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Abstract

In this study, three (3) neural networks (NN) were designed to discriminate between malig-

nant (n = 78) and benign (n = 88) breast tumors using their respective attenuated total reflec-

tion Fourier transform infrared (ATR-FTIR) spectral data. A proposed NN-based sensitivity

analysis was performed to determine the most significant IR regions that distinguished

benign from malignant samples. The result of the NN-based sensitivity analysis was com-

pared to the obtained results from FTIR visual peak identification. In training each NN mod-

els, a 10-fold cross validation was performed and the performance metrics–area under the

curve (AUC), accuracy, positive predictive value (PPV), specificity rate (SR), negative pre-

dictive value (NPV), and recall rate (RR)–were averaged for comparison. The NN models

were compared to six (6) machine learning models–logistic regression (LR), Naïve Bayes

(NB), decision trees (DT), random forest (RF), support vector machine (SVM) and linear dis-

criminant analysis (LDA)–for benchmarking. The NN models were able to outperform the

LR, NB, DT, RF, and LDA for all metrics; while only surpassing the SVM in accuracy, NPV

and SR. The best performance metric among the NN models was 90.48% ± 10.30% for

AUC, 96.06% ± 7.07% for ACC, 92.18 ± 11.88% for PPV, 94.19 ± 10.57% for NPV, 89.04%

± 16.75% for SR, and 94.34% ± 10.54% for RR. Results from the proposed sensitivity analy-

sis were consistent with the visual peak identification. However, unlike the FTIR visual peak

identification method, the NN-based method identified the IR region associated with C–OH

C–OH group carbohydrates as significant. IR regions associated with amino acids and

amide proteins were also determined as possible sources of variability. In conclusion,

results show that ATR-FTIR via NN is a potential diagnostic tool. This study also suggests a

possible more specific method in determining relevant regions within a sample’s spectrum

using NN.
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Introduction

Breast cancer remains the most prevalent cancer among women. Biennial mammography has

been highly recommended for women 50 to 74 years old for early detection of this disease.

Sensitivity of mammography has been increased to 92.7% when combined with magnetic reso-

nance imaging (MRI). Meanwhile, combination with ultrasound (US) can increase sensitivity

to only 52%. Therefore, in high-risk women for whom supplemental screening is specified,

MRI is recommended when possible [1]. Supplemental screening with US for women with

intermediate risk and dense breasts is an option to increase cancer detection. The mammo-

graphic sensitivity for breast cancer in women with very dense breasts is 47.6% and increased

to 76.1% with US screening [2]. Suspicious lesions detected during mammograms are usually

biopsied to confirm or rule out breast cancer. The most common form of biopsy is the core

needle biopsy (CNB), which involves the removal of a portion of a tumor for histologic evalua-

tion. The remainder is removed later after a definitive diagnosis of cancer. However, since tis-

sue samples are collected by three to nine passes with a biopsy needle, the incisional surgical

procedures become associated with elevated incidence of lymph node metastasis and higher

local recurrence rates [3]. CEA can also be analysed to screen for breast cancer. However, it

lacks disease sensitivity and specificity, hence cannot be used for screening a subpopulation

with high risk for malignancies, a general asymptomatic population, or for independently

diagnosing cancer. CA 15–3, which are soluble forms of the transmembrane protein Mucin1

(MUC1), is said to be overexpressed in malignant breast tumors. It was suggested that CA 15–

3 and CEA can be considered complementary in detecting recurrence of breast cancer. How-

ever, their sensitivity is low and independent of the majority of the prognostic parameters that

may be considered before relapse [4].

The potential of using infrared spectroscopy, in particular Fourier transform infrared

(FTIR) spectroscopy, has been gaining popularity for cancer diagnostics over the last few

years. The distinctive spectral properties associated with the changes in chemical composition

and structure of biomolecules can be recognized by FTIR spectroscopy, making it a potential

diagnostic tool [5]. Hence, when cells or tissues undergo transformation from normal to

cancerous, changes in the physico-chemical structures and properties in a variety of their bio-

molecules can be simultaneously and indiscriminately probed by FTIR spectroscopy [6, 7].

FTIR, as compared to traditional microscopic examination of hematoxylin and eosin (H&E)

stained biopsies, is more rapid, cost-effective, and objective since reading is based on changes

in biochemical properties instead of morphology [7]. It eliminates the possibility of intra- and

inter-observer variability, which is often the problem with H&E staining. Moreover, this tech-

nology does not make use of dyes and other contrasting agents which may interfere or affect

the reading. Hence, it provides more accurate and reproducible results.

The application of artificial intelligence (AI) in cancer diagnosis is no longer new; numer-

ous studies have already been applied to address the most prevalent cancers such as lung can-

cer [8–10], thyroid cancer [11], ovarian cancer [12, 13] and breast cancer [14–17]. Most

studies make use of image-based data such as MRI images, computed tomography (CT) scans,

positron emission tomography (PET) scans, X-rays, and H&E-stained biopsy images, which is

the gold standard [18]. The most successful AI implemented in these studies involves artificial

neural networks (NN), in particular, convolutional neural networks (CNN) due to their

proven effectiveness in processing images. Furthermore, the underlying architecture of a CNN

makes it easily feasible to create visual representation, highlighting the site of malignancy

within a medical image. What limits image-based AI diagnostics, however, is that they heavily

rely on the detection of a visible abnormality within the scanned region. This implies that a

patient may already be at an advanced stage of malignancy before possible detection.
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Moreover, the presence of dyes and other contrasting agents may make it difficult to apply in

other laboratories an AI model trained using the procedures in one laboratory, if protocols

and procedures are not well standardized.

The appeal of using FTIR data in AI is that they come in less file size and are easier to pro-

cess than images, while still providing sufficiently adequate information for samples [19].

Hence, data storage costs may be minimized significantly and models utilizing such data

become easier and faster to train, hence minimizing training costs. Moreover, the use of FTIR

data may be able to predict the onset of cancer even before evident morphological changes [5],

hence addressing the limitation of image-based AI diagnostics. However, since NNs are essen-

tially black boxes, the underlying process involving its decision-making is inherently

unknown; thus making them less appealing to use in a clinical setting. Furthermore, FTIR data

are less intuitive to interpret than images, even with the assistance of AI visualizations; making

them difficult to interpret. In this study, a method was formulated to address this limitation by

providing a novel process of determining the most prevalent biomarkers as seen by trained

artificial NNs; hence providing a basis on decision-making process. The proposed method is a

modification of NN perturbation-based sensitivity analysis [20–22], which probes a NN’s sen-

sitivity towards changes in an input variable.

Hence, this study showed the potential of artificial neural networks (ANN) in accurately

diagnosing breast cancer through infrared spectroscopy. Specifically, it designed multiple

ANN to diagnose malignancy from breast tissues using ATR-FTIR data. The classification per-

formance of the NN models were compared to six (6) most widely-used machine learning

models. Moreover, this study also proposed a novel method for determining the IR regions

which may be significant in determining breast cancer malignancy, as seen by a NN design.

This proposed method may serve as a baseline process in analysing spectral data, and more

importantly provide new insights and directions for pathologists and medical practitioners.

Materials and methods

Ethical clearance

Ethical clearance was obtained from the Institutional Review Board (IRB) of the University of

Santo Tomas Hospital (USTH) in Manila, Philippines (Ref. No.: IRB-2018-07-135-IS) and

Mariano Marcos Memorial Hospital and Medical Center (MMMH-MC) in Ilocos Norte, Phil-

ippines (Ref. No.: MMMHMC-RERC-15-006). Written informed consent from the partici-

pants or their legal guardians have been waived by the respective ethics review boards since the

study was restricted to the use of archived formalin fixed paraffin embedded (FFPE) breast tis-

sues and did not involve additional procedures nor pose risk of harm to subjects. All methods

were carried out in accordance with the Declaration of Helsinki and its later amendments.

Study population and sample preparation

Two hundred (200) FFPE breast biopsies obtained from 192 adult patients seen at USTH and

MMMH between January 2016 to December 2016 were included in the study. The samples

were diagnosed by the resident pathologists of the hospital study sites as either benign (n = 91)

or malignant (n = 101) based on microscopic examination of H&E-stained biopsies. The

malignant samples were further subclassified as invasive ductal carcinoma, residual ductal car-

cinoma-in-situ, or invasive lobular carcinoma; and the benign samples as fibroadenoma, fibro-

cystic disease, benign fibroadipose tissue, fibrocollagenous cyst wall, or intraductal papillomas.

The FFPE tissues were uniformly cut at 5-μm thickness using a microtome (Leica Biosys-

tems, Germany) and three (3) adjacent tissue sections were mounted on glass slides. The two

(2) outer sections were stained with H&E for re-evaluation by a third-party pathologist who
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was blinded of the original diagnosis. The pathologist was instructed to classify the biopsy sam-

ple as either benign or malignant and to mark the location of the cancer cells if the sample was

malignant, to serve as guide in the ATR-FTIR analysis [23]. The inner or middle tissue section

was deparaffinized with xylol, dehydrated with alcohol, rinsed in distilled water, dried over-

night, and subjected to ATR-FTIR analysis [24, 25].

Only the samples with similar diagnosis by the resident pathologists of the hospital study

sites and the third-party pathologist were considered for further analysis. In this case, out of

the 200 archival samples, only 166 (n = 78 benign; n = 88 malignant) were taken for ATR-FTIR

processing. Furthermore, each of the 166 samples corresponded to one patient each to satisfy a

one-is-to-one correspondence between patients and specimens [11].

ATR-FTIR spectral analysis

An FTIR mid-infrared spectrometer equipped with a platinum ATR single reflection diamond

sampling module (Bruker Optics, Germany) was used to obtain spectra of the breast samples.

A performance qualification (PQ) test using OPUS 8.0 software’s fully automated validation

program was initially performed to ensure quality and accuracy of spectral data. The deparaffi-

nized breast tissue sections were positioned directly in contact with the ATR diamond crystal’s

surface (2 mm x 2 mm) and the mid-IR region of 4000 cm-1 to 600 cm-1 was passed to and

from the ATR accessory. Spectra were generated at a spatial resolution of 4 cm-1 and an aver-

age of 48 scans was co-added to obtain an adequate signal-to-noise ratio [26–28], which was

further supported by the software’s validation program as “acceptable”. Prior to scanning each

tissue sample, the background spectrum was recorded, and this spectrum was systematically

subtracted by the software to routinely eliminate atmospheric effects. The malignant samples

were scanned along the area containing the cancer cells, while the benign samples were

scanned at random spots throughout their entire tissue section. The spectral data associated

with a benign or a malignant tissue sample was obtained by computing for the median spec-

trum of their respective 48 scans.

Characterization and pre-processing of spectral data

The spectral data set, XSD, consisted of N | N = 166 spectral vectors x!ðiÞSD 2 RL
8 i 2 N � N,

comprising of 78 malignant FTIR data, XðMÞSD � XSD, and 88 benign FTIR data, XðBÞSD � XSD,

where L | L = 462 denotes the length of each vector. An element of a vector x!SD, x!SDðjÞ8 j 2
N � L corresponds to an absorbance reading within the fingerprint region of 1800 cm-1 to

850 cm-1 at 2 cm-1 steps. Furthermore, XSD can also be characterized as a matrix ofRN×L

dimension.

All obtained spectral data were internally normalized using z-score normalization, which is

the recommended method of normalization for the FNN designs [29, 30]. The normalization

was done to eliminate bias from y-value discrepancies among the IR samples. Here, normaliza-

tion was done per x!ðiÞSD using the equation

x!ðiÞSD ≔
x!ðiÞSD � meanðx!ðiÞSD Þ

stdðx!ðiÞSD Þ
8 i 2 N � N ð1Þ

where the mean() and the std() notations denote the mean and the standard deviation of the

elements of the vector x!ðiÞSD. The implemented normalization scales the elements of x!ðiÞSD to have

an overall mean of 0, and a standard deviation of 1. XSD also underwent baseline correction via

OPUS 8.0 software via “rubber band method” with 64 baseline points. This was done to

approximate a polynomial fit based on the minima of y-values of each element vector
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x!SD 2 XSD. The fitted polynomial was then deducted for all x!SD to extract the baseline corrected

spectrum [25, 31–34]. Finally, the corrected spectrum was scaled within the fingerprint region,

from 1800 cm-1 to 850 cm-1 [32, 35]. Other than baseline correction using rubber band

method, no further user intervention was done to assess the spectral data. To visualize the

average spectrum of benign and malignant breast tissues, their respective median values for

each wavenumber was plotted.

Principal component analysis (PCA)

Principal component analysis (PCA) was performed to visualize the distribution of benign and

malignant samples over two of the PCA’s most dominant components (F1 and F2). The process

of translating XSD to the reduced variable space, XPCA (XSD! XPCA) is given by the equation

XPCA ¼ ðXSD � XSDÞ � ½s
!

F1

T; s!F2

T� ð2Þ

where XPCA 2 RN × 2 is the reduced sample space, XSD is the mean absorbance value of

x!ðiÞSD 2 XSD 8 i � N, and s!F1 and s!F2 are the eigenvectors corresponding to the largest eigenvalue

of the covariance matrix SSD ¼ ðXSD � XSDÞ
T
� ðXSD � XSDÞ. A PCA biplot of the malignant

and the benign samples were drawn along the F1 and F2 axes to visualize the sample

distribution.

Classifiers

Three (3) feed forward neural networks (FNN) of different layer sizes were designed in the

study. To benchmark the NN models, six of the most widely used machine learning models

were also created, in particular, linear discriminant analysis (LDA), support vector machine

(SVM), logistic regression (LR), decision tree (DT), random forest (RF), and Naïve Bayes

(NB). The following subsections discuss in detail the design of each model.

Cross-validation of models. A 10-fold cross-validation procedure was used to evaluate all

models; where 70% of the spectral data set XSD, were used for the training set STR� XSD, and

the remaining 30% were equally partitioned for the validation set SV� XSD (15%) and the test

set STS� XSD (15%). The cross-validation procedure was repeated over 50 trials (T) to ensure

stability of results [36]. For each trial, the elements of the sets STR, SV, and STS were reselected

from XSD randomly. The sets satisfied the criteria SðiÞTR [ SðiÞV [ SðiÞTS ¼ XSD and

SðiÞTR \ SðiÞV \ SðiÞTS ¼ ; 8 i 2 N � T. Moreover, the ratio of malignant and benign samples was

preserved for each set. To evaluate the performance of each model, the metrics area under the

curve (AUC), accuracy (ACC), positive predictive value (PPV), negative predictive value

(NPV), recall rate (RR) and specificity rate (SR) were obtained. The overall mean and standard

deviation of the metrics over the 50 trials were obtained using the formulas

Mm ¼
1

T

XT

1
ð
1

N

XN

1
mn;tÞ ð3:1Þ

Σm ¼
1

T

XT

1
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

1
ðmn;t � mn;tÞ

2

N � 1

s

Þ ð3:2Þ

in which Mm and ∑m are the overall mean and the overall standard deviation of a metric m,

where mn,t is the metric value of a metric m, for a trial t 2 N�T and a fold n 2 N� 10. More-

over, the variable mn;t in Eq 3.2 is the N-fold mean of a metric m, which is also equal to
1

N

XN
1
mn;t from Eq 3.1.
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All models were designed and implemented using MATLAB R2020b on an Intel i7-6700

3.40 GHz CPU and an Nvidia GeForce GTX 1050 Ti GPU over a 16 GB RAM.

Feedforward neural networks (FNN). Three (3) feed forward neural networks (FNN)

were designed in the study. Each neural network has an input layer N
!

i, consisting of L nodes

corresponding to the length of each spectral vector input x!SD, and an output layer N
!

o, consist-

ing of 2 nodes which correspond to the sample’s diagnosis of being benign or malignant. A

neural network varies in hidden layer size (n = 2, n = 4, n = 8) with respect to the other. For all

FNNs, scaled exponential linear units (SELU) were used as activation functions within the hid-

den layers [37], and softmax function for the output layer.

Linear discriminant analysis (LDA). Here, STR was used to design an LDA model fLDA(x)

which returns the probability of a spectral vector input x :¼ x!SD from being benign or malig-

nant. STS was used to measure the metric performance of the model. Before constructing a lin-

ear separator among the samples, principal component analysis (PCA) was performed to

reduce the dimension of data from 462 to two variables, which are F1 and F2. The reduction of

dimensional space via PCA (XSD! XPCA) follows the discussion from Eq 2.

The LDA model was constructed following Fisher’s criterion [38] where the probability

density function describing the likelihood of a sample from being malignant or benign is given

by the function fLDA(x) [11]

fLDAðxÞ ¼ softmaxð½pMðxÞ; pBðxÞ�Þ ð4:1Þ

in which pM(x) and pB(x) are normal probability density functions describing the probability

distribution of malignant and the benign samples, respectively. The normal curves are defined

as

pðxÞ ¼
1

s
ffiffiffiffiffiffi
2p
p e�

ðgðxÞ� mÞ2

2s2 ð4:2Þ

where g 2 Γ j Γ ¼ wT
min XPCA, where Γ is the projection of XPCA onto wmin, while μ and σ are

the class mean and standard deviation, respectively.

In evaluating an element of the test set x!ðTSÞSD 2 STS, the L × 2 matrix ½s!F1
T; s!F2

T� obtained

from the training set via Eq 2 was first used to translate x!ðTSÞSD from a dimension of RL to R2

before evaluation using Eq 4.2.

Support vector machine (SVM). The designed SVM is a linear SVM of input x :¼ x!SD.

The SVM was designed from the elements of the training set by considering an unconstrained

Langrange optimization problem given by the equations [39, 40]

f ðw!; bÞ ¼
1

2
jw! j2 ð5:1Þ

gðw!; bÞ ¼ yiðx � w
!
þbÞ � 1 ð5:2Þ

Lminðw! ;bÞðw
!
; bÞ ¼ f ðw!; bÞ �

XNTR

i¼1
aigðw

!
; bÞ ¼

1

2
jw! j2 �

XNTR

i¼1
ai½yiðx � w

!
þbÞ � 1� ð5:3Þ

where f ðw!; bÞ corresponds to the equation for maximizing support vector elements separa-

tion, gðw!; bÞ is the conditional function for clustering the malignant and the benign classes,

and Lmin(w,b) is the Langrangian L of f ðw!; bÞ and gðw!; bÞ of variables w! and b. Here, w! is the

weight vector of RL dimension, b is the bias of R1 dimension, while ai 2 aj a 2 R
NTR�L is the

SVM’s α-matrix where the αi 6¼ 0 8 i 2 N� NTR elements correspond to the SVM’s support
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vectors. To determine suboptimal values for w!, b, and α, stochastic gradient descent (SGD)

was implemented by considering the gradients

1

2
jw! j2

@ w!
¼

1

2
w! �w!

@ w!
ð5:4Þ

@Lðw!; bÞ
@ w!

¼ w! �
XNTR

i¼1
aiyix ð5:5Þ

@Lðw!; bÞ
@b

¼ �
XNTR

i¼1
aiyi ð5:6Þ

To optimize the model, a grid search was performed from a series of learning rates ℓ from 1 to

5×10−5 over 1000 epochs. The validation set accuracy was considered as the optimization met-

ric which determined the superiority of one model from the other. The process was repeated

for 50 trials to ensure stability. The average validation accuracy of a model over the 50 trials

determined the overall metric of the model for a considered learning rate, ℓi. The ℓi which con-

stituted the highest overall validation accuracy was considered as optimal learning rate to train

and test the SVM model. The output probability diagnosis of the model for benign and malig-

nant cases, pSVM(x), was computed using Platt’s method [41].

Logistic regression (LR). The designed LR model is a L-input classifier with an output

probability pLR(x) quantifying the likelihood of an input x :¼ x!SD to be malignant. pLR(x) is

defined as

pLRðxÞ ¼
ebþw

!
�x

1þ ebþw! �x
ð6:1Þ

where w 2 RL and b 2 R1 are the weights and bias characterizing the LR model. In training

the model, SGD was used to minimize loss over the training set. The considered loss function

was the binary cross-entropy loss function given by

H ¼ �
1

N

XN

i¼1
yi � logðpðyiÞÞ þ ð1 � yiÞ � log ð1 � pðyiÞÞ ð6:2Þ

where p(yi) denotes the probability of obtaining a malignant diagnosis given a theoretical out-

put of yi; where yi = 1 for malignant cases, and yi = 0 for benign. To optimize the model, a grid

search was performed with a design similar to that performed for the SVM.

Decision tree (DT) and random forest (RF). The classification and regression trees

(CART) algorithm was used to generate DTs of binary splits. The Gini’s diversity index was

used to find the best input Fj | j 2 N� L for splitting the training set for each iteration of

branching; where Fj is the jth wavenumber from the fingerprint region 1800 cm-1 to 850 cm-1.

Gini’s diversity index [42] is given by

GINIðjÞt ¼
X2

m¼1
ð
N

mjbF

Nt
� ðPðmjtÞ2 þ ½1 � PðmjtÞ�2ÞÞ ð7:1Þ

where the maximum bound for the summation operation denotes the binary characteristic of

the splitting considered. Furthermore, N
mjbF

is the total number of class m separated by the

value bF 2 F
!

jjF
!

j ¼ rowjðXSDÞ at node t, Nt is the total number of elements inF
!

j at node t and

P(m|t) is the probability of class m for being either malignant or benign from happening at

node t. Since the elements inF
!

j are continuous variables, the best value of separation bF was
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identified from F
!

j by considering the element having the least GINI(j)t metric [43]. The

branching was recursively performed for each newly created node until the performance in the

validation set accuracy decreased.

The designed RF utilized the creation of trees following the previously discussed. The diag-

nosis of the RF was determined as the prevailing diagnosis made by its constituent bags of

DTs. To determine the optimum number of trees NRF for the RF, a grid search from 3 to 100

trees was performed. The validation set accuracy was considered as the optimization criteria of

the search. Each simulation was repeated over 50 times for each iteration n|n 2 {3� N� 100}

to ensure stability. The average accuracy over the 50 trials served as the final performance met-

ric of the RF for an NRF equal to n. The final RF constituted the design with the highest average

accuracy.

Naïve bayes (NB). The designed NB is a classifier of two classes of n|n 2 N� L inputs.

For each jth input, F
!

j, the best bF value of separating the elements of F
!

j between two sub-classes

was determined. The algorithm for finding bF is the same as that of the DT and RF designs

where the Gini’s index was used (Eq 7.1). The predictive value fNB(x) of the NB is defined as

the probability of a sample for being malignant, given an input x :¼ x!SD. pNB(x) is given by

pNBðxÞ ¼

Yn
j¼1

PðmjjmalignantÞ
Yn

j¼1
PðmjÞ

ð8:1Þ

where the numerator corresponds to the total probability of an input x from happening, given

n-inputs considered, with an x(j) value classified as class mj for a determined separation bFj for

malignant cases. On the other hand, the denominator is the total probability of the set of mj

from x for ever happening. The NB classifier outputs a malignant diagnosis when pNB> 50%;

otherwise, the diagnosis is benign. In order to determine the optimal n-value for the classifier,

the number of inputs was increased from 3 to L, where the inputs of the least GINI(j)t value

were considered first. The optimization was terminated at the n-value where the validation

accuracy of the model started to decrease. Each iteration of n was repeated for 50 trials, where

the average validation accuracy from the 50 trials was the considered optimization metric cri-

terion. The final NB constituted to the design with the highest average validation accuracy.

Identification of dominant spectral components

In order to identify the most significant wavenumbers which influenced a sample’s diagnosis

via the NN models, a novel sensitivity analysis was performed based on the optimized FNNs

(n = 2, n = 4, n = 8). It must be noted that a visual peak analysis of the obtained spectral data

was also performed prior to sensitivity analysis to compare the identified significant wavenum-

bers from the NN.

Visual peak analysis. Significant peaks in the fingerprint region were identified through

visual inspection of XSD. Test of normal distribution using Shapiro-Wilk test and variance of

homogeneity were performed for the identified peaks. Since all data followed a non-normal

distribution, they were subjected to Mann-Whitney U test to assess if the absorbance peaks of

malignant samples were significantly different (p-value<0.05) from the benign samples. Sta-

tistical analyses were performed using MATLAB 2020b.

Sensitivity analysis of neural network. A modified neural network committee-based

(NNC) sensitivity analysis was considered using the input perturbation algorithm. In order to

simplify the NNC sensitivity analysis, the committee of NNs were designed and trained follow-

ing the design architecture of the optimized FNNs [20–22].
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For the analysis, an experimental set SEXP� XSD was used to train and analyse the FNN

design. SEXP comprises of 70% randomly-selected elements from XSD. The elements of SEXP
was randomly selected from XSD. Moreover, the quantity of malignant and benign samples

from SEXP were equally proportioned. For each selected input x!SDðjÞ8 j 2 N � L, a perturba-

tion Δxj from –50% to 50% of x!SDðjÞ at 5% steps was added to the x!SDðjÞ, and the mean square

error (MSE) of the output was tabulated; where x!SDðjÞ is the mean value of SEXP for the jth

input [21]. The MSE for the jth input variable at its kth step perturbation Δxj,k (MSEj,k) is calcu-

lated using the formula

MSEj;k ¼
XNEXP

l¼1

X2

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Oj;kðiÞ
2
� bOðiÞ2

q

2
ð9:1Þ

where NEXP is the total number of elements in SEXP, Oj,k is the output vector of the model for

Δxj,k, and bO is the ideal output vector; where bO ¼ h1; 0i for a benign sample, and bO ¼ h0; 1i
for a malignant one. The overall response of the network MSEj for the jth input was computed

by averaging MSEj,k for all Δxj,k k-steps given by

MSEj ¼

XNk

i¼1
MSEj;kðiÞ
Nk

ð9:2Þ

To ensure stability of the performed sensitivity analysis, the process was repeated for a com-

mittee of 50 NN (i.e., 50 trials). The overall response of the jth input, was computed as the aver-

age of the jth input response over the 50 trials MSEj.

To visualize the perturbation response of the considered FNN, MSEj was plotted for all

j 2 N� L. The sensitivity analysis was performed for each FNN (n = 2, n = 4, n = 8).

Motivation and theory. The diagnostic ability of often-used machine learning models

such as SVM, LDA, and PCA greatly relies on the variation among and between data within a

data set X. This variation is often quantified using a covariance matrix, S 2 RN2

. By obtaining

the eigenvectors associated with S, the characteristic form of the data may be easily represented.

However, this approach becomes ineffective if the variation among the data set elements Xj 2

X becomes significantly small (but not infinitesimally small to imply repetitive data). In such a

scenario: S! 0, the obtained eigenvector solutions, e!jj j 2 N � N, become trivial where

je!jj! 0 8 j 2 N � N. This makes it difficult to distinguish important variables which may

prove significant in determining an accurate diagnosis. For artificial NNs, the weights deter-

mine the correlation of the input parameters toward the outputs under 0-bias condition. Here,

the magnitude of a weight determines the magnitude of the correlation, while the sign of the

weight determines the direction of influence [44]. This simplistic model does not however

explain the contribution of biases and activation functions in a network’s decision-making

process.

The proposed model of this study probes the significance of an input parameter x!SDðjÞ
based on the magnitude of change at the output for given ranges of input perturbations Δxj,k.
The magnitude of influence of an input variable is given by the MSEj,k, which is a magnitude

value at the range of 0 to 1 since the output are probabilities. In obtaining MSEj,k, X
ðMÞ
SD and XðBÞSD

were assumed as a single set since analyzing them separately would not provide an overall

determination of the significant variables considering both classification. Furthermore, since

the spectral data set XSD was normalized for each set element x!ðiÞSD, MSEj,k was expected to be

less varied between samples for all x!ðiÞSD 2 XSD across all input variables. This assumption
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makes it justifiable to denote the overall average, MSEj, as the overall measure of an input

response for a single neural network. The overall MSE magnitude, MSEj, was assumed as the

final metric to measure the influence of a given variable, which is the average MSEj measure

considering multiple similar NNs. In such process, it was assumed that each NN had similar

input responses since each followed the same architecture, training, and optimization. Lastly,

in determining the most significant input variables, MSEj was no longer ranked in contrast to

usual sensitivity analyses [20–22, 45, 46]. Since the functional groups and vibrational modes

associated with the input variables are usually presented in ranges within the IR spectrum, it

was more appropriate to identify and discuss significant peaks from the plot of MSEj rather

than in a ranked form.

Overall, this study proposed that input variables associated with comparatively high MSE
constitute to significant wavenumbers important in the NN’s diagnosis. Since the NN models

were assumed as the prevailing models and are highly accurate, the determined wavenumbers

may thus provide insights in the associated changes in chemical composition and structure of

biomolecules in cancerous breast tissues. The overall method implemented in the study is

summarized in Fig 1.

Fig 1. Experimental design process flowchart. The figure shows the experimental design implemented in the study, from the acquisition of breast tissue samples, to

the acquisition, processing and analysis of spectral data.

https://doi.org/10.1371/journal.pone.0262489.g001
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Results

Samples

The clinical characteristics of the samples were retrieved from medical records and histopa-

thology reports of the hospital study sites (Table 1). Among the malignant samples, majority

were invasive ductal carcinoma. Meanwhile, the benign breast samples were mainly fibroade-

noma and fibrocystic change (Table 1). The above classifications were based on microscopic

examination of H&E-stained specimens and immunohistochemical staining (if needed or

available) following the current WHO classification.

The variation between benign and malignant samples is shown in Fig 2. From the PCA

plot, 90.28% of the variability was associated with the first principal component F1, while only

5.12% was associated with the second principal component F2. Most of the benign samples

were scattered along the negative domain of the F1 axis while malignant samples were evenly

scattered. Both sample classes followed a parabolic distribution across the determined princi-

pal axes. Overall, the PCA biplot suggests that the benign and malignant breast samples were

highly similar in characteristics.

Feedforward neural network designs

The NN input layer consisted of 462 nodes which corresponded to the defined IR absorbance

of each sample in frequencies between 1800 cm-1 to 850 cm-1. Three (3) FNN models were

designed with varying layer sizes (n = 2, n = 4, n = 8). The quantity of neurons per FNN hidden

layer was kept constant for each repetition. The general NN architectures are summarized in

Table 2.

Gaussian random initialization was assumed for weight initialization, while a zero-value

initialization was used for the biases. Moreover, SELU activation was used for all neuron acti-

vation functions except for the respective output layers in which the softmax activation func-

tion was used. All NN were trained through backpropagation via AdaGrad stochastic gradient

decent (SGD) [47] over 1000 epochs. The binary cross-entropy function was considered as the

cost function for all NN designs during the training process. To avoid over-fitting, a dropout

of 90% was used for each feed forward hidden layers as recommended for SELU activation

[29, 37].

Neural network optimization

Pre-training, a grid search was performed to determine the optimal learning rate and the layer

width. To limit the search space of the performed grid search, the explored learning rates L,

Table 1. Clinical data of the patients with breast lesions�.

Diagnosis Classification� Total no. of samples (n = 164)

Malignant Invasive ductal carcinoma (n = 76) 88

Others (n = 12)

Benign Fibroadenoma (n = 46) 78

Fibrocystic change (n = 20)

Other (n = 12)

�Retrieved from hospital records and were based on microscopic evaluation of H&E-stained slides by resident

pathologists of the hospital study sites.

https://doi.org/10.1371/journal.pone.0262489.t001
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and the considered layer width NW, were limited to 10 and 20 elements, respectively, where

L 3 li ¼
li� 1

k
jl0 ¼ 1; i 2 N � 9 ; k ¼

2 8 i 2 NOdd

5 8 i 2 NEven

(

Fig 2. PCA biplot showing data points of malignant and benign samples. The red points denote malignant samples while blue points denote benign samples

plotted across the two most dominant components (F1 = 90.28% and F2 = 5.21%). The vectors show the wavenumbers associated with peak absorbance, where those

highlighted in green were identified as significant wavenumbers in discriminating benign from malignant samples.

https://doi.org/10.1371/journal.pone.0262489.g002

Table 2. Feedforward neural network architecture.

FNN2 FNN4 FNN8

Overall architecture input layer– 462 neurons input layer– 462 neurons input layer– 462 neurons

2 hidden FC layers –350

neurons

4 hidden FC layers– 400

neurons

8 hidden FC layers –300

neurons

output layer– 2 neurons output layer– 2 neurons output layer– 2 neurons

Learning rate 0.01 0.01 0.01

Network weight

initialization
Gaussian random: σ =

ffiffiffiffiffiffiffiffiffiffiffiffi
1

input size

q
, μ = 0

Input normalization Z-score normalization: x!≔ x! � meanðx!Þ
stdðx!Þ

Activation functions Input/Hidden layers–SELU

Output layer - softmax

Cost/fitness function Binary cross-entropy

Fully connected layer

dropout

90% SELU dropout

Training optimizer AdaGrad stochastic gradient descent (SGD)

Epoch 1000
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and NW = {10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400,

462}. For every combination of hyperparameters, each NN model was trained over 1000

epochs using the training set via a 10-fold cross-validation procedure over 50 trials. The best

hyperparameter combination for each model was identified as the hyperparameter combina-

tion with the highest average validation accuracy.

The result of the grid search for each NN design (Fig 3) shows that for all models, the

designs peaked at a learning rate of about 0.005 to 0.1, with the FNN2 having the most stable

deviation of performance across its range and the FNN8 as the most unstable. Regardless of

the model, it can further be seen that at learning rates above 0.1, the models exhibited very

poor performance in validation accuracy which may be due to divergence and large weight

oscillations. Meanwhile, the validation accuracy stagnated at learning rates of below 0.005,

which may be due to very small changes in the NN’s weights and biases. The optimized learn-

ing rate for each model was identified to be all equal to 0.01, while the number of neurons per

layer of each model to achieve best performance were 350, 400, and 300 for FNN2, FNN4, and

FNN8, respectively.

Diagnostic performance of models

Diagnostic performance of the NN models and the other machine learning models (NB, DT,

RF, LR, LDA, SVM) was determined by comparison with the gold standard, which is the

microscopic examination of H&E-stained tissues by pathologists. In terms of ACC, NPV and

RR, all the NN models were able to significantly surpass all the other machine learning models

(Tables 3 and 4). However, none of the models was able to outperform the SVM model as to

AUC (95.72% ± 4.94%). Among the NN models, the best AUC was achieved by FNN4 (90.48%

± 10.30%) followed by FNN8 (90.35% ± 10.10%) then FNN2 (90.05% ± 9.95%). The relatively

low AUC among NN models may be attributed to a lack of training time. In terms of PPV, the

NN model performances did not significantly differ from the best benchmark model, which

was SVM. As to NPV, the NN models were able to surpass the performance of the best bench-

mark model by an average of 4.42% for FNN2, 3.16% for FNN4 and 2.08% for FNN8. As to

SR, the models performed significantly less than SVM, but were able to outperform the other

benchmark models. The models were able to outperform SVM in terms of RR by an average of

2.94% for FNN2, 1.23% for FNN4 and 0.17% for FNN8. Note, however, that the RR value for

FNN8 was not significantly differed from that of the SVM. The observed increase in metric

performance from FNN8 to FNN2 may be due to a lack in training time for the deeper models.

Overall, the significantly high ACC value of the FNN models may prove them viable classifiers

in distinguishing malignant from benign samples using FTIR data. The results are summarized

in Tables 3 and 4.

Visual peak analysis of data

The fingerprint spectral region (1800 cm-1 to 850 cm-1) showed that the absorbance spectra of

the malignant and benign tissues were significantly distinct from each other, specifically at

bands 1452cm-1/1452 cm-1, 1399 cm-1/1401 cm-1, 1337 cm-1/1337 cm-1, 1279 cm-1/1279 cm-1,

1236 cm-1/1236 cm-1, which represent lipids, DNA, RNA and phospholipids (Table 2). Other

peaks tested, in particular 1632cm-1/1634 cm-1, 1539cm-1/1540 cm-1, 1160cm-1/1160 cm-1,

1032cm-1/1030 cm-1, and 880cm-1/878 cm-1, were found as non-distinct among samples.

These bands represent amide I proteins, amide II proteins, carbohydrates, glycogen, and phos-

phorylated proteins. It is worth mentioning that the tissues analyzed had uniform thickness

(5μm) achieved by sectioning with a microtome. The median absorbance spectra of benign

and malignant breast tissue samples are shown in Fig 4.
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Test of homogeneity showed that the characteristic IR absorbance peaks of the malignant

cases were significantly different (p<0.05) from the benign samples. The visually identified

peak positions and absorbances in the fingerprint IR region (1800 cm-1 to 850 cm-1) that could

significantly differentiate the malignant from benign samples are summarized in Table 5.

Their corresponding functional group, vibrational mode, and molecular source assignments

Fig 3. A. Grid search surface plot of FNN2. The plot shows the grid search surface plot for optimizing the FNN2 model for learning rate and number of neurons per

hidden layer. Validation accuracy peaked at a learning rate of 0.01 and 350 neurons per hidden layer. Low performance at high learning rates (blue region) may be due to

divergence and high parameter oscillations, while stagnation of performance at low learning rates (green region) may be due to insufficient training time. B. Grid search

surface plot of FNN4. The plot shows the grid search surface plot for optimizing the FNN4 model for learning rate and number of neurons per hidden layer. Validation

accuracy peaked at a learning rate of 0.01 and 400 neurons per hidden layer. The same behavior in the low and high learning rate regions, observed in the FNN2 surface

plot, is also evident here. C. Grid search surface plot of FNN8. The plot shows the grid search surface plot for optimizing the FNN8 model for learning rate and number

of neurons per hidden layer. Validation accuracy peaked at a learning rate of 0.01 and 300 neurons per hidden layer. Among the FNN surface plots, the FNN8 constituted

to the most unstable response in validation accuracy.

https://doi.org/10.1371/journal.pone.0262489.g003
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are also listed in the aforementioned table. It was observed that peak absorbances representing

lipids, DNA, RNA and phospholipids were significantly decreased in most malignant tissues.

The results of the performed test of significance is further backed-up in Fig 2, where wave-

numbers associated with significant peak absorbances were more closely projected to F1 than

those which were not. This implies that lipids, DNA, RNA and phospholipids are responsible

for the high variability among the samples, suggesting further that these biomolecules highly

varies between malignant and benign classes.

Significant peaks identified by neural networks

The input response produced by each NN design is summarized in Fig 5. As shown, the

response of each network is highly similar to one another. For all NN designs, the IR region

associated with the functional groups, in particular within ~960 cm-1 to ~1050 cm-1, showed

the greatest input response within the considered spectrum. Meanwhile, the least response was

evident within ~1250 cm-1 to ~1320 cm-1.

Using the input response of NN from neural network committee-based sensitivity analysis,

the significant peaks were identified from the fingerprint spectral region (1800 cm-1 to 850 cm-1)

as shown in Fig 5. The information on the protein content, including its secondary structures

such as amide I and amide II, are observed in the region between 1800 cm-1 to 1500 cm-1 [48,

49]. The bands found at ~1635 cm-1 are associated with the amide I protein that arises from the

C = O stretching vibrations of the amide groups of the protein backbone [49, 50]. The bands at

1540 cm-1 results to N-H bending in the amide II groups, which is associated with aromatic

Table 3. Diagnostic performance of the models.

Model AUC (%) Accuracy (%) PPV (%) NPV (%) SR (%) RR (%)

LDA 71.58±11.84 66.17±10.20 77.67±13.47 55.98±15.34 74.35±11.80 61.56±9.65

Logistic Regression 86.27±9.58 65.05±12.63 68.83±31.57 60.79±41.06 53.46±32.44 73.00±23.96

Naïve Bayes 66.90±10.90 64.69±10.41 54.44±16.24 77.40±15.09 60.23±9.62 74.22±15.28

Decision Trees 69.03±12.83 69.38±11.58 69.56±15.82 69.56±17.37 67.79±13.58 73.19±12.93

Random Forest 84.63±9.30 76.78±9.49 76.94±14.56 76.60±14.88 76.18±12.23 79.91±10.88

SVM 95.72±4.94 90.44±7.78 91.03±9.61 89.77±10.33 90.56±9.68 91.40±8.34

FNN2 90.05±9.95 96.06±7.07 89.83±12.57 94.19±10.57 85.56±18.33 94.34±10.54

FNN4 90.48±10.30 95.54±8.07 91.72±12.06 92.93±12.81 88.38±17.47 92.63±13.31

FNN8 90.35±10.10 95.46±7.55 92.18±11.88 91.85±12.67 89.04±16.75 91.58±13.47

Abbreviations: LDA–linear discriminant analysis; SVM–support vector machines, FNN—feed forward neural network; AUC—area under the curve; PPV—positive

predictive value, NPV- negative predictive value; SR—specificity rate; RR—recall rate.

https://doi.org/10.1371/journal.pone.0262489.t003

Table 4. Test of significance of neural network performance metrics relative to SVM.

Model Difference of average performance metric� (p-value��)

AUC (%) ACC (%) PPV (%) NPV (%) SR (%) RR (%)

FNN2 -5.67 (<< 0.05) 5.62 (<< 0.05) -1.20 (0.2137) 4.42 (<< 0.05) -4.95 (0.0219) 2.94 (0.0006)

FNN4 -5.24 (<< 0.05) 5.09 (<< 0.05) 0.69 (0.5249) 3.16 (0.0001) -2.18 (0.0161) 1.23 (0.0359)

FNN8 -5.37 (<< 0.05) 5.01 (<< 0.05) 1.15 (0.1042) 2.08 (0.0036) -1.52 (0.1814) 0.17 (0.5832)

�The differences of performance metrics were computed by subtracting the FNN performance metric to that of the SVM.

�� Mann-Whitney U test (two-tailed); significant when p<0.05.

Abbreviations: : LDA–linear discriminant analysis; SVM–support vector machines, FNN—feed forward neural network; AUC—area under the curve; ACC—accuracy ;
PPV—positive predictive value, NPV- negative predictive value; SR—specificity rate; RR—recall rate.

https://doi.org/10.1371/journal.pone.0262489.t004
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amino acids. The bands 1454 cm-1 and 1393 cm-1 are associated with the CH2, CH3 deformation

modes mainly from proteins and lipids [49, 51]. Peak position 1393 cm-1 resulted from COO−-

symmetric stretching of amino acids [49]. The region of 1300 cm-1–800 cm-1 corresponds to the

variations of functional groups that are present in proteins, nucleic acids, carbohydrates and

phospholipids such as PO2–, C–O, and C–C [48, 52]. The band at 1238 cm-1 is at the range of

sugar-phosphate chain vibrations which is related to PO2
− asymmetric stretching of nucleic acids

[52]. Furthermore, this is also the range for Amide III (1299 cm-1–1200 cm-1) for its C-N stretch-

ing, N-H bending, C = O stretching, and O = C-N bending [53, 54]. The vibrations of C–O

group from glycogen are observed in peak 1077 cm-1 [51]. The band 1030 cm-1–1045 cm-1 is due

to C–O stretching and C–O bending of the C–OH groups of carbohydrates such as glucose, fruc-

tose [50, 54]. The band at 990 cm-1 is related to phosphorylation of proteins and ribose-phos-

phate chain [50] while ~962 cm-1 is associated with symmetric phosphate stretching modes from

phosphate diester groups in nucleic acids and phospholipids [51].

Discussion

FTIR spectroscopy is a prospective novel diagnostic tool that is used to distinguish cancer

samples from normal ones at high sensitivity, specificity, and accuracy [55, 56]. Considering

the molecular complexity of biological specimens, chemometric techniques such as the

Fig 4. Median ATR-FTIR absorbance spectra of malignant (n = 88) and benign (n = 78) breast tissue samples. The figure shows the median FTIR spectrum of

malignant and benign breast tissue samples and their corresponding peaks identified via visual analysis. The plot shows almost similar absorbance among benign and

malignant samples within wavenumbers associated with the amide proteins. Benign tissue samples, relative to malignant tissue samples, are shown to have increased

absorbance within the region associated with lipids and nucleic acids while having decreased absorbance within the region associated with carbohydrates, glycogen, and

phosphorylated proteins.

https://doi.org/10.1371/journal.pone.0262489.g004
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principal component analysis (PCA) and artificial neural networks (ANN) that combine

statistical and mathematical algorithms are utilized to generate chemo-physical evidence

from spectral data [55].

The advent of computers with enhanced processing capabilities and enhanced memory

capacity have led in the rise of computer-aided diagnosis (CAD), which combines algorithms

or methods from pattern recognition and digital image processing [56]. Meanwhile, scientists

have been drawn to the potential application of FTIR spectroscopy in the clinical setting to

improve accuracy and reproducibility of cancer diagnosis, while omitting the need for com-

plex and time-consuming clinical processing of tissue biopsy samples [55]. This is best exem-

plified by the study of Großerueschkamp, et al., wherein they combined FTIR imaging and a

novel trained random forest (RF) classifier for the automated marker-free histopathological

annotation of lung tumor classes and subtypes of adenocarcinoma without further treatment

of tissue samples. This study yielded greater reproducibility and accuracy of 97% for the

annotation of lung tumor classes and 95% for the identification of prognostic adenocarci-

noma subtypes [57]. Subsequently, FTIR reduced intra- and inter-operator variability

through its objectivity, reproducibility, and improved accuracy over current methodologies

for cancer diagnosis [55]. This also permits the standardization of spectral measurement and

analysis, which is necessary for the construction of FTIR spectral databases with highly spe-

cific spectroscopic markers for the various stages and grades of different cancer types applica-

ble to the clinical settings [58]. Additionally, an easy and objective data interpretation can be

done by non-spectroscopists by incorporating powerful algorithms for automatic data analy-

sis of large data sets [55].

Table 5. Comparison of the spectrum variables (peak positions and normalized absorbances) of malignant and benign breast samples in the fingerprint IR region

(1800cm-1 to 850cm-1) via visual peak identification.

Malignant samples (n = 88) Benign samples (n = 78) p-value�

Peak position Mean abs ±SD Peak position Mean abs ±SD Functional Group Vibrational Mode Molecular Source[1–5]

P1632 2.8311 ±0.2347 P1634 2.7934 ±0.1968 O = C-N-H ν(CO), ν(CN) Amide I, protein 0.0553
P1539 2.1152 ±0.2475 P1540 2.1533 ±0.1955 O = C-N-H γ(N-H), ν(C-C), ν(C-N) Amide II, protein 0.4146
P1452 0.4797 ±0.2924 P1452 0.5920 ±0.2651 -(CH2)n, -(CH3)n- δas(CH3), δas(CH2), δs(CH3) Lipids 0.0031
P1399 0.2208 ±0.2822 P1401 0.3375 ±0.2481 -(CH2)n- δs(CH3) Lipids 0.0026
P1337 -0.2794 ±0.3509 P1337 -0.1598 ±0.3269 0.0140
P1279 -0.4509 ±0.3683 P1279 -0.3397 ±0.3479 0.0231
P1236 -0.0416 ±0.4474 P1236 0.1160 ±0.4204 RO-PO2-OR νas(PO2

-) DNA, RNA, phospholipids 0.0129
P1160 -0.8352 ±0.2566 P1160 -0.7759 ±0.2634 C-O-H ν(CO), γ(COH) Carbohydrates 0.0673
P1032 -0.1732 ±0.3355 P1030 -0.2386 ±0.2966 C-O-H def(CHO) Glycogen 0.1339
P880 0.1482 ±1.0361 P878 -0.0945 ±0.9590 C-O-P ν(COP) Phosphorylated protein 0.0773

� Mann-Whitney U test (two-tailed); significant when p<0.05.

��values in bold refer to significantly higher peak absorbance (p<0.05).

Abbreviations: ν: stretching; δ: bending; γ: wagging, twisting and rocking; s: symmetric; as: asymmetric; def: deformation.

References:

[1] Wu M, Zhang W, Tian P, et al. Intraoperative diagnosis of thyroid diseases by fourier transform infrared spectroscopy based on support vector machine. Int J Clin
Exp Med 2016; 9: 2351–2358.

[2] Dong L, Sun X, Chao Z, et al. Evaluation of FTIR spectroscopy as diagnostic tool for colorectal cancer using spectral analysis. Spectrochim Acta—Part A Mol Biomol
Spectrosc 2014; 122: 288–294.

[3] Simonova D, Karamancheva I. Application of Fourier transform infrared spectroscopy for tumor diagnosis. Biotechnol Biotechnol Equip 2013; 27: 4200–4207.

[4] Lewis PD, Lewis KE, Ghosal R, et al. Evaluation of FTIR Spectroscopy as a diagnostic tool for lung cancer using sputum. BMC Cancer 2010; 10: 640.

[5] Zhang X, Xu Y, Zhang Y, et al. Intraoperative detection of thyroid carcinoma by fourier transform infrared spectrometry. J Surg Res 2011; 171: 650–656.

https://doi.org/10.1371/journal.pone.0262489.t005

PLOS ONE Breast cancer detection by ATR-FTIR spectroscopy using AI

PLOS ONE | https://doi.org/10.1371/journal.pone.0262489 January 26, 2022 17 / 24

https://doi.org/10.1371/journal.pone.0262489.t005
https://doi.org/10.1371/journal.pone.0262489


The designed NNs exhibited superior accuracy (>90%) relative to the best benchmark

model (SVM). These metrics prove them not only as excellent classifiers in distinguishing

malignant from benign breast cancers using ATR-FTIR data, but also excellent classifiers in

general. Overall, the FNN2 model was able to obtain larger metric values relative to the other

NN models. The decrease in the performance metrics, in particular, accuracy, NPV, and RR of

the models as a function of the layer quantity makes it evident that the deeper models may

have lacked training time. Do note, however, that an opposite trend is evident for the SR and

PPV metrics, implying that the designed architectures may approach a classifier that becomes

increasingly more accurate in detecting malignant rather than benign samples as the model

gets deeper. This observation presents a trade-off between the model’s capability in confirming

truly malignant from benign samples. This, further, implies that if a more accurate positive

screening test is more in-demand, then deeper models may be assumed. Conversely, for more

accurate negative screening tests, a less deep model may be more necessary.

Considering the metric comparison performed, the non-significant PPV metric of the

designed NNs make them equally competent to SVM. However, the significantly higher NPV

metric of the designed NN models make them more superior classifiers in terms of identifying

benign samples as truly exhibiting non-malignancy. The significance of the SR and the RR are

parallel to the significance of the PPV and NPV by definition, respectively. This characteristic

makes the designed NN models more practical to use in situations where diagnosing non-

Fig 5. Input response of neural networks from the designed NN-based sensitivity analysis. The line plots show the input response of each neural network design per

change of absorbance value per wavenumbers. A high per cent contribution magnitude implies a high response to a change for the particular wavenumber, hence may

serve as a marker in identifying malignant samples from benign samples. As evident from the figure, the response of each network is nearly the same, which only varies

slightly in the magnitude contribution.

https://doi.org/10.1371/journal.pone.0262489.g005
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malignant patients as malignant becomes very costly. While administering an incorrect diag-

nosis is very detrimental for a patient in general, for financially non-capable individuals, an

accurate diagnosis of non-malignancy may be of more importance since a false diagnosis of

malignancy risks the individual of financial burden in chemotherapy, and a probable decline

in health which further necessitates added costs. In developing countries such as the Philip-

pines, the use of highly specific diagnostic tool such as the designed NNs in this study may

prove more beneficial for patients undergoing cancer diagnosis. Regardless of the use, how-

ever, the models show their potential as highly specific tools to assist pathologists and medical

practitioners in the field.

The designed neural networks that were used to analyze the FTIR spectra were able to iden-

tify significantly decreased peak absorbances characteristic of lipids, nucleic acids, and phospho-

lipids in malignant tissues, which were similarly evident in the performed visual analysis

(Table 5). Breast cancer is often characterized by the stimulated production of novo lipids

which are essential for cell growth, proliferation, and oxidative stress resistance. The triacylgly-

ceride storage in lipid droplets has been suggested to work as fuel source after re-oxygenation

during intermittent hypoxia, whereas fatty acids promote redox balance supporting a high-gly-

colytic rate in malignant tissues. Lipids also form the structural basis of paracrine hormones

and growth factors which stimulate tumor growth, neovascularization, invasion, and metastatic

spread [59]. The decrease in lipids and phospholipids may reflect the utilization of these biomol-

ecules for nutrition and energy source; and thus, prevent there accumulation in cancer cells dur-

ing cancer progression [60]. A significant difference in the absorptive peak was also apparent in

the DNA/RNA spectral region, with the malignant breast samples showing significantly lower

peak absorbance than benign samples. This is in contrary to the findings of Lazaro-Pacheco

et al. wherein higher contribution of nucleic acid bands was identified in cancerous samples in

comparison with normal breast tissues in different spectral regions. They argued that high con-

centration of these biomolecules is expected since there is increased cellular content in response

to an abnormal proliferation [61]. However, in a study involving ovarian cancer, the RNA/

DNA absorption peaks were significantly lower in malignant tissues than in borderline and

benign ovarian tissues [62]. The lowered peak absorbance among malignant samples may be

due to fragment transfer of tumor DNA or cell-free RNA from the cancerous area to the blood-

stream; thus, consequently decreasing the nucleic acid content at the primary tumor area [63].

Interestingly, there was no distinctive difference between malignant and benign breast tis-

sues in the absorptive peaks of carbohydrates as perceived by the visual analysis performed

(Table 5). In relation, the P1160 wavenumber vector that is associated with carbohydrates was

projected significantly far from F1, implying further that this biomolecule is not a possible

cause of variability (Fig 2). However, the sensitivity analysis stated otherwise since the highest

peak was evident across the IR region associated with the C–OH group of carbohydrates (Fig

5). Studies have shown that assessing glycogen levels is a good differentiation marker between

malignant and benign tissues, with malignant samples generally consuming more glycogen to

sustain survival during prolonged hypoxia and glucose deprivation as well as to sustain metas-

tasis [64]. This ability of the sensitivity analysis to recognize the carbohydrates as differentiat-

ing factor, which in contrast was not detected by mere visual peak analysis, further proves the

proposed method as a more discerning method to identify important spectral biomarkers. Pos-

sibly, the breast cancer cells could have already catabolized their glycogen stores as well as

their subsequent by-products such as glucose for survival in nutrient-deprived environment

[23]; hence, became relatively indistinguishable by the usual visual peak analysis. Given the

proposed method’s superior ability, the study suggests that the identified peaks within the

higher IR wavelength region (~1400 cm-1 to ~1800 cm-1) be given attention, particularly those

associated with CH2, CH3 deformation modes and amide protein stretch and bends.
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A variety of biological materials including blood, solid tissues, urine, and sputum have been

studied using FTIR spectroscopy to develop better alternatives for cancer diagnosis and man-

agement. In the clinical setting, blood and tissue samples remain to be widely used as opposed

to other specimens for diagnosing disease [55]. In less developed countries, the use of FFPE

samples can provide technical ease and economic advantage for longitudinal tissue specimen

storage as they can be easily retrievable from accredited repositories for further analysis [65].

Compared to immunohistochemical and molecular assays, FTIR can be a cheaper alternative

for detecting biochemical markers in pathologic FFPE specimens based on unique vibrational

patterns [60]. With the introduction of machine learning, FTIR spectroscopy in clinical diag-

nostic settings can reduce intra- and inter-operator variability and improve accuracy and

reproducibility of cancer diagnosis, while omitting the need for complex and time-consuming

clinical processing of clinical samples [56].

The generation of NN models from the FTIR fingerprint of benign and malignant FFPE

breast tissues led to the identification of significant wavenumbers apart from those at peak

absorbances, which can be used to discriminate malignant from benign tissues. Interestingly,

unique peak absorbances distinctive of lipids, nucleic acids, and phospholipids were identified,

showing that these biomolecules were significantly decreased in malignant tissues as compared

to benign samples, and can, therefore, be used as biochemical fingerprints to aid in cancer

diagnosis.

While the current study shows that NN models from FTIR spectra can be used as an

adjunct tool for diagnosing breast cancer, additional clinical studies should be made to bring

this technology into the clinical setting. Due to financial constraint, this study was conducted

using only the basic type of FTIR spectrometer with limited spatial resolution. To acquire a

comprehensive spectral data, additional FFPE samples may be analyzed using an FTIR coupled

with an infrared microscope to detect vibrational motions of molecules within very restricted

regions. Other spectroscopic techniques such as the Raman spectroscopy can also be used to

further probe molecular vibrations to aid in the characterization and discrimination of tissue

types [66]. The creation of spectral database and the generation of novel powerful algorithms

for automatic data analysis of large data sets is another prospect to accelerate point-of-care

decisions and improve therapeutic management for breast cancer patients [67]. Further studies

also show that an alternative sample to tissues could be blood plasma, since the use of plasma

is cheaper, less invasive, and easier to process [68, 69]. Through the integration of AI and

FTIR, spectral biomarkers in plasma samples may be identified to monitor treatment response;

a study which is already being investigated by the research team.

In summary, the present study generated NN models that led to the identification of unique

infrared spectrum of absorption in the lipid, nucleic acid, phospholipid, and carbohydrates

regions that could effectively discriminate malignant from benign breast tissues. To the

researchers’ knowledge, this is the first study to have used several machine learning tools to

identify malignant breast tissues based on FTIR spectral data.
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Total Reflection-Fourier Transform Infrared (ATR-FTIR) Spectroscopy Analysis of Saliva for Breast

Cancer Diagnosis. J Oncol. 2020; 2020:4343590. https://doi.org/10.1155/2020/4343590 PMID:

32104176

55. Su KY, Lee WL. Fourier transform infrared spectroscopy as a cancer screening and diagnostic tool: A

review and prospects. Cancers. 2020; 12(115):1–19. https://doi.org/10.3390/cancers12010115 PMID:

31906324

56. Jothi AA, Rajam MA. A survey on automated cancer diagnosis from histopathology images. Artificial

Intelligence Review. 2017; 48(1):31–81.

57. Großerueschkamp F, Kallenbach-Thieltges A, Behrens T, Brüning T, Altmayer M, Stamatis G, et al.
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