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Abstract: Sodium metal batteries are an emerging technology that shows promise in terms of materials
availability with respect to lithium batteries. Solid electrolytes are needed to tackle the safety issues
related to sodium metal. In this work, a simple method to prepare a mechanically robust and efficient
soft solid electrolyte for sodium batteries is demonstrated. A task-specific iongel electrolyte was
prepared by combining in a simple process the excellent performance of sodium metal electrodes of
an ionic liquid electrolyte and the mechanical properties of polymers. The iongel was synthesized by
fast (<1 min) UV photopolymerization of poly(ethylene glycol) diacrylate (PEGDA) in the presence
of a saturated 42%mol solution of sodium bis(fluorosulfonyl)imide (NaFSI) in trimethyl iso-butyl
phosphonium bis(fluorosulfonyl)imide (P111i4FSI). The resulting soft solid electrolytes showed high
ionic conductivity at room temperature (≥10−3 S cm−1) and tunable storage modulus (104–107 Pa).
Iongel with the best ionic conductivity and good mechanical properties (Iongel10) showed excellent
battery performance: Na/iongel/NaFePO4 full cells delivered a high specific capacity of 140 mAh g−1

at 0.1 C and 120 mAh g−1 at 1 C with good capacity retention after 30 cycles.

Keywords: iongel electrolyte; polymer electrolyte; sodium metal battery

1. Introduction

Today, lithium ion batteries (LIBs) are the leading energy storage technology in the
market of consumer electronics and electric mobility [1]. However, it is unlikely that
LIBs alone can satisfy the demand for large-format energy storage due to the limited
availability and the increasing price of lithium sources. Recent research is focusing on
emerging post-lithium-ion batteries [2,3]. Multivalent ion batteries—such as magnesium,
zinc, and aluminum—hold the theoretical advantage of transferring multiple charges by
each ion, but the development of these technologies is still in an early stage [4]. On the
other hand, sodium-ion batteries (SIBs) have gained increasing traction in academia and
industry with few companies—such as Faradion (UK) and CATL (China)—near to market
introduction. Sodium is a cheap and extremely abundant element that displays a very
similar electrochemical behavior to lithium [5,6]. Nevertheless, SIBs still face some research
challenges including lower energy densities than LIBs [4]. SIBs usually employ hard carbon
anodes and carbonate-based electrolytes. Replacing hard carbon-negative electrodes with
sodium metal ones could theoretically increase the energy density if suitable electrolytes for
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sodium metal are found. Super-concentrated ionic liquid (IL) electrolytes have been under
extensive investigation due to their superior stability as electrolytes for sodium and lithium
metal batteries [7,8]. While previous studies focused on pyrrolidinium ionic liquids, only
recently has there been interest in phosphonium-based ionic liquids. For instance, Hilder
et al. described an electrolyte based on 42%mol NaFSI in trimethyl iso-butyl phosphonium
bis(fluorosulfonyl)imide (42% mol NaFSI in P1114iFSI) electrolytes for long lasting and
stable sodium metal batteries [9,10]. Despite these advantages, IL electrolytes require a
porous separator and are limited by the risks of leakage [11]. To overcome these issues
and enable solid-state sodium batteries, the preparation of solid gel electrolytes (also
known as iongel electrolytes) has become a very popular solution. This novel class of
materials combines the unique electrolyte properties of ILs with the superior mechanical
properties of polymers. Ionic conductivity is one of the most important parameters in
determining whether a material is a good candidate for use as an electrolyte in a battery
(ionic conductivity values of the order of 10−4–10−3 S cm−1 are normally required). On the
other hand, the storage modulus is a measure of the mechanical properties of the material,
which are reflected in the resistance of the electrolyte to dendrite growth. Along the same
line, we recently demonstrated the excellent performance of iongels with sodium metal,
which involves several polymer matrixes and a pyrrolidinium-type sodium ionic liquid
electrolyte [12]. The goal of this work is to explore the fast UV photopolymerization method
to prepare an iongel for an all-solid-state battery using a sodium-metal anode and triphylite
NaFePO4 as the cathode material, which includes the high-performing phosphonium ionic
liquid electrolyte.

In this work, fast UV photopolymerization of poly(ethylene glycol) diacrylate (PEGDA)
in the presence of 42% mol NaFSI in P111i4FSI was used to prepare self-standing iongel
electrolyte membranes for application in sodium metal batteries.

2. Results and Discussion

Figure 1 shows the schematic diagram of the polymerization of cross-linked iongels.
We used 2-hydroxy-2-methylpropiophenone (DAROCUR 1173) as a radical photoinitiator.
We varied the amount of PEGDA cross-linker between 5 and 40 wt%, naming the iongel
using the following codes: Iongel5, Iongel10, Iongel20, and Iongel40, where the number
indicates the wt% of the PEGDA cross-linker. The obtained iongels were easy to handle,
optically transparent, and did not leak the IL electrolyte. After polymerization, the soluble
fraction was separated using a Soxhlet extractor and analyzed via 1H-NMR. The complete
monomer conversion after the UV polymerization process was confirmed by the disappear-
ance of the double bond signal associated with the acrylate function in the 1H-NMR; see
Figure S1.
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2.1. Dynamic Mechanical Analysis (DMA)

DMA was used to determine the effect of PEGDA crosslinker content on the storage
modulus of the phosphonium iongel electrolytes. Figure 2 shows the storage modulus as a
function of temperature (measured between –40 and 90 ◦C), consisting of two characteristic
regions. In the temperature region below 0 ◦C, a significant modulus change was assigned
to the glass transition temperature (Tg), and the Tg increased with increasing PEGDA con-
tent. It should be noted that the transition region moved out of the measured temperature
window at lower PEGDA content and no estimate of Tg was possible from the DMA data.
In polymers with small changes in heat capacity, it is more difficult to observe Tg by DSC,
while there is a large change in the storage modulus at Tg [13].
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Above room temperature, the rubbery plateau modulus increased with the PEGDA
content in the electrolyte, having a maximum value of 9·106 Pa with 40 wt% PEGDA, while
the value of 100% PEGDA was 2.5·107 Pa. This is a typical increase in the rubbery modulus
with increasing crosslink density. Although it was possible to obtain a gel electrolyte with
5 wt% of PEGDA, these gels were very soft.

The storage modulus value at RT for Iongel40 was higher than those reported for other
solvated ionic liquids (SIL) in polymeric hosts, e.g., PEO/80% SIL (viscous liquid) [14],
PEGDA/79% SIL (420 kPa) [13], or PEGDMA/80% SIL (370 kPa) [15], and these results
showed stable mechanical properties within the typical operational temperature range of
solid-state batteries, i.e., RT and above.

2.2. Ionic Conductivity

The ionic conductivity of the iongels was obtained from broadband dielectric spec-
troscopy (BDS) using the DC plateau from spectra in the conductivity representation. The
IL was placed between two parallel plates made of brass and separated by a Teflon spacer
ring with a thickness L = 100 µm. Figure 3 shows the plot of ionic conductivity between
−80 and 80 ◦C. In general, a tradeoff was observed between ionic conductivity and the
amount of PEGDA, and the sample with the lowest content of PEGDA (Iongel5) displayed
the highest conductivity in the whole temperature range studied. The ionic conductivity
of Iongel10 ranged between 7·10−3 S cm−1 at 80 ◦C and 2·10−8 S cm−1 at –70 ◦C. The
conductivity decreased up to two orders of magnitude for higher PEGDA content, and the
ionic conductivity of Iongel40 ranged between 2.5·10−3 S cm−1 at 80 ◦C and 3·10−11 S cm−1

at –80 ◦C. Interestingly, despite the significant differences of several orders of magnitude in
the mechanical modulus, the conductivity only decreased by a factor of 3 in going from
Iongel10 to Iongel40. Surprisingly, the pure ionic liquid electrolyte displayed a lower ionic
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conductivity than its cross-linked form at low polymer content, which may be due to the
nanostructuration of the conductivity channels in the solid material.
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2.3. Battery Cell Testing

Finally, battery cells consisting of a sodium metal anode and a NaFePO4 cathode were
assembled by sandwiching an Iongel10 membrane in between the electrodes. Figure 4a
shows charge–discharge profiles at various C-rates extracted from a cell cycled in the
range of 1.5–4 V vs. Na+/Na at 50 ◦C. As shown, the cell displayed two charge plateaus
centered on 3 V vs. Na+/Na and a single sloping discharge profile. This asymmetric
voltage is associated with the formation of an intermediate phase during the charge and
is fully consistent with previously reported results of liquid and solid-state NaFePO4
cells [12,16–19]. At C/10, the cell delivered a maximum discharge capacity around 140
mAhg−1 corresponding to 90% of the theoretical capacity of NaFePO4 (154 mAh g−1). At
higher current rates, the specific discharge capacities slightly decreased to 135 mAh g−1 at
C/5, 130 mAh g−1 at C/2, and 120 mAh g−1 at C/1. Figure 4b shows the plot of specific
capacities at various C-rates versus the cycle number and the corresponding coulombic
efficiencies. During the first six formation cycles at low current rates (C/10), the coulombic
efficiency increased rapidly to 99.5% and the cell delivered a stable discharge capacity. Even
though the capacity at C/1 slightly decreased, the cell showed a good capacity retention and
the coulombic efficiency remained close to 99.5%. Additionally, the cell recovered its initial
capacity of ≈140 mAh g−1 with a coulombic efficiency of around 100%. In our previous
work, a cell based on a N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide iongel
delivered a maximum discharge capacity around 145 mAhg−1 at C/10, corresponding
to 95% of the theoretical capacity of NaFePO4 (154 mAh g−1). Despite a slightly lower
initial capacity, the phosphonium cell showed a far greater capacity retention, as shown by
Figure 4c, of the normalized capacity of two cells cycling at C/10. In our previous work,
we observed that iongels from superconcentrated phosphonium electrolytes exhibit better
battery performance compared to the previously reported pyrrolidinium counterparts due
to their superior electrochemical stability [12]. The results of this work suggest that the
same behavior is observed in the iongel form of these electrolytes.
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Figure 4. (a) Cycling behavior at 50 ◦C of a Na/iongel membrane/NaFePO4 cycled in the range of
1.5–4 V vs. Na+/Na at different C-rates; (b) specific capacity vs. cycle number plot; (c) normalized
capacity as a function of cycle number for the electrolyte reported in this work (red points) and
electrolyte previously reported by our group (black points) [12].

3. Conclusions

Four different iongel electrolytes were prepared by UV photopolymerization using
trimethyl iso-butyl phosphonium bis(fluorosulfonyl)imide (P111i4FSI) ionic liquid and
sodium bis(fluorosulfonyl)imide (NaFSI) salt, varying the amount of PEGDA in each from 5
to 40 wt%. The electrolytes showed an increase in storage modulus as the amount of PEGDA
in the system increased, ranging from 104 to 107 Pa at 50 ◦C, for the electrolytes with 5 and
40 wt%, respectively. The ionic conductivity was measured using broadband dielectric
spectroscopy (BDS) and obtained up to 10−3 S cm−1 at 50 ◦C; these values depended on
the amount of polymer in each electrolyte. Taking into account these parameters, Iongel10
was selected for testing in a sodium battery, and this electrolyte showed a higher capacity
retention compared to other pyrrolidinium-based electrolytes.

4. Materials and Methods
4.1. Materials

Trimethyl iso-butyl phosphonium bis(fluorosulfonyl)imide (P111i4FSI, Boron Molecu-
lar, Victoria, Australia) and sodium bis(fluorosulfonyl)imide (NaFSI, Solvionic, Toulouse,
France) were dried under vacuum at 50 ◦C and transferred inside an Ar-filled glove box be-
fore use. Poly(ethylene glycol) diacrylate Mn 575 (PEGDA; Sigma-Aldrich, Madrid, Spain)
was passed through a basic alumina column to remove the hydroquinone monomethyl
ether inhibitor (MEHQ), filtered with a 0.45 µm syringe filter, and kept refrigerated at 5 ◦C
before use. 2-hydroxy-2-methylpropiophenone (DAROCUR 1173, Sigma-Aldrich) was
used as received.
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4.2. Sample Preparation

A saturated 42% mol electrolyte solution of NaFSI in P111i4FSI was prepared inside
an Ar-filled glovebox by stirring the solution on a hot plate at 50 ◦C, and stored inside
the glovebox until use. A 2.5% wt monomer solution of DAROCUR 1173 in PEGDA was
prepared outside the glovebox before use. Iongels membranes were prepared by mixing
different weight amounts of the electrolyte and monomer solution (Table S1). The mixtures
were cast on a silicone mold irradiated with a UV lamp for 90 s twice. The iongel membranes
were kept for 24 h under vacuum at 90 ◦C and stored in an argon-filled glovebox until use.
The membranes were circular disks (diameter = 14 mm; average thickness = 250 µm).

4.3. Physical–Chemical Characterization

DMA experiments were performed on a PerkinElmer DMA 8000 in tension mode
with a heating rate of 5 ◦C min−1, at a 1 Hz frequency and strain of 25 µm, and in a N2
atmosphere. Broadband dielectric spectra in the frequency range of 10−1 to 106 Hz were
measured using a Novocontrol Concept-80 system, which includes an Alpha-A impedance
analyzer and a Quatro Cryosystem temperature control unit. The samples were placed
between the stainless-steel parallel plates with a 20 mm diameter, and the separation
between the electrodes was determined by the film thickness, approximately 0.2 mm. The
samples were placed inside the cryostat in a dry nitrogen atmosphere. The samples were
equilibrated for at least 15 min after each temperature step to achieve thermal stabilization
within 0.2 K.

The Triphylite-NaFePO4 cathode active material was synthesized using a two-step
reaction reported previously [20].

4.4. Cell Assembly and Testing

Na/iongel/NaFePO4 cells were assembled for testing in sodium batteries. Sodium
metal was used as the anode. The electrolytes and the electrodes were placed between two
stainless-steel spacers (o.d. = 16 mm; thickness = 0.5 mm), and the cells were prepared
inside the glovebox in argon atmosphere. These cells were measured in a VMP3 Biologic
potentiostat at 50 ◦C and cycled at C/20 cycled in a potential range of 1.5–4 V for 30 cycles.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/gels8110725/s1, Figure S1: H1-NMR spectra of soluble fraction
after Soxhlet extraction; Table S1: Composition of the different electrolytes prepared.
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