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Abstract: Mitochondrial disorders are clinically heterogeneous, resulting from nuclear gene and mi-

tochondrial mutations that disturb the mitochondrial functions and dynamics. There is a lack of evi-

dence linking mtDNA mutations to neurodegenerative disorders, mainly due to the absence of no-

ticeable neuropathological lesions in postmortem samples. This review describes various gene muta-

tions in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, 

and stroke. These abnormalities, including PINK1, Parkin, and SOD1 mutations, seem to reveal mi-

tochondrial dysfunctions due to either mtDNA mutation or deletion, the mechanism of which re-

mains unclear in depth. 
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1. INTRODUCTION 

Mitochondria are known as the powerhouse of cells. The 
mitochondrial respiratory chain plays a significant role in 
oxidative phosphorylation and the mitochondrial genes asso-
ciated with the chain. Mitochondrial DNA (mtDNA), a 16.5 
kb circular DNA, is inherited from the mother [1]. Any im-
pairment or damage to mtDNA can shed the possibility of 
abnormal protein accumulations leading to various mito-
chondrial diseases. Aging produces functional impairment of 
the mitochondrial respiratory chain in various tissues, includ-
ing the central nervous system, leading to abnormalities in 
oxidative energy production [1-3]. Mitochondria is crucially 
involved in various intracellular functions, such as biosyn-
thesis of lipids, calcium signaling, and apoptosis [4], and 
these processes are involved in various neurodegenerative 
diseases [5, 6]. Mitochondrial dysfunction is now an emerg-
ing area of study in aging as well as neurodegeneration. A 
large proportion of the mitochondrial dysfunction is associ-
ated with aging resulting from the mtDNA mutation accumu-
lation due to a constant replication cycle. In individual cells, 
the mutations happen to be unique and accumulate, leading 
to cell function impairment [1]. Several copies of mtDNA 
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are initiated. Some of the copies may have mutations known 
as heteroplasmy, which accumulates during life, suggesting 
that mtDNA mutations associated with aging dysfunction 
can be due to an interaction of genetic and acquired mtDNA 
damage [1, 7].  

Neurodegenerative disorders involve diseases that cause 
neuronal cells' dysfunction, producing devastating effects, 
and are still a challenging area with limited treatment availa-
ble. The most common neurodegenerative diseases are Alz-
heimer's Disease (AD), Parkinson's Disease (PD), Amyo-
trophic Lateral Sclerosis (ALS), Huntington's Diseases (HD), 
and Multiple sclerosis (MS), which have various pathophys-
iological etiology. Recent studies highlight the role of mito-
chondrial dysfunction in promoting neurodegeneration or 
other mechanisms, including apoptosis, mitophagy, and au-
tophagy. Mitochondrial dysfunction may occur due to muta-
tion in mitochondrial DNA (mtDNA) and its association 
with the mutation of various genes contributing to neuro-
degenerative disorders [8].  

2. MITOCHONDRIAL STRUCTURE, PHYSIOLOGY, 
GENETICS, AND PATHOPHYSIOLOGY 

2.1. Mitochondrial Structure and Physiology 

Mitochondria are subcellular organelles with a double 
membrane. They are autonomous, primitive as well as simi-
lar to bacteria [9]. More than 90% of cellular energy in the 
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human body is produced by oxidative phosphorylation in the 
mitochondria [10]. Apart from oxidative phosphorylation 
[11], mitochondria are involved in other functions such as 
maintenance of calcium homeostasis and inorganic cofactor 
iron-sulfur clusters, Reactive Oxygen Species (ROS) genera-
tion and signaling, metabolism of lipid in close association 
with the Endoplasmic Reticulum (ER), and a role in mem-
brane donation whereby dysfunctional/damaged mitochon-
dria will be subjected to cell death or transported to lyso-
somes. Mitochondria is a double-membrane structure which 
consists of (i) an outer membrane having lesser protein con-
tent and being far more permeable than the inner membrane, 
(ii) an inner membrane, having a higher percentage of pro-
tein content and impermeability to polar molecules, and (iii) 
a matrix in the form of cristae providing a large surface area 
for the proton gradient and oxidative phosphorylation 
maintenance (Fig. 1) [12]. Substances of small molecular 
weight can permeate the outer membrane. The mitochondrial 
respiratory chain enzymes are seen in the inner membrane, 
which is highly folded and segregates the intermembrane 
space and the mitochondrial matrix. The mitochondrial ge-
nome is present in the matrix and the enzymes associated 
with the tricarboxylic acid cycle and oxidation of fatty acids. 
The inner mitochondrial membrane consists of cristae to 
have a high surface area between enzymes of the respiratory 
chain and biochemical substrates present in the matrix. The 
mitochondrial inner membrane is almost impermeable except 
oxygen, water, and carbon dioxide [9]. Mitochondrial oxida-
tive phosphorylation produces ATP from ADP and depends 
on multi-subunit Complexes I to VI encoded by nuclear and 
mitochondrial genes except for Complex II, entirely coded 
by nuclear genes [9]. 

Mitochondria are found in almost all the cells, including 
the neuronal cells, and produce necessary proteins for carry-
ing out various physiological effects within the body, includ-
ing the brain tissue, with mitochondrial DNA (mtDNA). Any 
dysfunction of mtDNA or aberration in the accumulation of 
proteins can result in mitochondrial diseases affecting vari-
ous systems of the body, such as the cardiovascular system, 
central nervous system, urinary and endocrine, causing neu-
rodegenerative disorders, movement disorders, muscle 
weakness, cardiovascular diseases, renal dysfunction, and 
endocrine disorders [13]. Successive oxidoreduction hap-
pens, transporting electrons along the respiratory chain to 
oxygens producing an electrochemical gradient by proton 
extrusion. This gradient drives the synthesis of Complex VI 
(ATP synthase). Sometimes mitochondria form a network 
inside the cells, and there occur a continuous fusion and fis-
sion of mitochondria. Mitochondrial disease occurs when the 
above continuous mitochondrial dynamics are disturbed, and 
there can be an aggregation of mutations [14]. 

2.2. Mitochondrial Genome 

The mtDNA was discovered in 1963. It is seen in the mi-
tochondrial matrix as supercoiled, double-stranded, and cir-
cular molecule. It shows association with proteins producing 
nucleotide, mtDNA polymerase γ, mtDNA binding helicases, 
proteins, and mtDNA transcription promoting factors 
[15,16]. It is seen as multiple copies, usually 2-10 mtDNA in 
a mitochondrion and thousand to a hundred thousand copies 
in a cell. The mitochondrial genome has 16,569 base pairs 

and is the only kind of extrachromosomal DNA seen in hu-
mans, as illustrated in Fig. (1).  

The mtDNA was first sequenced in 1981 and is known as 
the Cambridge reference sequence and was late revised to 
correct the errors due to bovine fragments in that project 
[17,18]. The mtDNA comprises a heavy H-strand, a light L-
strand, and a non-coding control area (D-loop). The H-strand 
is rich in Guanine, and the L-strand is rich in Cytosine. An 
individual cell contains about 100-10,000 mitochondria, and 
every mitochondrion consists of two to ten mtDNA copies 
[19]. The mitochondrial genome encodes 37 genes; out of 28 
are located on the H-strand and 9 located on the L-strand. 
The mitochondrial genome codes for 13 respiratory chain 
subunits and the genetic information needed for 22 transfer 
RNAs (tRNA) and two ribosomal RNAs (rRNA) (12 S 
rRNA, a small ribosomal subunit, and a 16 S rRNA, a large 
ribosomal subunit), essential for the intramitochondrial se-
quence of the proteins [9]. 

Most of the mitochondrial genes are adjacent and may be 
separated by one or a couple of base pairs that are non-
coding. About 93% of mtDNA encodes proteins. A signifi-
cant non-coding area is in the displacement loop with the 
mtDNA replication initiation site [18]. Nuclear genes code 
major mitochondrial proteins, which form various respiratory 
chain subunits, and those proteins essential for mtDNA 
maintenance [9]. The mutations in nuclear genes can affect 
the proteins associated with the replication and repair of 
mtDNA, significantly affecting the mitochondrial genome. 
The mitochondrial genome is vulnerable to various damages, 
and the rate of mutations is about ten times more than that of 
the nuclear genes. In mtDNA, the protective histones are 
absent, and the repair mechanisms are also somewhat lim-
ited. The mtDNA is also vulnerable to nucleolytic assaults 
by free radicals generated in oxidative phosphorylation. The 
mtDNA is entirely composed of exons and has very little 
redundancy. A deletion or a point mutation in the mtDNA 
can easily and quickly translate into a biochemical defect [9]. 

2.3. Replication, Transcription, and Translation of 
mtDNA  

The mitochondrial non-coding control area, D-loop, is 
about 1.1 kb and consists of vital sequences for the begin-
ning of replication and transcription. The mtDNA replication 
is asynchronous, starting from the two points OL and OH 
[20]. The RNA primer produced from the light chain starts 
mtDNA replication at heavy chain origin, seen in D-loop. A 
nuclear gene synthesizes the strand of DNA coded DNA 
polymerase γ [9]. The light chain origin is a non-coding area 
where tRNA genes are present. It is exposed while the heavy 
strand is passing through the area approximately two-thirds 
on its route around the genome, initiating replicating the L-
strand in the opposite route. A strand-coupled model of rep-
lication of mtDNA proposes that both strands are simultane-
ously synthesized [21]. The L-strand synthesis begins soon 
after heavy strand replication initiation and includes exten-
sive RNA synthesis before the synthesis of DNA. The debate 
is ongoing regarding the predominant mtDNA replication, 
and there can be a replication of different forms in various 
tissues [9]. The mtDNA transcription begins from L and H-
strand promoters producing polycistronic transcripts later 
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Fig. (1). Schematic representation of mitochondrial structure and genome. D (Displacement) loop indicates the non-coding region, and the 

arrows represent the path of transcription of mtDNA; 12S and 16S RNA indicates the two ribosomal RNAs; MTND genes 1 and 2 represent 

ND genes 1 and 2 in combination with mitochondrial tRNA; COX1, COX2, COX3 represent cytochrome C oxidase subunits 1-3; ND3, 

ND4L, ND5, ND6 represent the subunits of NADH dehydrogenase, and CYTB represents the gene coding for cytochrome B. (A) mtDNA 

non-coding region: D loop; (B) Encoding of complex I, III, IV, V subunits. Complex I: MTND1, MTND2, ND3, ND4, ND4L, ND5, ND6. 

complex III: Cytochrome B. complex IV: COX1, COX2, COX3. complex V: ATPase 6 and ATPase 8. (A higher resolution/colour version of 
this figure is available in the electronic copy of the article). 
 
undergoing processing, generating tRNA, mRNA, and rRNA 
molecules. The activity needs mitochondrial RNA polymer-
ase TFAM, a transcription activator, and B2 or B1 mito-
chondrial transcription factors [22]. The mtDNA translation 
mechanism is not yet completely understood. The control is 
exerted by proteins coded by nuclear genes, such as two par-
ticular mitochondrial initiation factors, 3 elongation factors, 
and a minimum of one termination release factor [23-26]. 

2.4. Mutations of mtDNA  

The initial pathogenic mutations of mtDNA were eluci-
dated in 1988. Later, more than 300 mutations of mtDNA 
were discovered (Mitomap) [27]. The mutations can be point 
mutations or deletions as well as duplications. These muta-
tions can produce a biochemical dysfunction either by pro-
tein synthesis if a disruption of rRNA or tRNA sequence 
occurs or alter respiratory chain function if a gene that codes 
for the subunit is altered [9]. 

2.4.1. Germline Variation 

The mtDNA tends to undergo mutation. Mutagenesis can 
produce mutations that can be neutral or pathogenic and can 
produce primary mitochondrial disease, depending on the 
kind of mutation [28, 29]. The neutral mutations and the 
non-pathogenic protein-changing variants can form stable 
homoplasmic polymorphisms seen in populations segregated 
by common sequence variation called haplogroups [30, 31]. 
The initial mtDNA haplogroups were identified in the native 
Americans and were named by letters A, B, C, and D [32]. 
All alphabetic letters except O have been utilized with vari-
ous sub-haplogroups [33]. In neurodegenerative studies, the 
association with mtDNA haplogroups was studied for AD 

[34-36], PD [37-39], ALS [40], stroke [41], and Frontotem-
poral Dementia (FTD) [42]. 

2.4.2. Somatic mtDNA Mutation 

2.4.2.1. Point Mutations 

Various intracellular events, including ROS, nucleases, 
and impulsive hydrolytic processes, can produce mtDNA 
distraction. The replication of mtDNA showing the nature of 
a single strand and the absence of histone protein make it 
vulnerable to damage [43]. The oxidative damage measured 
by 7,8 dihydro-8-oxo-deoxyguanosine (8-oxo dG) produces 
G-C to T-A transversion mutation [44]. These are not con-
sistent with transitional mutations frequently occurring in the 
aged mammalian brain [45]. The mice showing DNA poly-
merase γ (POLG) mutations can produce transitional 
germline mutations [46, 47] as well as somatic point muta-
tions similarly seen in the human tissues that are aged [45]. 
The impairment in replication can be an initial event in the 
generation of somatic point mutation instead of oxidative 
damage. The inefficient maintenance of mtDNA can also 
lead to mtDNA point mutations. The replication errors of 
mtDNA can lead to mtDNA somatic point mutations [1]. 

2.4.2.2. The mtDNA Deletions 

The mtDNA single-strand breaks can form due to de-
struction mediated by ROS or aberrant mtDNA replication. 
These are identified by poly (ADP ribose) Polymerase Pro-
teins (PARP) [48]. The repair utilizes an identical machine 
and process to base excision repair (BER) [49]. The Double-
Strand Breaks (DSB) mechanism is yet to be understood 
[50]. A DSB misrepair is suspected to be producing deletion 
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in mtDNA and can be observed in human tissues undergone 
aging [51]. 

2.4.3. Heteroplasmy and Homoplasmy 

Homoplasmy indicates identical mtDNA in a cell. Heter-
oplasmy indicates a combination of wild-type and mutant 
mtDNA in a cell. The mtDNA replication and the somatic 
mutagenesis can facilitate the clonal expansion of the muta-
tions via random drift and selective processes. They can 
form in different proportions of heteroplasmy within the 
cells [52]. Next-generation sequencing methods resulted in 
the identification of universal mtDNA heteroplasmy in tis-
sues [53]. These indicate mutations earlier thought to be so-
matic and present de novo in the CNS and other tissues can 
be due to heteroplasmic variant clonal expansion, which 
could not be identified with other sequencing technologies 
[7, 53, 54]. In mice with POLG mutation, heteroplasmic var-
iants which are low level and inherited can undergo clonal 
expansion through generations worsening aging producing 
neurodevelopmental anomalies [7]. 

2.4.4. Somatic Mutations in Aged Tissues 

High-resolution observation of cytochrome C oxidase 
(COX) functional impairment was observed [55, 56]. Inside 
these COX impaired cells, point mutations and mtDNA dele-
tions that are clonally expanded were of high frequency and 
were believed to be associated with the biochemical defi-
ciency [57]. Accretion of mtDNA mutations reaches a bio-
chemical threshold effect that produces functional impair-
ment of the mitochondrial respiratory chain [57-59]. The 
wild-type molecules cannot make up for the mutant-type 
cellular mtDNA. Various research analyzing the mtDNA 
mutation association with mitochondrial function studied 
mitochondrial complex activity [60, 44], the expression of 
the subunit [61, 60], oxidative phosphorylation as well as the 
synthesis of ATP [62, 63], and clinical phenotype [29]. Stud-
ies suggested that a high concentration of heteroplasmy con-
sisting of mtDNA (about 60-90%) is needed for functional 
impairment within a cell. Heteroplasmy in high concentra-
tion is usually tolerated before producing aberration in cellu-
lar activity [64]. The mtDNA shows disproportionate tran-
scription and gene mutation of structural complex subunit 
gives proportionate mutated mRNA [65]. A heteroplasmy of 
high concentration is also tolerated in tRNA genes before the 
occurrence of respiratory chain impairment [66]. A high de-
gree of heteroplasmy is required for affecting the protein 
translation [60]. Even in a lowered subunit expression, the 
enzymatic activity of mitochondria can continue as normal 
[60]. Even if there is functional impairment of one complex, 
the mitochondrial respiratory chain conserves oxidative 
phosphorylation and synthesis of ATP [62,63] via respiratory 
chain compositional or organisational alterations [64]. 

2.4.5. Brain mtDNA Mutations 

2.4.5.1. Deletions 

In a healthy aged brain, mtDNA
4977

, a base pair deletion 
is seen lower than 2.5 % [67-71] but is relatively higher than 
the muscle and the heart [72]. The mtDNA

4977 
levels can also 

be associated with brain locations as substantia nigra shows 
2.9 % (69), frontal cortex 0.2 % [69], cerebellum less than 
0.001 % and temporal cortex 0.0092 % [73]. The fetal brain 

does not show mtDNA deletions, indicating that most 
mtDNA deletions can be de novo with later clonal expres-
sion [67]. It is also believed that a healthy aged brain can 
have mtDNA deletions which are unique in comparison to 
those observed in neurodegenerative disorders, such as AD 
and PD. A recent study of mtDNA deletions suggested that a 
healthy brain shows about 5 % of D-loop removing and 20 % 
of origin of L-strand replication deletions, and those dele-
tions above 20% show 3' breakpoint between 16,000 and 
16,100 bases [74]. The D-loop removing mtDNA deletion is 
not seen in PD. The clear nature of the breakpoints, their 
concentration mechanism of occurrence, and the mtDNA 
mutation associations with neurodegenerative diseases need 
to be comprehensively analyzed in further studies. 

2.5. Mitoepigenetics in Neurodegenerative Disorders 

Many researchers who have been working on role of mi-
tochondrial impairment in neurodegenerative disorders have 
come to a conjecture that mitoepigenetics possibly have a 
role in neurodegeneration [75]. A report by Sharma et al. 
concludes that mitochondrial dysfunction in the form of al-
tered gene expression and ATP production, resulting from 
epigenetic changes, can contribute to age-related neuro-
degenerative disorders, including AD [76]. Few preclinical 
as well as clinical studies on AD, PD and ALS, revealed the 
impairment of D-loop methylation level [75]. 

Cerebellum, as well as Superior and Middle Temporal 
Gyrus (SMTG) of seven late onset AD patients, showed ele-
vation in 5 hydroxymethylated (5-hmC) cytosine residues in 
mtDNA, which seemed to be less significant [77]. However, 
the entorhinal cortex of eight AD patients showed a marked 
increase in methylated (5-mC) cytosine residues in the D-
loop of mtDNA with a higher degree of methylation in the 
early stages of the disease and a reduction in MT-ND1 
methylation levels [78]. Another study conducted on 133 
late-onset AD patients blood samples showed a marked de-
crease in 5-mC in mtDNA D-loop [79]. Amalgamating data 
obtained from all these studies can benefit the characterisa-
tion of various stages of AD by assessing the degree of 
methylation in mtDNA regions [75]. In a study conducted on 
ten PD patients, the substantia nigra region showed a de-
crease in 5-mC levels in mtDNA D-loop [78]. Preclinical 
studies in spinal cord motor neurons and brain mitochondria, 
as well as clinical studies in cortical motor neurons, reveals 
an elevation in DNA methyltransferase 1 (DNMT1) and 
global 5-mC level in ALS mice and patients, respectively 
[80]. In contrast to AD, D-loop hypomethylation was ob-
served in pre-symptomatic ALS mice as well as patients. 
Additionally, an elevation in methylation of the 16S rRNA 
gene and DNMT3A were observed in the ALS-linked SOD1 
mutants indicating the role of the antioxidant enzyme, Su-
peroxide Dismutase 1 (SOD1) counteracting the damage due 
to oxidative stress [75]. 

2.6. Role of Sirtuins in Neurodegeneration 

Sirtuins (SIRTs), a histone deacetylases (HDACs) mem-
ber, is known to have an association with aging and neuro-
degenerative diseases by means of interaction with various 
Transcription Factors (TFs), poly (ADP-ribose) polymerases 
(PARPs), and signaling proteins. SIRT1, located mainly in 
the nucleus, is also found in mitochondria and studies reveal 
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its role in mitochondrial biogenesis, neuroprotective via pe-
roxisome proliferator-activated receptor γ co-activator-1α 
(PGC-1α), impairment of which can contribute to neuro-
degenerative disorders such as AD, PD and HD [81]. Mito-
chondrial SIRTs, SIRT3-5 are mainly found in the mito-
chondrial matrix and its expression is interdependent. For 
example, the expression of SIRT5 within mitochondria de-
creases with an increase in SIRT3 level. SIRT3 can enhance 
thioredoxin 2, peroxiredoxins, Mn-SOD via FOXO3 and 
activation of PINK1 potentiates mitophagy and mitochondri-
al fusion. Apart from influencing antioxidant defenses within 
mitochondria, SIRTs (SIRT1-7) are also involved in the mit-
igation of aging by reducing oxidative stress, and restoration 
of Insulin/IGF Signaling (IIS) for modulating longevity and 
stress resistance via various signaling pathways, including 
JNK1, Akt, IIS-mTor signaling, FOXO1, NRF-2, NF-κB, 
and cross-talk of SIRT-HIF [81].  

In AD, it was observed that SIRT1 plays a neuroprotec-
tive role by balancing APP processing via NF-κB inhibition 
and activation of the Notch pathway, thereby contributing to 
neurogenesis and differentiation. Contrarily an increased 
SIRT2 level can contribute to the pathophysiology of neuro-
degenerative disorders, including AD [81]. In vitro studies 
reveal a proportionate increase of SIRT3,4,5 with Aβ1-42 and 
inverse correlation of presenilin and APP [82, 83]. The role 
of SIRTs in coordination with IIS and FOXOs can improve 
longevity and aging-associated neurodegenerative disorders. 
However, there is a lacunae of in-depth knowledge of IIS 
association in AD and need to be further investigated [81]. 
Analogous to AD, SIRT1 shows neuroprotection in PD and 
ALS models via PGC-1α activation, and Heat Shock Factor 
1 (HSF1) deacetylation, respectively. Studies show that 
SIRT2 inhibition can improve defective behavioural and 
neurological characteristics in MPTP-induced aged PD mice 
models [81, 84].  

3. NEURODEGENERATIVE DISORDERS AND THEIR 
ASSOCIATION WITH MITOCHONDRIAL DYS-

FUNCTION 

3.1. Alzheimer's Disease 

AD is the most commonly observed neurodegenerative 
disorder that progresses in aging [8]. AD's pathophysiology 
can be explained through various hypotheses such as amy-
loid, tau, cholinergic, and metal ion hypothesis [85, 86]. The 
former two explain the aggregation of Aβ and tau (τ) pro-
teins, respectively, which results in neurofibrillary tangles or 
plaque formation, causing neuronal death. On the other hand, 
the metal ion hypothesis causes an imbalance in the metal 
ions that causes an elevation in both aggregations of Aβ and 
τ protein, leading to plaque formation, all of which contrib-
utes to memory impairment. On the other hand, the choliner-
gic hypothesis emphasizes decreased acetylcholine release 
capable of memory impairment. All these hypotheses can be 
interlinked with mitochondrial dysfunction and play either 
primary secondary role in AD progression. According to a 
recent article elucidating the molecular mechanism involved 
in zinc (Zn) neurotoxicity by Narayanan et al., metal ions 
like Zn can cause cell death either by Aβ-Zn complex for-
mation leading to Aβ induced neurotoxicity or via various 
mechanisms within the postsynaptic neurons, including τ 

phosphorylation in serine 214, ROS production within mito-
chondria, and ERK pathway induced neurofibrillary tangle 
formation [86]. Genomic studies suggest the role of mutation 
of various variants or genes, including Amyloid Precursor 
Protein (APP), apolipoprotein E4 (APOE4), clusterin (CLU), 
phosphatidylinositol binding clathrin assembly protein (PI-
CALM), presenilin 1 and 2 (PSEN1, PSEN2) genes, SORL1, 
BIN1, CR1, ABI3, PLCG2, and TREM2 in causation or pro-
gress of AD [87, 88]. 

Clinical studies showing the reduction in oxygen and 
glucose metabolism in AD patients' brains indicate a possible 
role of mitochondrial impairment in the disease that needs to 
be investigated at the genetic and epigenetic levels. The link 
between the variants mentioned above and how they can 
contribute to the mitochondrial impairment or mtDNA muta-
tions requires more profound study. However, mitochondrial 
involvement can either be primary or secondary. The exclu-
sive involvement of maternal mtDNA states direct involve-
ment inherited that develops reduced glucose metabolism in 
AD brain due to oxidative stress and mitochondrial ROS 
production contributing to amyloid and τ deposition. Sec-
ondary involvement is backed up by the evidence stating 
mitochondrial fission-fusion imbalance due to both down-
regulations of Opa1, Mfn1, Mfn2, and upregulation of Drp1 
proteins mRNA levels. In addition to this, various hypothesis 
proposing the role of mitochondrial Aβ and τ deposition 
leading to mitochondrial dysfunction in association with an 
imbalance in calcium homeostasis and fission-fusion mecha-
nism, respectively. 

Mitochondrial dysfunction plays a role in AD pathogene-
sis (Fig. 2). In AD, mosaic respiratory anomalies are seen in 
cortical neurons, a scenario identical to PD [89, 90] along 
with cerebral energy hypometabolism [91, 92]. There is a 
physical interaction seen between mitochondria and Aβ [93]. 
Regarding the mitochondrial respiratory chain, mitochondri-
al complex IV activity has been seen reduced in the AD 
brain's cortical tissue [94, 95], which can be linked to AD 
brain hypometabolism [96, 97].  

3.1.1. Homplasmic Population Variants  

In AD, mtDNA haplogroup research failed to prove mi-
ochondrial haplogroups contributing to AD [98]. Epidemio-
logical data showed weak evidence for rare homoplasmic 
variants contributing to AD development [99]. 

3.1.2. Heteroplasmic Variants 

There is a lack of evidence linking somatic mtDNA mu-
tations with AD. Coskum et al. found many heteroplasmic 
point mutations in the mtDNA hypervariable [100] but not 
seen in other AD studies at a high frequency [101] and are 
found in the population as common homoplasmic variants 
[102]. Another study exploring the cold gene somatic muta-
tions yielded results comparable to the control group [103]. 
All these studies suggest the lack of evidence linking 
mtDNA variations with AD. 

3.2. Parkinson's Disease 

PD is the second common neurodegenerative disorder 
that affects the serotonergic, adrenergic, and dopaminergic 
systems, causing a depletion in the neurotransmitters of the 
respective systems developing defective motor non-motor 
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Fig. (2). Illustration of neurodegenerative diseases in association with mitochondrial dysfunction. (A higher resolution/colour version of this 
figure is available in the electronic copy of the article). 
 
coordination [104-106]. Studies suggest the role of mutation 
of various variants, including α-synuclein, Leucine-rich re-
peat kinase 2 (LRRK 2), glucocerebrosidase gene (GBA), 
microtubule-associated protein τ (MAPT), MDR1, Parkin, 
and PINK1 [87,88]. PD is characterized by motor coordina-
tion dysfunction, and evidence claims a striking role of mito-
chondria/ mtDNA in PD pathogenesis. One aspect is the up-
regulation of mtDNA deletions/rearrangement, and the other 
is point mutations comprising both homoplasmic (MT-ND1, 
MT-ND2) and heteroplasmic (MT-ND5) mutations. Com-
pagnoni et al. mustered various studies and proposed PD's 
association with genes, POLG, and Twinkle involved in 
mtDNA maintenance. Among various gene mutations, 
PINK1 and Parkin play a prominent role in maintaining mi-
tochondrial fission-fusion mechanism show possibilities of 
its involvement in PD pathology via mitochondrial dysfunc-
tion mechanism, which has been mainly confirmed in Dro-
sophila models and rodents [8]. Compagnoni et al. also ag-
gregate information on α-synuclein overexpression in mito-
chondrial dysfunction in rat models and the deficiency of 
Complex I though the mechanism remains unclear [8].  

Research worldwide proposes the involvement of envi-
ronmental toxins such as 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), rotenone, paraquat, and maneb 
in developing PD via mitochondrial dysfunction. MPTP is 
the by-product of 1-methyl-4-phenyl-4-propionoxypiperidine 
(Desmethylprodine), an analogue of meperidine and expo-
sure to MPTP was known to develop parkinsonian symp-
toms, due to which this is accepted as a PD model. MPTP 
being lipophilic, crosses the blood-brain barrier and, in the 
presence of monoamine oxidase present in glial cells, gets 
converted to 1-methyl-4-phenylpyridinium (MPP

+
). MPP

+ 
via dopamine transporter is then taken into the dopaminergic 
neurons and gets accumulated in mitochondria, thereby in-
hibiting the mitochondrial complexes I, III, IV, increasing 
ROS generation and potentiating oxidative stress [107, 108]. 
In vitro studies utilising MPP

+
 reported a decrease in mito-

chondrial gene expressions and function, in vivo studies ad-
ditionally report a decrease in tyrosine hydroxylase expres-
sion. Sub-toxic dose of MPTP can alter mitochondrial pro-
teins, among which about 270 proteins have specifically al-
tered substantia nigra and striatum, suggesting the associa-
tion with nigrostriatal pathway [108]. 
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In PD, mtDNA mutations can impair respiratory chain 
functions, and a mosaic pattern of deficiency is seen in the 
postmortem PD brain [109]. A study indicated a high num-
ber of neurons in substantia nigra of PD patients are COX 
deficient compared to the control group, and mtDNA dele-
tion appeared more significant in neurons that are COX defi-
cient single-cell real-time PCR. PCR cloning techniques 
suggested discrete breakpoints showing intracellular clonal 
expansion as the mtDNA deletion mechanism [3].  

In patients with PD, mtDNA deletions can be high all 
over the brain, and these deletions are produced somatically 
and undergo clonal expansion leading to COX deficiency. 
Still, the question of whether mtDNA deletion is linked to 
PD pathophysiology stays unclear. In substantia nigra, 
mtDNA deletions can lead to adaptive responses such as 
raised mtDNA copy number, higher striatal dopamine, and 
better respiration instead of harmful [110]. There is not much 
evidence proving mitochondrial respiratory chain deficiency 
facilitates Lewy body generation, as some studies showed 
normal RC complex activity in Lewy body-positive cells 
[111, 112]. The mtDNA point mutations can lead to early 
propagation of Lewy bodies, raising the chance of early neu-
ronal death, leading to mtDNA's survival.  

3.3. Amyotrophic Lateral Sclerosis 

 This neurological disease causes motor neuron degenera-
tion in the spinal cord, cortex, and brain stem, thereby weak-
ening the muscle tissues and developing spasticity and atrophy 
[113]. ALS is known to have an association with mutation of 
variants including annexin A11 (ANXA11), chromosome 21 
open reading frame 2 protein (C21orf2), chromosome 9  
open reading frame 72 (C9orf72), cyclin F (CCNF), coiled- 
coil-helix-coiled-coil-helix domain-containing protein 10 
(CHCHD10), FUS RNA-binding protein (FUS), matrin 3 
(MATR3), NIMA-related kinase 1 (NEK1), profilin 1 (PFN1), 
superoxide dismutase 1 (SOD1), TAR DNA-binding protein 
(TARDBP), TANK-binding kinase 1 (TBK1), T cell-restricted 
intracellular antigen-1 (TIA1), tubulin alpha 4A protein (TU-
BA4A), valosin containing protein (VCP) [87]. Among vari-
ous gene mutations, mutant SOD1 that can be found in the 
intermembrane space, outer mitochondrial membrane, and 
matrix causes impairment in calcium loading within the mito-
chondria, and activities of electron transport chain are hin-
dered by the release of cytochrome C and associated apoptosis 
triggering in addition to mutant SOD1-Bcl-2 complex for-
mation [113, 114]. 

3.3.1. Homoplasmic Population Variants 

There are significantly few biological observations in 
ALS and sporadic FTD indicating mitochondrial dysfunction 
compared with AD and PD, where noticeable hypometabo-
lism or dysfunction occurs in the mitochondrial respiratory 
chain. There is no significant association found linking mito-
chondrial haplogroups with ALS [40]. Although there is no 
significant association, some studies indicated rare germline 
mtDNA variation linked with the disease [115].  

3.3.2. Heteroplasmic Variants 

Based on a case report, SOD1 mutations as well as frame 
deletion in mitochondrial complex I have been suggested to 
have an association with ALS progression [116,117] and 

rearrangement in the mitochondrial genome at a large scale 
associated with the ALS variant, Progressive Muscular Atro-
phy (PMA) [118]. The muscle biopsies on SOD1 mutant 
showed mtDNA

4977
 deletion elevation in 3 patients and the 

highest deletion seen in the severe case [7]. More studies are 
required to link mutations of mtDNA with monogenic and 
sporadic ALS [1]. 

4. PHARMACOLOGICAL APPROACH TO MITO-
CHONDRIAL DYSFUNCTION IN NEURODEGEN-

ERATIVE DISORDERS 

Neuroprotection via SIRT1 highlights the opportunity of 
enhancing the use of SIRT1 activators. One such is resvera-
trol, a potent activator of SIRT1, which functions against 
Aβ42 toxicity. Another to be listed is the well-known phyto-
compound curcumin which naturally activates SIRT1 in ad-
dition to antioxidant and antiapoptotic effect in neurons rich 
in Aβ deposit. Unlike SIRT1, SIRT2 inhibitors hold the 
chance of promoting neuroprotection in neurodegenerative 
disorders, with major reports available on PD. Nicotinamide, 
a SIRT inhibitor showed restoration of AD-associated de-
fects in cognition, phospho-tau (Thr231) reduction, and an 
increase in acetylated SIRT2 brain substrate, α-tubulin [119]. 
Underlying mechanisms can be SIRT1 and PARP-1 inhibi-
tion associated NAD

+
 and ATP levels maintenance, p53 in-

activation associated antiapoptotic and anti-inflammatory 
effect mediated by SIRT1, α-secretase activity enhancement, 
mitochondrial mPTP closure mediated by SIRT3 [120]. 

PGC-1α enhancement can protect oxidative stress and 
neuronal death, revealing its potential as a candidate in PD 
treatment. Several studies have been conducted, including 
resveratrol induced PGC-1α activation in dopaminergic neu-
rons, PGC-1α delivery via adenoviral vector showed an in-
crease in dopaminergic death possibly due to PGC-1α over-
expression causing an increase in ROS productivity and mi-
tochondrial hyperactivity. Ameliorating PD symptoms re-
quire the usage of an amalgam of pharmacological agents to 
develop neuroprotective effects as the drugs currently avail-
able have limitations in slowing down disease progression. 
Modulation of pathways such as PPARγ and PGC-1α simul-
taneously can enhance neuroprotection. Invitro studies and 
various PD models reveal the neuroprotective activity of 
PGC-1α and PPARγ agonists, which opens the door for fu-
ture therapy [121]. Another cause of nigral degeneration in 
PD is the decrease in mitochondrial respiratory chain com-
plex 1 activity, which can be enhanced by mitochondrial 
complexes I, II electron acceptor, coenzyme Q10. Studies 
show that prolonged coenzyme Q10 administration can en-
hance the production of dopamine in the presynaptic neurons 
[122]. Coenzyme Q10 was subjected to a randomized clini-
cal trial and can proceed for further studies in PD [123]. 

CONCLUSION  

Our knowledge regarding somatic mtDNA mutations and 
germline mtDNA variations in neurodegeneration and aging 
achieved significant progress in the past decades. Evidence 
indicates mtDNA point mutations and mtDNA deletions 
developing with age, which in specific cells can expand to 
heteroplasmic levels leading to dysfunction of the respiratory 
chain. Still, the action of lower-level variants on neuronal 
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functions is currently not understood. In PD, the somatic 
mtDNA mutations and Lewy body pathology and germlines 
mtDNA variants contributing as a risk factor to the disease 
need to be explored in detail as the mechanism is not yet 
understood. The mtDNA mutations and their effects on cell 
dysfunction are also a promising area of research. The inher-
ited low-level variants in mtDNA mutations are also worth 
exploring to elucidate the heritability of neuronal degenera-
tion and aging. Various studies point out that various genes 
are involved in the pathogenesis of neurodegenerative disor-
ders such as ALS, PD, AD, MS, or stroke, mtDNA mutation, 
and the nature of mutation deletion single mutation remains 
controversial within species, and mechanisms remain un-
clear. Hence, in-depth study on the variants and mechanisms 
needs to be carried out to shed light in this area and propose 
a targeted therapy or serve the purpose as an adjuvant for the 
ailment/ alleviation of these diseases. 
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