation.

In addition to OPTN, changes of FEMT2, RAB21, DNM1 were 
also observed in T2DM-MCI group. FERMT2 is a high-risk gene for 
AD (Karch & Goate, 2015), and epidemiological data show that it is 
stage-dependently associated with brain amyloidosis, and most sig-
nificant in MCI (Apostolova et al., 2018). RAB21 is mainly involved 
in the process of endocytosis and autophagy, and it can promote 
γ-secretase internalization and translocation to the endosome/lyso-
some, and thus exacerbate Aβ production in AD (Sun et al., 2018). 
Increased levels of mitochondrial fission-associated protein DNM1 
promotes mitochondrial fragmentation, mitochondrial dynamics 
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disorder, and thus exacerbating Aβ clearance disorder (Manczak 
et al., 2011). Therefore, further validation of these proteins in larger 
populations will confirm their role to be a periphery biomarker for 
predicting cognitive decline in T2DM patients.

It is well known that T2DM patients always show peripheral ner-
vous damages, such as microangiopathy (Zochodne, 2007). We also 
observed that proteins enriched in GO term of peripheral nervous 
system disease, including MAP4, MTM1, MYO5A and GDAP1, were 
significantly increased in T2DM-MCI patients. As a family member 
of microtubule-associated proteins, MAP4 plays a role in stabilizing 

microtubules, but it is not expressed in neurons (Nguyen et al., 1997). 
MTM1 is primarily involved with congenital myopathies through 
phosphatidylinositol signaling (Blondeau et al., 2000). MYO5A is 
highly expressed in the brain mainly at synapses, where it promotes 
the transport of AMPA glutamate receptors to the synapse and par-
ticipating in the development of the synapse (Ultanir et al., 2014). 
GDAP1 is highly expressed in neurons and localized in the outer 
membrane of mitochondria, which mainly affects mitochondrial dy-
namics, mitochondrial distribution along axons and oxidative stress 
process (Gonzalez-Sanchez et al., 2019). How these proteins were 

F I G U R E  6 Combined platelet OPTN and rGSK3β discriminates T2DM-MCI from T2DM-nMCI with high efficiency. (a) Discrimination 
power of the patient information and OPTN analyzed by PLS-DA analysis. (b) OPTN, rGSK-3β, olfactory score, and GSK-3β-Ser9 (VIP>1.5) 
were selected by predictive variable importance in projection (VIPpred) analysis (Red plot: VIP >1.5; Black plot: VIP <1.5). (c) The workflow 
of machine-learning strategy: logistic regression and leave-one-out (LOO) cross-validation were used to test the diagnostic efficiency of 
potential combination biomarkers. (d) Correlation of OPTN with rGSK-3β (r = 0.371, p = 0.03). (e-g) AUC values for discriminating efficiency 
of T2DM-MCI from T2DM-nMCI with OPTN (e), rGSK-3β (f) and in combination of OPTN and rGSK-3β (g) analyzed by LOO algorithm. (h) 
The confusion matrix of the combined biomarkers

(a) (c) (d)

(b) (e) (f)

(g) (h)
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transported between the brain and the periphery platelet deserves 
further investigation. According to the previous report (Reinhold 
& Rittner, 2017), we speculate that destruction of nerve barrier or 
brain blood barrier during T2DM progression may be involved.

Consistent with our previous findings that rGSK-3β has the 
highest efficiency in identifying MCI from T2DM patients, com-
pared with other characteristic factors, such as aging, ApoE gene-
type, and olfaction (Z. P. Xu et al., 2016), we confirmed the role of 
rGSK-3β in the current study. We further identified that the rGSK-
3β-correlated proteins were enriched in the AD-related lipid me-
tabolism (PRKAA1, PRKAG1) and mitophagy/autophagy pathways 
(OPTN, SQSTM1, TBC1D15). The elevated OPTN was positively 
correlated with rGSK-3β in validation set. Furthermore, combination 
of the elevated platelet OPTN and rGSK-3β remarkably enhanced 
the MCI-discriminating efficiency from T2DM patients with AUC of 
0.927 and accuracy of 0.859. In future studies, such an incredible 
combination will be verified on larger cohorts.

In summary, recent brain/CSF proteomic data show that auto-
phagy pathways, glucose metabolism, and amyloidosis-related pro-
teins are significantly dysregulated in AD patients (Bai et al., 2020; 
Johnson et al., 2020; Wang et al., 2020). By an in-depth and compre-
hensive platelet proteomic analysis in T2DM-MCI vs T2DM-nMCI 
patients, we demonstrated that the differentially expressed proteins 
were mainly enriched in amyloidosis, mitophagy/autophagy and in-
sulin signaling pathways. Machine learning further identified OPTN 
and rGSK-3β as the most distinctive MCI-related platelet biomark-
ers. In addition, this study has also provided the first-hand data on 
the understanding of platelets in T2DM patients with or without 
MCI. Longitudinal follow-up studies on large cohort will further vali-
date the efficiency of these periphery biomarkers in predicting who 
in T2DM population is more vulnerable to AD.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Participants information

All the type 2 diabetes mellitus (T2DM) patients from the Central 
Hospital of Wuhan were divided into two groups: the T2DM with-
out mild cognitive impairment (T2DM-nMCI) group and the T2DM 
with mild cognitive impairment group (T2DM-MCI), which met 
the National Institute on Aging and the Alzheimer's Association 
Guidelines (Albert et al., 2011), and received mini-mental State 
Examination (MMSE) test scores (Folstein et al., 1975) (Table 1). In 
this study, platelets from two cohorts were used for candidate bi-
omarker screening (10  T2DM-nMCI, 9  T2DM-MCI) and validation 
(30 T2DM-nMCI, 34 T2DM-MCI), respectively. All samples excluded 
traumatic brain injury, brain tumors, drug abuse, alcohol addiction, 
and psychiatric disorders. Diabetes, hypertension, hyperlipidemia 
and coronary heart disease (CHD), olfactory score, Apo lipoprotein 
E (APOE) were considered systematically (Table 1).

The study was approved by the Tongji Medical School Ethics 
Committee, complies with the Helsinki Declaration II, and includes 

written informed consent from all participants. The project “Early 
Detection of Cognitive Dysfunction in Diabetes” was registered in the 
Chinese Clinical Trial Registry (https://clini​caltr​ials.gov; NCT01830998).

5×FAD [B6. Cg-Tg(APPSwFlLon,PSEN1*M146L*L286V)6799V] 
and the age/sex-matched wild-type control mice were purchased 
from the Jackson Laboratory (Maine, USA). Animals were housed 
in a 12–12-h light-dark cycle environment with unlimited access to 
drinking water and food. The animal study was also reviewed and 
approved by Ethics Committee of the Shenzhen Center for Disease 
Control and Prevention.

4.2  |  Sample preparation

The fresh blood stored in the anticoagulant tube was centrifuged 
at 200 g for 20 min to remove rich red and white blood cells from 
the plasma, and 2/3 of the platelets rich supernatant was brought 
into the new tube and centrifuged at 120 g for 6 min to remove re-
maining white blood cells, and centrifuged at 1500 g for 10 minutes 
to obtain relatively pure platelet precipitate. Further, the platelet 
precipitate was washed with tyrode's solution (143.0  mM NaCl, 
5.4 mM KCl, 0.25 mM NaH2PO4, 1.8 mM CaCl2, 0.5 mM MgCl2, 
5.0 mM HEPES, pH 7.4; Solarbio, T1420, Beijing, China) and cen-
trifuged at 120g for 4 min to obtain purified platelet samples and 
stored at −80℃.

The platelet samples were completely lysed by ultrasound (120s, 
4 s on and 6 s off) after adding the lysis buffer (8 M urea, pH 8.0, 1 
cocktail, 1 mM PMSF), and then lysed on ice for 30 min, and centri-
fuged at 12000 g for 10 minutes to obtain the pure protein solution.

4.3  |  TANDEM mass TAG (TMT) labeling

After mass spectrometry trypsin (Promega, V5072) cleavage, each 
TMT label (ThermoFisher 90406) was attached to each sample 
(n = 19). The samples with different TMT labels were mixed together 
and divided into 15 components by high performance liquid chroma-
tography (HPLC) step by step for subsequent experiments.

4.4  |  Data collection of TMT-labeled peptides using 
LC-MS/MS

The dried components were dissolved in 0.1% formic acid (FA), 
and captured with a silica gel capillary column filled with C18 resin 
(Varian, Lexington, MA, USA) for subsequent Q Exactive (Thermo 
Scientific, NJ, USA) mass spectrometer analysis. Full scan in Orbitrap 
mass analyzer in data-dependent acquisition (DDA) mode, the spe-
cific parameters are set as follows: 400–1, 800  m/z, 70000 reso-
lution; MS/MS scans (100−1800 m/z). Using Proteome Discoverer 
2.1 software (Thermo Scientific) to retrieve MS/MS data according 
to Uniport-human database (2020–05). The searching parameters 
were modified on the previous research settings (B. Xu et al., 2019).

https://clinicaltrials.gov
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4.5  |  Bioinformatics analysis

Normalized data were uploaded to Perseus platform, and proteins 
with p < 0.05 were evaluated by t-test and considered differentially 
expressed (Bereczki et al., 2018). R studio (v.0.99.489) and heatmap 
gplots package have been widely used for cluster analysis and heat-
map drawing. Prism 8.0 is used for volcano map and heatmap analy-
sis. Metascape (http://metas​cape.org), WEB-based GEne SeT AnaLysis 
Toolkit (http://www.webge​stalt.org) and DAVID version 6.7 (https://
david​-d.ncifc​rf.gov/) were used to pathways and functional analysis. 
Cytoscape 3.6.1 and STRING (v10; https://strin​g-db.org/) plug-in were 
used for visual analysis of protein-protein interaction (PPI) network. 
KEGG Mapper–Search & Color Pathway (https://www.kegg.jp/kegg/
tool/map_pathw​ay2.html) was used for pathway enrichment analysis.

4.6  |  ELISA and western blotting

Plasma Aβ40 and Aβ42 were detected by a commercial ELISA kit (E-
EL-H0542c 90 and E-EL-H0543c, Elabscience, China). The platelet 
OPTN level was detected by Western blotting (ab213556, Abcam) 
routinely used in our laboratory.

4.7  |  Machine learning

SIMCA (version 14.0) software was used for partial least squares dis-
crimination analysis (PLS-DA). The protein of predictive variable im-
portance in projection larger than 1.5 (VIPpred >1.5) was considered 
to be meaningful for sample discrimination. Logistic regression (LR), 
a widely used machine-learning algorithm, was used to calculate the 
95% confidence interval (95% CI) of the biomarker for diagnosis of 
MCI. The samples were trained and evaluated in a leave-one-out 
(LOO) cross-validation manner using scikit-learn python package, 
which was used for model training and parameter optimization in the 
life sciences was used for model training and parameter optimization 
(Bader et al., 2020; Shu et al., 2020). More specifically, 63 samples 
were randomly selected from 64 samples each time for modeling, 
and the remaining one was used for validation. Thus, 64 cycles are 
carried out to achieve the purpose of full data demonstration and 
cross-validation. Confusion matrix was used to assess the specificity 
and sensitivity of biomarkers in the diagnosis of MCI.

4.8  |  Statistical analysis

The data were expressed as mean ±s.e.m. with SPSS 24.0 software 
(Statistical Program for Social Sciences Inc., Chicago, IL, USA). The 
student's t-test was used to evaluate the level of significance between 
the two groups, and p values <0.05 was considered to be significant.

For the workflow of the analytic procedure, please also see 
Figure S4.
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