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Abstract Coordination of cell growth with division is essential for proper cell function. In

budding yeast, although some molecular mechanisms responsible for cell size control during G1

have been elucidated, the mechanism by which cell size homeostasis is established remains to be

discovered. Here, we developed a new technique based on quantification of histone levels to

monitor cell cycle progression in individual cells with unprecedented accuracy. Our analysis

establishes the existence of a mechanism controlling bud size in G2/M that prevents premature

onset of anaphase, and controls the overall size variability. While most G1 mutants do not display

impaired size homeostasis, mutants in which cyclin B-Cdk regulation is altered display large size

variability. Our study thus demonstrates that size homeostasis is not controlled by a G1-specific

mechanism alone but is likely to be an emergent property resulting from the integration of several

mechanisms that coordinate cell and bud growth with division.

DOI: https://doi.org/10.7554/eLife.34025.001

Introduction
To ensure cell size homeostasis, cells must coordinate growth and division during the mitotic cycle.

During the 1970s, genetic studies aimed at deciphering the biochemical architecture of the cell cycle

emerged concomitantly with efforts to characterize cell size control in fission (Fantes, 1977;

Fantes and Nurse, 1977) and budding yeast (Hartwell and Unger, 1977; Johnston et al., 1977). In

a free-running cell cycle oscillator model (i.e. in the absence of any coupling to control signals, such

as cell size), the cell division time is set by the sum of fixed intervals associated with successive cell

cycle events (referred to as ‘Timer’). In this case, the absence of coordination between the cell cycle

engine and cell growth may induce deleterious fluctuations in cell size. In contrast, a ‘Sizer’ mecha-

nism has been shown to operate in yeast: the transition to a given cell cycle phase (resp. mitotic

entry in fission yeast and DNA replication in budding yeast) occurs when cells have attained a critical

size during the preceding phase (resp. G2 phase in fission yeast and G1 in budding yeast)

(Fantes, 1977; Fantes and Nurse, 1977). In this case, small cells experience a size-dependent cell

cycle delay and therefore a compensatory mass addition works as a counteracting force to restore

size equilibrium.

In the last 10 years, several important advances have been made in unraveling the molecular

mechanism(s) responsible for this ‘size checkpoint,’ which transmits cell size information to the cell

cycle control machinery. In fission yeast, it was proposed that the polarity protein kinase Pom1 local-

izes to the cell tips and indirectly inhibits the cyclin-dependent kinase Cdk1, allowing the cell to

sense its elongation and therefore control mitotic entry (Martin and Berthelot-Grosjean, 2009;

Moseley et al., 2009). Later studies disproved this model, by showing in particular that Pom1 dele-

tion does not alter size homeostasis, as would be expected following disruption of a core player in
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the size signaling pathway (Bhatia et al., 2014; Wood and Nurse, 2013). Further work proposed

that Cdr2, a target of Pom1, is responsible for the coupling between cell geometry and cell cycle

progression (Pan et al., 2014). However, this hypothesis has not yet been validated by measuring

the size-compensation mechanism in the corresponding mutant background (i.e., cdr2D), and alter-

native models coupling cell size to mitosis have been proposed since(Keifenheim et al., 2017).

Early models of cell size regulation in G1 in budding yeast proposed that the commitment (called

‘Start’) to an irreversible round of division in response to cell growth is controlled by the cyclin Cln3,

which is a key regulator of G1 progression and the function of which might be coupled to cell size in

various ways (Aldea et al., 2007; Wang et al., 2009). Alternatively, recent work showed that the

concentration of Whi5, a major inhibitor of G1/S cyclin expression, is gradually diluted during G1 but

is synthesized in a cell size-independent manner during S/G2/M phases; thus, the nuclear concentra-

tion of Whi5 is larger in small daughter cells compared with the large mother cells at birth

(Schmoller et al., 2015). According to this model, coupling between cell growth and cell cycle pro-

gression in G1 originates from cell size-dependent dilution of this G1/S inhibitor. Nevertheless,

although the WHI5 mutant displays a small cell size phenotype (Jorgensen et al., 2002), the G1

size-compensation effect is reduced but not abolished (Soifer et al., 2016; Turner et al., 2012), and

the overall width of the cell size distribution of Whi5 mutants and wild-type (WT) yeast are similar

(Jorgensen et al., 2002). Therefore, the contribution of Whi5 to the overall size homeostasis in bud-

ding yeast therefore remains a matter of debate.

whi5D mutants and cells carrying other genetic perturbations that induce a premature G1/S tran-

sition also display compensatory growth in S/G2/M (Charvin et al., 2009; Harvey and Kellogg,

2003; Soifer and Barkai, 2014), which is analogous to the ‘cryptic’ G1/S size control observed long

ago in wee1D fission yeast (Fantes, 1981). These observations suggest that, unlike other cell cycle

checkpoints (e.g., spindle assembly checkpoint) in which a single sense-and-signal machinery con-

trols cell cycle progression, cell size homeostasis may be maintained by multiple mechanisms that

cooperate to coordinate cell growth and division throughout the entire cell cycle. Adding further

complexity, previous work has shown that the magnitude of the size-compensation effects during

G1 is greatly affected by mutation of several genes with no direct link to G1/S signalling (Soifer and

Barkai, 2014). This indicates that size control may result from a complex interplay between the regu-

latory mechanisms involved in cell cycle progression.

Recent observations in bacteria proposed that a size-compensation mechanism may not even be

necessary to ensure cell homeostasis. In contrast to a Sizer mechanism, in which cell size variation

during the cell cycle is negatively correlated with the initial cell size, bacteria passively reach size

homeostasis through an ‘Adder’ mechanism, whereby a constant amount of cellular material is

added at every cell cycle (Campos et al., 2014; Jun and Taheri-Araghi, 2015; Taheri-Araghi et al.,

2015). However, as recently analyzed in budding yeast, despite the existence of a clear ‘Sizer’ in G1,

the effective size control mechanism during the whole cell cycle may be perceived as an

‘Adder’(Jun and Taheri-Araghi, 2015; Soifer et al., 2016), further raising the question of the inte-

gration of multiple size regulation steps during cell cycle progression (Chandler-Brown et al.,

2017).

By restricting the focus to the G1 size control mechanism, most previous studies overlooked the

existence of other size control mechanisms at other cell cycle stages, and, a fortiori, how they are

integrated to ensure the overall size homeostasis throughout the cell cycle. This is in part because,

unlike G1 and mitosis, others phases of the cell cycle could not be accurately resolved in single cell

measurements. Therefore, a global quantitative analysis of size compensation effects during the

entire cell cycle is required to determine how each phase contributes to cell size control, and how

this is perturbed in mutants of cell cycle regulation. Furthermore, the strength of size control was

usually assessed by simply measuring the magnitude of size compensation effects, but ignoring how

the actual cell size variability – which is the key marker of size homeostasis - evolves during the cell

cycle. Last, mutants in which the overall size homeostasis – and not only G1 compensatory growth -

is truly impaired remain to be identified, which is decisive to improve our understanding of the

genetic determinism of size control.

To address these deficits, we have developed a new microscopy technique based on real-time

measurements of histone levels to monitor the successive phases of the cell cycle in individual cells

in an automated manner. This methodology allowed us to measure a large number of cell cycle

phase- and cell size-associated variables in 22 mutants, totaling up to 15,000 cell cycles per
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genotype. Using this dataset, we quantitatively established the existence of a compensatory growth

mechanism operating on the bud size during G2 in WT cells, thus confirming the existence of multi-

ple size-dependent inputs in size control (Harvey and Kellogg, 2003; McMillan et al., 1998), in

agreement with theoretical predictions (Spiesser et al., 2015), and clearly ruling out the ‘cryptic’

nature of size control in G2. Unexpectedly, among the cell cycle genes tested that affect size com-

pensation in either G1 or G2, we found that genes related to the regulation of cyclin B-Cdk activity

had the strongest impact on size homeostasis. This finding contrasted with mutants of G1 regulators,

which displayed only modest effects on size control. Quantification of cell size variability during the

cell cycle showed that phase-specific compensatory growth directly controls the noise strength in

cell size distribution, as demonstrated using a linear map model that accommodates experimental

data presented in this study. Therefore, unlike the prevailing model of a dominant G1-specific size

control checkpoint, our analysis reveals that cell size homeostasis results from the integration of at

least two interdependent elements acting at different stages of the cell cycle on different cellular

compartments.

Results

A new technique to monitor cell cycle progression in live yeast cells
To obtain a precise assessment of cell size control during cell cycle progression, we sought a quanti-

tative marker of the successive cell cycle phases in individual growing cells. Studies to date have

relied on monitoring of bud emergence or of a fluorescent budneck marker, neither of which can dis-

tinguish between S, G2, and M phases. We reasoned that the burst of histone synthesis could serve

as an accurate marker of S phase, thanks to the tight reciprocal coupling of DNA replication and his-

tone synthesis, which has been characterized in detail (Baumbach et al., 1987; Heintz et al., 1983;

Nelson et al., 2002; Sittman et al., 1983). Therefore, determining the onset and the end of the

burst of histone expression would allow us to extract the duration of S-phase, but also deduce the

duration of phases that precede (G1) and succeed DNA synthesis until anaphase onset. In budding

yeast, metaphase is known to directly follow the end of replication, with no evidence of gap phase

in between. However, we referred to this post-DNA synthesis interval as G2/M in the following for

sake of simplicity and coherence with other organisms.

To this end, we took a strain carrying a fluorescent protein cassette fused to one of the histone

2B loci (HTB2, Figure 1A), which has been extensively used as a nuclear marker. We used a super-

folder GFP (sfGFP) protein to ensure a fast maturation of the fluorophore, in order to prevent arti-

facts in measurements of histone dynamics, as described below. We monitored yeast cell growth in

a microfluidic device which allowed us to track the successive divisions of individual cells forming bi-

dimensional microcolonies (See Materials and methods and Figure 1 and Figure 1—figure supple-

ment 1), as previously described (Goulev et al., 2017).

Plotting total nuclear HTB2-sfGFP fluorescence as a function of time over one cell cycle

(Figure 1B, see Figure 1—figure supplement 2A–D and Supporting Information for details of all

quantifications), revealed a fluorescence plateau during the unbudded period of the cell cycle, fol-

lowed by a linear ramp starting shortly before budding, and a plateau during the budded period of

the cell cycle. This pattern was terminated by a sudden drop in fluorescence, corresponding to the

onset of anaphase and nuclear division.

Quantification of fluorescence levels gave a consistent ~2-fold enrichment in histones before com-

pared with after the histone synthesis phase (Figure 1—figure supplement 2E and F), as expected

by the doubling of DNA content. Similarly, we verified that HTB2-sfGFP fluorescence was evenly par-

titioned between mother and daughter cells upon nuclear division (Daughter/Mother [D/M] asymme-

try = 0.94 ± 0.01 Figure 1—figure supplement 2).

To further check that the measurement of total histone content over time is a reliable and physio-

logical way to score cell cycle progression in individual cells, we performed a series of control experi-

ments. First, we compared the division time (by measuring the anaphase to anaphase interval) of a

strain carrying a constitutive NLS-GFP marker with a HTB2-GFP strain. We observed that the GFP-

tag at the HTB2 locus only modestly affected cell division (Figure 1—figure supplement 3A–C). Of

note, unlike the piecewise expression pattern observed with the HTB2-GFP strain (Figure 1—figure
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Figure 1. Tracking of cell cycle phases in individual cells. (A) Principle of the H2B-GFP fluorescence marker used track cell cycle progression (B)

Sequence of phase contrast (upper) and fluorescence (lower) images of a sample wild-type daughter cell carrying a histone marker (HTB2-sfGFP),

displayed with a 6 min interval. Segmented cell and nuclear contours are indicated in white and yellow, respectively. The upper and bottom panels

show the quantification of cell (and bud) volume and total fluorescence signal (green curve) over time, respectively. The dashed line shows the best fit

of a piecewise linear model to the fluorescence signal, which is used to segment the cell cycle into distinct phases (see text for details), as indicated

using a specific color code. Vertical dashed lines highlight cell cycle phase boundaries. (C) Sample dynamics of 15 individual daughter cells during one

cell cycle. The green signal represents nuclear fluorescence of the HTB2-sfGFP marker. White and yellow lines indicate cellular and nuclear contours,

respectively. Colored segments (G1, red; S, green; G2/M, yellow; anaphase/cytokinesis, blue) indicate cell cycle intervals, as determined using the

procedure described in (B); (D) Histogram of durations of cell cycle intervals and overall cell cycle for WT daughter (D; N = 6079) and mother (M;

N = 10775) cells. The legend indicates the mean ±standard error on mean.

DOI: https://doi.org/10.7554/eLife.34025.002

The following video and figure supplements are available for figure 1:

Figure supplement 1. Principle of the microfluidic device and time lapse experiment.

DOI: https://doi.org/10.7554/eLife.34025.003

Figure supplement 2. Quantification of H2B-sfGFP fluorescence signal in individual cells.

DOI: https://doi.org/10.7554/eLife.34025.004

Figure supplement 3. Influence of the HTB2-sfGFP marker on cell cycle duration.

DOI: https://doi.org/10.7554/eLife.34025.005

Figure supplement 4. Effect of fluorophore maturation on the apparent dynamics of histone synthesis.

DOI: https://doi.org/10.7554/eLife.34025.006

Figure supplement 5. Comparison of HTB2-sfGFP fluorescence dynamics with other known cell cycle markers.

Figure 1 continued on next page
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supplement 2A), the NLS-GFP strain yielded a continuous increase in total fluorescence throughout

the cell cycle, as expected with a constitutive marker.

Next, we investigated how the maturation time of the fluorescent reporter affects the ability to

accurately monitor the burst in histone level during S-phase. For this, we followed the expression of

a second histone H2B marker, HTB2-mCherry, over time. Importantly, only a linear ramp followed by

the anaphase drop could be discerned, in striking difference with the pattern observed with sfGFP

(compare Figure 1—figure supplement 4A and B with Figure 1—figure supplement 4C and D). A

numerical model confirmed that this effect could be quantitatively explained by the much longer

maturation time of mCherry (~45 min [Charvin et al., 2008]) compared with sfGFP (~5 min

[Pédelacq et al., 2006]), which blurs the apparent dynamics of histone synthesis (Figure 1—figure

supplement 4E–H).

Although histone levels monitoring provides the timings of S phase and nuclear division, cytokine-

sis cannot be timed and, therefore, the duration of G1 cannot be deduced. To circumvent this prob-

lem, we used the septin subunit Cdc10-mCherry fusion as an additional cytokinesis marker

(Figure 1—figure supplement 5A–C). We measured that cytokinesis (the sudden drop in Cdc10-

mCherry fluorescence) and nuclear division were tightly correlated (Pearson coefficient 0.94), with a

median offset of 5.6 ± 0.4 min between both events (Figure 1—figure supplement 5D and Fig-

ure 1—figure supplement 5E). Therefore, for the sake of simplicity, we chose to ignore cell-to-cell

variability in this part of the cycle and, in the rest of the paper, we arbitrarily defined cell cytokinesis

as an event occurring 5.6 min after the end of anaphase. We could not exclude the possibility that

this procedure would introduce artefacts regarding measurements of G1 duration in mutants with

cytokinesis defects. Yet, none of the reported mutants reported below, with the exception cdh1

(Tully et al., 2009), have been described to affect cell cytokinesis.

Similarly, we used the Whi5-mCherry fusion protein to assess the coordination between cell cycle

Start (as defined by nuclear exit of the transcriptional repressor Whi5) and the onset of histone syn-

thesis (Fig. Figure 1—figure supplement 5F–H). Start consistently occurred before the onset of his-

tone synthesis (Fig. Figure 1—figure supplement 5I–J), which was expected because HTB2

expression is controlled by the G1/S-specific transcription factors SBF/MBF. Taken together, these

results confirmed the tight coordination between cell cycle progression and our measurements of

the dynamics of histone expression.

To extend this preliminary analysis, we developed custom MATLAB software Autotrack to auto-

mate the processes of cell and nucleus contour segmentation, cell tracking, histone content mea-

surement, and mother/daughter parentage determination (Figure 1—figure supplement 6 and

Supporting Information). We then used a piecewise linear model to identify the histone synthesis

plateaus and ramp in the raw data, which allowed us to extract four intervals per cell cycle

(Figure 1B–C and Figure 1—video 1): G1 (plateau), S (linear ramp), G2/M (plateau preceding ana-

phase), and the interval between anaphase onset and cytokinesis (referred to as ‘Ana’), taking into

account our hypothesis that the period between the end of anaphase and cytokinesis was constant,

as mentioned above.

Using this method, we extracted the duration of cell cycle phases for up to ~500 cells in each of

the eight cavities in each independent chamber. By pooling 17 replicate experiments, we

collected ~26,900 cell cycles for WT cells (Figure 1C) of which 63% passed our quality control

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.34025.007

Figure supplement 6. Cell segmentation and tracking pipeline.

DOI: https://doi.org/10.7554/eLife.34025.008

Figure supplement 7. Cell cycle selection procedure and its impact on cell cycle timings and measurements of compensatory growth.

DOI: https://doi.org/10.7554/eLife.34025.009

Figure supplement 8. Evolution of cell cycle duration as a function of replicative age.

DOI: https://doi.org/10.7554/eLife.34025.010

Figure supplement 9. Effect of multi-plane acquisition on cell cycle phase quantification.

DOI: https://doi.org/10.7554/eLife.34025.011

Figure 1—video 1. Cell cycle progression of wild-type cells.

DOI: https://doi.org/10.7554/eLife.34025.012
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procedure aimed at discarding cells with segmentation/tracking or data fitting issues (see Support-

ing Information and Figure 1—figure supplement 7). To decrease the rate of cell rejection due to

noise in histone level signals, we tested multi-z-stack acquisition for HTB2-sfGFP fluorescence. How-

ever, this only marginally improved the signal to noise ratio (Figure 1—figure supplement 8A–C)

while greatly affecting the cell cycle duration likely due to photo-damage (p<0.001, Figure 1—fig-

ure supplement 8D). Therefore, we retained the single plane acquisition method.

Using this analysis, we found that the cell cycle durations for WT cells were in good agreement

with data obtained using other markers or methodologies. Thus, the durations for mothers and

daughters, respectively, were: G1 (19.0 ± 0.1 and 45.5 ± 0.3 min) (Di Talia et al., 2007), S (29.5 ± 0.1

and 36.7 ± 0.2 min) (Magiera et al., 2014), G2/M (15.7 ± 0.1 and 14.7 ± 0.1 min), and Ana

(11.4 ± 0.1 and 12.2 ± 0.1 min), Figure 1D and supplementary file 2. Importantly, the large sample

size allowed us to identify statistically significant differences in these intervals. For instance, the S

phase was 7.2 min longer in daughters compared with young mother cells (p<0.001; Figure 1D). In

addition, this interval converged toward an asymptotic value over several divisions following cell

birth (Figure 1—figure supplement 9). This contrasts with G1 duration, which decreased abruptly

when daughters (replicative age 0, Figure 1—figure supplement 9) became mother cells (replicative

age >0, Figure 1—figure supplement 9) in their subsequent division, and G2/M, the duration of

which is quite independent of the replicative age of the cells. This phenomenon explains the previ-

ously reported (Cookson et al., 2005) progressive shortening of the cell cycle duration with the rep-

licative age of the cell (see also Figure 1—figure supplement 9). Also, our result recapitulate the

systematic shorter S/G2/M interval in mother cells compared to daughters that was recently mea-

sured(Mayhew et al., 2017). Over, these findings illustrate the power of our technique to quantita-

tively measure the temporal distribution of cell cycle intervals.

Effects of environmental and genetic perturbation on the distribution
of cell cycle phase durations
Because our methodology allowed us to detect even minor differences in cell cycle duration, we

sought to validate its robustness by measuring the timing of cell cycle phases following perturbation

by diverse environmental and genetic perturbations approaches that have been extensively studied

using other techniques.

First, we asked whether our methodology could capture the lengthening of the S phase induced

by hydroxyurea (HU), which inhibits DNA replication. As expected, we observed a progressive HU

concentration-dependent increase in S phase duration in both mother and daughter cells, from an

average of 27.1 ± 0.4 min and 35.1 ± 0.8 min at 0 mM to 48.0 ± 1.4 and 43.9 ± 1.4 min at 50 mM

HU, respectively (p<0.001, Figure 2A). This prolongation of S phase was accompanied by a parallel

doubling in G2/M duration (from ~15 min to ~30 min in both mothers and daughters, p<0.001,

Figure 2A), which is likely due to the activation of the checkpoint that follows DNA damage

(Weinert et al., 1994). Interestingly, mothers, but not daughters, exposed to HU experienced a

dose-dependent slowing of the entire cell cycle, due to an apparent compensatory decline in G1

duration in the daughters (Figure 2A).

We next measured the duration of cell cycle phases in cells carrying mutations in important regu-

lators of G1, S, or G2/M phases (Figure 2B–D and supplementary file 2). First, we confirmed that

sic1 and whi5 (G1/S transition repressors) daughter cells underwent premature entry into S phase (i.

e., shorter G1 duration) compared with WT cells (Soifer and Barkai, 2014), which was accompanied

by a compensatory increase in G2/M duration (Figure 2B) (Soifer and Barkai, 2014). Conversely,

mutation of G1/S transition activator BCK2 (Soifer and Barkai, 2014), but not CLN3, caused a small

delay in G1 of daughter cells. A slight decrease in G2/M duration was also observed in both BCK2

and CLN3 mutants compared with WT cells (Figure 2B and and supplementary file 2).

Next, we monitored the effect of mutations in genes involved in several biochemical pathways

related to S-phase (Mrc1, Clb5, Dpb3, Rad27, Dia2). These mutations had previously been shown to

induce an abnormally long S-phase interval using a cytometry assay (Koren et al., 2010). Our results

confirmed this observation in all mutants, and, with the exception of dia2, the ordering of mutants

according to S-phase duration was similar to Koren et al. (Figure 2C)(Koren et al., 2010). In addi-

tion, most of these mutants also displayed a longer G2/M phase, similar to the effect of HU treat-

ment, with the exception of dpb3 cells (Figure 2A and C). This result suggests that the increased

G2/M duration observed following HU treatment and in most S phase mutants is likely to be

Garmendia-Torres et al. eLife 2018;7:e34025. DOI: https://doi.org/10.7554/eLife.34025 6 of 27

Research article Cell Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.34025


biological in origin rather than an artefact of our methodology. In this regard, a similar delay in G2/

M progression was previously reported in dia2, mrc1, and rad27 mutants, but not in dpb3 mutants

(Koren et al., 2010).

Lastly, we measured the cell cycle duration in mutants of G2/M progression. We found that dele-

tion of SWE1, a kinase that inhibits Cyclin B/Cdk activity and therefore prevents a premature onset

of anaphase, did barely affect G2/M duration, yet induced a slight increase in G1 duration of daugh-

ter cells, as previously observed (Harvey and Kellogg, 2003). However, mutants defective in Hcm1,

a forkhead transcription factor that regulates late S phase genes, or Clb2, one of the main mitotic
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cyclins, both displayed longer G2/M phases (Figure 2D), in agreement with previous measurements

(Pramila et al., 2006; Surana et al., 1991).

Collectively, these results obtained in various mutant backgrounds further establish proof-of-prin-

ciple for our methodology, in which a single fluorescent marker enables simultaneous measurements

of key events associated with cell cycle progression. In total, we monitored the dynamics of cell cycle

progression of 22 mutants. The raw cell cycle data are available on a dedicated server (Tassy and

Charvin, 2018) that allows detailed data exploration and on-the-fly statistical analyses (see Appen-

dix 1).

Control of the metaphase to anaphase transition via a Bud-specific size
compensatory mechanism
Our ability to measure the duration of specific cell cycle phases provides a unique opportunity to

investigate in detail the coordination of growth and division during each phase of the cell cycle. We

extracted 15 variables (e.g., phase durations, bud/cell volumes and growth rates during unbudded

and budded period; see Supporting Information) describing cell cycle progression in both mother

and daughter cells. Cell volumes were computed from segmented cell contours assuming an ellip-

soid model.

Using this dataset, we sought to identify novel compensatory effects reflecting the existence of

size control mechanisms. For this, we systematically measured the Pearson correlation coefficient for

all measured distributions of variables in mothers and daughters (Figure 3A and B). This analysis

successfully confirmed classical results, such as the negative correlation between size at birth (Vbirth)

and the duration of G1 (TG1) in daughter cells (yellow star in Figure 3B) (Di Talia et al., 2007), which

is indicative of a G1 compensatory mechanism in small daughter cells, as well as the positive correla-

tion between the growth rate in unbudded cells (munb.) and the cell volume the end of G1 (VG1) in

daughters cells (green star in Figure 3B)(Ferrezuelo et al., 2012).

However, this analysis also revealed that the duration of G2/M (TG2/M) varies inversely with the

volume of the bud at the end of S phase (VbS) in both mother and daughter cells, see magenta stars

in Figure 3B. This suggest that, after reaching the end of S phase, cells experience a bud size–

dependent delay before entering anaphase. However, G2/M and S phase durations also appear neg-

atively correlated, therefore, an alternative explanation would be that a longer S-phase provides

more time for the cells to accumulate B-type cyclin, thus leading to a quicker anaphase onset and a

reduction of the measured G2/M interval. In this case, the negative correlation between TG2/M and

VbS may result from the longer S phase that leads to a larger bud size by the end of S phase, as

indeed observed (see the positive correlation between VbS and TS on Figure 3A). To discriminate

between the direct versus indirect link between these two variables, we first checked that the Pear-

son correlation coefficient r was more pronounced for TG2/M and VbS than for TG2/M and TS
(r = �0.43 and r = �0.29, respectively), thus arguing in favor of a direct size-dependent modulation

of G2/M duration. Second, we used a Bayesian statistics approach to determine which model (direct

versus indirect link) fits better the data (Meilă and Jaakkola, 2006). This analysis confirmed the caus-

ative link between VbS and TG2/M (see supplemental information for details).

Interestingly, this phenomenon is in agreement with the bud morphogenesis checkpoint model,

which proposed that bud growth perturbations lead to a cell cycle arrest that prevents a potentially

deleterious premature onset of anaphase (Harvey and Kellogg, 2003). It also matches the conclu-

sions of a recent theoretical model of cell cycle control, in which bud size control appears to play an

important role for the overall cell size homeostasis (Spiesser et al., 2015), as well as a recent statisti-

cal analysis of the duration of the budded period versus cell size (Mayhew et al., 2017).

However, another study provided evidence that this control mechanism does not operate as a

bud size controller during an unperturbed cell cycle (McNulty and Lew, 2005). Therefore, to charac-

terize this potential G2 bud size control further, we sought to determine the magnitude of compen-

satory growth effects during this phase of the cell cycle, and to compare it to the one of other

phases. To this end, we monitored variation in cell volume DV during G1, G2/M, and the complete

cell cycle as a function of initial cell volume (Figure 3C and D), according to a methodology widely

used in previous studies (Jun and Taheri-Araghi, 2015): for an ideal Sizer, the variation in cell vol-

ume is such that the final volume Vf is constant, independently of the initial one Vi. In this case, since

DV = Vf Vi, plotting DV versus Vi yields a linear relationship with a slope �1. For an ideal Timer (in

which the duration of the phase is constant), the slope becomes +1, assuming an exponential growth
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model, and a doubling of cell size during the considered interval(Jun and Taheri-Araghi, 2015).

Last, an Adder is such that the amount of added volume is independent of the initial volume; in this

case, the slope is 0. Therefore, measuring the slopes s of DV vs. Vi plots provide a quantitative

assessment of the magnitude of size compensation effects, as well as their deviation from theoreti-

cally ideal behaviors (i.e. Sizer, Adder and Timer).
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Figure 3. Identification and measurement of size compensation mechanisms in WT. (A) Top: Schematic of cell cycle phases and definitions of variables

used in the correlogram in panel (B). (B) Correlogram that represents Pearson’s correlation coefficient obtained from the scatter plot associated with

the two variables. As indicated on the color scale, blue indicates a negative correlation and therefore highlights the presence of a potential

compensatory mechanism, whereas red indicates a positive correlation. T indicates the duration (min) of each cell cycle phase; V and Vb indicate the

mother and bud volumes at each cell cycle phase, respectively. munb and mbud are the linear growth rate during the unbudded and budded period of

the cell cycle, respectively. Ana indicates anaphase to cytokinesis interval. M (top left triangle) and D (bottom right triangle) represent the analyses

performed in mother and daughter cells, respectively. Colored asterisks indicate squares of specific interest (see Main text). (C) Schematic of cell cycle

phases and definitions of variables used in the scatter plots below. (D) Scatter plots showing variations in mother/bud volumes at the indicated cell

cycle stages. Color indicates point density, according to the indicated color code. Red line shows binning of the scatter plot along the x-axis. Dashed

black line is a robust linear regression through the cloud of points, and the indicated slope (s) represents the strength of the size-compensation

mechanism. Error bars represent a 95% confidence interval.

DOI: https://doi.org/10.7554/eLife.34025.014

The following figure supplement is available for figure 3:

Figure supplement 1. Comparison of size compensation effects in the budded part of the cell cycle.

DOI: https://doi.org/10.7554/eLife.34025.015
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The analysis captured the well-characterized daughter-specific Sizer in G1 (Figure 3D: slope sG1

is negative in daughters, �0.30 ± 0.01, but approaches zero in mothers, �0.02 ± 0.01) (Di Talia

et al., 2007). It also confirmed that the daughter and the mother cells behave as a weak Sizer and

Adder, respectively, over the entire cell cycle (stot = �0.22 ± 0.02 for daughters and 0.09 ± 0.01 for

mothers) – in previous studies, the low absolute values of stot showed that the budding yeast cell

cycle behaves as an Adder, as observed in other unicellular organisms (Jun and Taheri-Araghi,

2015; Soifer et al., 2016).

In addition, the data clearly indicated the existence of a bud-specific size-compensatory growth

in G2/M in both daughter and mother cells (sG2/M = �0.39 ± 0.01 and �0.49 ± 0.01 in daughters and

mothers, respectively, Figure 3D). Importantly, we found that the magnitude of the Sizer was

strongly reduced when considering the total cell volume (rather than only the bud, see Figure 3—

figure supplement 1B), or when measuring the magnitude of size compensation during the whole

budded period of the cell cycle (Figure 3—figure supplement 1C). This very likely explains why G2/

M size control has been largely ignored in budding yeast and has been considered as ‘cryptic’.

Instead, our measurements revealed that the G2/M bud size control is of comparable magnitude to

the long-known size control in G1. Therefore, these results suggest that at least two mechanisms

may act coordinately to ensure size homeostasis throughout the cell cycle (Soifer and Barkai, 2014).

Impaired size control in mutants of cyclin B regulation and function
To better characterize the molecular basis of size compensation effects throughout the cell cycle, we

measured the magnitude of compensatory growth for daughter cells (using DV vs. V plots, as in

Figure 3C) in a subgroup of the cell cycle progression mutants examined earlier (Figure 2). We

found that deletion of the repressor of G1/S cyclin Whi5 decreased the magnitude of G1 control

(sG1 = �0.17 ± 0.02) but compensated with a slight increase in G2/M control (sG2/M = �0.46 ± 0.02,

Figure 4). However, these changes were relatively modest, and the overall size-compensation slope

was similar in whi5 and in WT cells (stot = �0.26 ± 0.03 and stot = �0.22 ± 0.02, respectively; Fig-

ure 4). Deletion of other G1/S regulators (cln1, cln2, cln3, swi4) lead to similar conclusions. However,

G1 size compensation was slightly improved by deletion of the activator of G1/S transition BCK2

(sG1 = �0.34 ± 0.04), and the overall compensatory growth was stronger than in WT cells

(stot = �0.46 ± 0.06).

In striking contrast to these G1/S regulators, deletion of other cell cycle control genes related to

the control of B-type cyclin function, such as sic1, swe1, clb5, and clb2, induced a much larger

decrease in size compensation in both G1 and (with the exception of clb2) G2/M phases, as well as

the overall compensatory growth (Figure 4). For instance, loss of Swe1, which inhibits Cyclin B-Cdk

activity and regulates the onset of anaphase, leads to a slightly Timer-like behavior

(stot = 0.15 ± 0.05), in which both G1 (sG1 = �0.12 ± 0.03) (Soifer and Barkai, 2014) and G2/M (sG2/

M = �0.15 ± 0.04) size compensation were largely abolished. Taken together, these data indicate

that the compensatory mechanisms ensuring the control of cell size were strongly affected in

mutants linked to the regulation cyclin B-Cdk activity but, unexpectedly, only marginally impaired in

mutants of the G1/S control network.

Effective cell size homeostasis during cell cycle progression
To determine how size G1 and G2/M compensation effects actually impact size homeostasis, we

quantified cell size variability during cell cycle progression. We measured the coefficient of variation

(CV) of the distributions of cell/bud volumes at various points in the cell cycle from bud emergence

to the next division of the resulting daughter cell (Figure 5A). We found that the CV gradually

decreased as a function of cell cycle progression and cell size, roughly following a square-root

dependency: CV = F1/2 / <V>1/2, where F is a constant and <V > is the mean cell/and or bud volume

at a given point in the cell cycle. This scaling relationship between CV and cell size is to be expected,

according to the Central Limit Theorem, assuming that cell growth is the sum of elementary stochas-

tic processes: growth fluctuations tend to average out in larger cell compartments compared to

smaller ones. Therefore, to characterize the intrinsic variability in cell size during cell cycle progres-

sion and to facilitate comparison among mutants of diverse sizes, we evaluated F (known as the

Fano factor [Fano, 1947]), rather than the CV, because F provides a size-independent measurement
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of noise in cell size during the cell cycle (F is sometimes referred to as noise strength [Raser and

O’Shea, 2004]).

As expected, the Fano factor was much more stable than the CV during cell cycle progression of

WT cells (Figure 5A). Still, it displayed some notable variations around the mean at different points

in the cell cycle: specifically, F decreased during G2/M and G1 phases, but increased during the rest

of the cell cycle, especially during S phase (Figure 5A). The Fano factor associated with cell size was

much higher than the noise due to segmentation errors (see Material and methods for detail), thus

ruling out the possibility that measurements of cell size variability might be dominated by

T
im
e
r

S
iz
e
r

-0.4 -0.3 -0.2 -0.1 0

sG1

-0.5

-0.4

-0.3

-0.2

-0.1

0

s
G
2

 WT

 hcm1

 sic1

 cln1

 cln2

 swi4

 whi5

 swe1

 mrc1

 clb5

 cdh1

 dia2

 cln3

 clb2

 bck2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

s
to
t

Figure 4. Magnitude of size compensation effects in cell cycle mutants. Strength of size compensation during G1, G2/M, and the entire cell cycle in the

indicated mutant backgrounds, calculated as described in Figure 3D. The cross color indicates the overall compensation size during the entire cell

cycle, as indicated by the color scale. Values of �1 and +1 correspond to an ideal Sizer and Timer, respectively. Error bars represent a 95% confidence

interval obtained from robust linear regression.

DOI: https://doi.org/10.7554/eLife.34025.016

Garmendia-Torres et al. eLife 2018;7:e34025. DOI: https://doi.org/10.7554/eLife.34025 11 of 27

Research article Cell Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.34025.016
https://doi.org/10.7554/eLife.34025


experimental noise. Instead, our results support the hypothesis that cell size noise is clearly modu-

lated during cell cycle progression. To check this further, we asked whether the magnitude of the

decrease in Fano factor at specific cell cycle phases was consistent with that of the compensatory

growth. For this, we plotted the fold-change in Fano during G1 (Figure 5B) and G2/M (Figure 5C)

for each of the cell cycle mutants. Importantly, we observed that mutants with strong size compensa-

tion effects (i.e. with a negative slope) displayed larger reductions in Fano factor in both G1 and G2/

M phases. Of interest, the reduction in Fano factor was larger in G2/M (fold-change ~0.65) than in

G1 (~0.9) in WT cells (Figure 5B and C), confirming the importance of cell size control during G2/M.

Also, this analysis clearly demonstrated that the magnitude of size compensation mechanisms

directly influences size homeostasis in a cell cycle phase-specific manner.

A linear map model linking size control efficiency to size homeostasis
Following the analysis of compensatory growth during G1 and G2/M, we wondered how the overall

(i.e., during a full cell cycle) daughter cell size homeostasis was dependent on the overall size control

(stot) in the cell cycle mutants. To explain the quantitative relationship between the magnitude of

size control due to compensatory growth and actual variability in cell size, we turned to a noisy linear

map of the cell cycle, which provides a simple model to couple phenomenological parameters that

describe cell growth and division (Tanouchi et al., 2015). Under this assumption, the evolution of

daughter cell volume Vn at the beginning of the cell cycle n can be given by (see Supporting Infor-

mation for detail):

Vnþ1 ¼ p Vnþ 1� pð Þ Veqþ h (1)
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with p = r a, where a characterizes the efficiency of size control (which is directly related to the mag-

nitude of size compensation, represented by the slope stot measured in Figure 3B: a = stot +1, see

Supporting Information), r is the fraction of volume going to the daughter cell at division (asymmetry

factor, 0 < r < 1/2), Veq is the volume of a daughter cell at equilibrium (Fig. 6A), and h represents a

Langevin noise, such that <h> = 0 and <h2> = constant. Under these assumptions, we demon-

strated that the Fano factor is given by (see Supporting Information for detail):

Fano¼
<h2>

Veq

1

1� pð Þ 1þ pð Þ
(2)

This equation indicates that the variability in cell size depends on a, size-independent, intrinsic

noise constant <h2>
Veq

, which reflects the stochasticity of the growth process, and an effective size con-

trol parameter p (with 0 < p < 1). Notably, this model predicts a non-linearity in size variability as a

function of size control parameters, and has two interesting limit cases: for a perfect Sizer (stot =

�1), p equals 0, therefore the Fano factor equals the intrinsic noise associated with the growth pro-

cess, given by <h2>/Veq,. In contrast, for a perfect Timer (stot = 1), and assuming symmetrical divi-

sion of mother and daughters (r= ½), p equals 1 and thus there is a divergence in Fano factor,

leading to a complete loss of size homeostasis. In the case of budding yeast, which divides asymmet-

rically (r< ½), such extreme case is impossible. In other words, even with a perfect Timer, asymmetri-

cal division is sufficient to limit cell size variability.

To check the validity of this description, we computed the average Fano factor during the cell

cycle and calculated p by robust linear regression of single-cell data in WT and mutants (Figure 6A).

We observed large variations in Fano factor among the mutants, which appeared to be correlated

with the size control parameter p (Pearson correlation coefficient = 0.60, Figure 6B): overall, Sizers

(i.e. with low values of p) tend to have less cell size noise than Timers (i.e. high values of p). Interest-

ingly, mutants related to the G1/S network (bck2, swi4, whi5, cln1, with the exception of cln2 and

cln3) generally displayed a noise level comparable to WT and lower than did the mutants associated

with the regulation of B-type cyclin function (clb5, swe1, clb2, cdh1; Figure 6B).

Fitting the model prediction to the experimental data (using a single parameter fit <h2>/Veq)

yielded reasonable agreement, despite a large spread in the experimental data and the existence of

an outlier, the dia2 mutant, which failed to fit the model (Figure 6B). Therefore, this analysis

revealed that the degree of size variability observed in this cohort of cell cycle mutants, associated

with diverse roles in cell cycle progression, can be reasonably accounted for by a simple model in

which there is a universal noise parameter that characterizes the stochasticity of the growth process,

as well as a mutant-specific parameter associated with size control. The deviation of experimental

data from the predictions of the model are likely to originate, in part, from the simplistic assumption

that size control is a homogenous process throughout the cell cycle, thus ignoring the contributions

of size compensation mechanisms in specific phases. In addition, whereas the hypothesis of a linear

map was correct for some strains (e.g. WT in Figure 6A), some deviations were observed in others

(i.e. multiple slopes may be needed to describe the behavior of bck2 in Figure 6A).

Interestingly, the parameter p is related to the rate l of convergence of the linear map, which

sets the time it takes for a chain of daughter cells to return to equilibrium following a fluctuation in

cell size:

p¼ exp � l<Tdiv>ð Þ (3)

where < Tdiv > is the average generation time of a specific mutant. By computing l from p

and <Tdiv > , we identified a large spread in convergence rates, ranging from 1.9 � 10�3 min�1 to

5.7 � 10�3 min�1 (Figure 6C). By selecting the fraction of daughter cells that deviated significantly

(larger or smaller) from the equilibrium size at birth and tracking the average size of consecutive

daughters, we confirmed that convergence to equilibrium was impaired in the swe1 mutant but

slightly improved in the bck2 mutant (yet only for large cells, presumably because the slope p seems

different for small versus large bck2 cells on Figure 6A, see above) compared with WT cells

(Figure 6D). Therefore, this analysis revealed that mutations of cell cycle regulators not only modify

the average duration of specific phases but also control the timescale of size fluctuations and hence

the robustness of the cell cycle orbit.
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Figure 6. Return map analysis linking cell size noise to the magnitude of the size-compensation mechanism. (A) Top left: Illustration of the return map

model, showing the successive iterations of daughter cell size at birth Vn. The size-compensation mechanism can be described by three parameters:

steady-state volume Veq, size-compensation strength p, and noise h. The three return maps of experimental data were obtained with wild-type (WT),

swe1, and bck2 daughter cells. Color indicates point density. Red line shows binning of the scatter plot along the x-axis. Dashed black line is a linear

regression through the cloud of points. The gray dashed line is the diagonal. (B) Average Fano factor during the entire cell cycle as a function of the

experimentally measured size-compensation strength p. The black points and bars are the mean ± SEM of the WT cells and indicated mutants. The

blue line shows the single parameter fit to the model (see text), yielding the intrinsic noise of the growth process <h2>
Veq
¼ 3:5� 0.5, with 99% confidence

intervals indicated by the dashed blue lines. (C) Rate of convergence to an equilibrium size for each strain listed in order, based on Equation 3 in the

main text. Mean ± SEM. (D) Normalized size of successive daughter cells for WT cells and swe1 and bck2 mutants, starting from cells that deviate by

more than 50% or less than 30% of the equilibrium cell size (indicated by the black dashed line).
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Discussion
In this paper, we have described a new technique to monitor the duration of successive phases of

the cell cycle based on quantification of histone level dynamics in individual growing yeast cells.

Most previous single cell analyses tracked cell cycle progression through budding events, ignoring

the details of S/G2/M phase events. Our methodology overcomes this limitation and offers new per-

spectives on the quantification of temporally controlled events in individual cells, such as the coordi-

nation between DNA replication and mitosis. Notably, unlike other markers of cell cycle progression

(Sakaue-Sawano et al., 2008), our technique is based on a single fluorescent marker, thereby

enabling correlative measurements to be made using additional spectrally independent markers.

The large throughput of the image acquisition/processing pipeline developed in our study pro-

vides the opportunity to detect mild yet meaningful phase duration phenotypes that were not

detected in previous analyses. The discovery that cells replicate their DNA more rapidly with increas-

ing replicative age is a good example of this ability to resolve small differences in cell cycle timing,

although this observation needs to be confirmed using complimentary techniques. Since we could

not exhaustively analyze the large datasets generated in this study within the scope of this article,

we have created a dedicated server to allow further statistical analyses of cell cycle variables in indi-

vidual cells.

The main interest of our methodology was to enable the identification of size compensation

effects throughout the cell cycle in an unbiased approach, and the possibility to assess their role in

the establishment of size homeostasis in a quantitative manner. Building on previous studies

(Harvey and Kellogg, 2003), our work now clearly establishes the link between bud growth and cell

cycle progression through G2, and reveals that the magnitude of size compensation is comparable

to the well-known G1 size control. Although budding and DNA replication are triggered concomi-

tantly by the activation of the G1/S regulon, the noise in bud size that is observed at the end of S

phase suggests that these two processes appear to be largely uncoordinated. Therefore, the func-

tion of bud size control during G2/M may be to prevent the potentially deleterious onset of ana-

phase in small-budded cells following DNA replication. Importantly, this finding challenges the idea

of a ‘cryptic’-type G2 size control in budding yeast, which would only be observed upon appropriate

environmental or genetic perturbations. Instead, it supports the hypothesis of universal size control

mechanisms across eukaryotes, like fission yeast, in which a G2 size control has long been estab-

lished (Fantes, 1977).

Beyond previous work focusing on the identification of G1-specific size compensation regulators

(Soifer and Barkai, 2014), our analysis in mutants broadens our understanding of how the emer-

gence of size homeostasis is connected to the cell cycle control network. Unexpectedly, we found

that mutations in activators or repressors of G1 progression had only marginal effects on the overall

noise in cell size. In particular, while mutating Whi5 slightly decreased G1 compensatory growth and

reinforced G2/M size control, the overall size homeostasis was quite preserved in this mutant. Inter-

estingly, we observed a slight but significant increase in G1 size compensation effects in the bck2

mutant compared with WT cells, indicating that this phenotype is genetically tunable in both

directions.

In contrast, we found that mutations of regulators of cyclin B-Cdk activity had a more pronounced

effect on cell size homeostasis: G2/M size compensation was largely abolished in the swe1 mutant

(Harvey and Kellogg, 2003), as well as in sic1 and cdh1 mutants. Strikingly, all of these mutations

also reduced the magnitude of the G1 size control. With a few notable exceptions (hcm1 or clb2),

the fact that the magnitude of G1 and G2/M size compensations are somewhat coupled across these

mutant strains suggests that enforcing a clear switch in B-type cyclin-Cdk activity between the low

(S/G2/early M) and high (late M/G1) APC activity regimes is critical for cell size homeostasis. Further

modeling of cell cycle dynamics using a detailed molecular description will be important to clarify

this point (Tyson and Novak, 2011).

A novel feature of our linear map model is the proposed general formula linking the efficiency of

cell size control to the noise in cell size, which is reasonably well supported by the experimental data

obtained in various mutant backgrounds (Figure 6B). This model predicts a divergence in Fano fac-

tor when the behavior of the cell approaches that of an a ideal Timer (Taheri-Araghi et al., 2015).

We speculate that the deletion of some cell cycle genes may render cells inviable, not to loss of an

essential biochemical function, but rather to complete loss of size homeostasis, thus impairing the
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robustness of the cell cycle oscillation. Conversely, even a cell cycle mutant in which stot = +1 (i.e., a

perfect Timer according to the previous definition [Jun and Taheri-Araghi, 2015; Tanouchi et al.,

2015]), should be able to control its size if dividing asymmetrically (since p=r (stot +1)<1 when r <

½). Therefore, asymmetric division can be regarded as an additional stabilizer of cell cycle that limits

cell size variability.

In conclusion, our study, in which cell cycle progression was monitored with unprecedented accu-

racy in yeast, demonstrates that size homeostasis does not originate from a G1-specific mechanism,

but is likely to be an emergent property resulting from the integration of at least two mechanisms

that coordinate cell growth with division. Our analysis specifically highlights the role of bud size con-

trol in limiting cell-to-cell variability, which is presumably connected to the role played by B-type

cyclins in size homeostasis, as identified here. Additional studies linking further experimental data-

sets to computational analyses (Tyson and Novák, 2015) will be instrumental in deciphering how

individual components are integrated to ensure size homeostasis throughout the cell cycle.

Materials and methods

Strain construction
All strains were congenic to S288C unless specified otherwise and were constructed following stan-

dard genetic techniques. A detailed list of strains is provided as a supplementary file 1. HTB2-sfGFP

fusion protein was generated by classical PCR-mediated genome editing. Mutant strains were

obtained from the deletion collection of non-essential genes. In the list of constructed strains, we

noticed that the cdh1D HTB2-sfGFP strains were quite unstable and yielded a large fraction of dead

cells as well as large multinucleated cells that retained a fast division time and eventually outgrew

the rest of the population. Indeed, the cdh1D mutation has previously been described to induce

genomic instabilities (e.g. chromosome loss, etc..)(Ross and Cohen-Fix, 2003). We hypothesize that

introducing the histone marker in this background exacerbates this phenotype. To circumvent this

issue, we used freshly thawed cells from frozen stock.

Microfabrication and microfluidics setup
Microfluidic chips were designed and made using standard techniques as previously described

(Goulev et al., 2017). The microfluidic devices, which feature eight independent channels, each con-

sisting of 8 chambers, allow parallel monitoring of 8 genetic backgrounds in the same time-lapse

assay. The microfluidic master was made using a standard SU-8 lithography process at the ST-

NANO facility of the IPCMS (Strasbourg, France). CAD files and detailed dimensions of the chip are

available on the metafluidics open repository: https://metafluidics.org/devices/yeast-high-through-

put-culture-device-with-8-independent-flow-chambers/. The micro-channels were cast by curing

PDMS (Sylgard 184, 10:1 mixing ratio) and then covalently bound to a 24 � 50 mm coverslip using

plasma surface activation (Diener, Germany). Chips were then baked for 1 hr at 70˚C to improve the

sealing between PDMS and glass. Microfluidic chips were connected using Tygon tubing and media

flows were driven by a peristaltic pump (Ismatec, Switzerland) with a 30 mL/min flow rate.

Live imaging of yeast
Strains were cultured overnight in synthetic complete medium with glucose and all amino acids. The

next morning, the cultures were diluted and allowed to grow until optical density at 660 nm reached

0.2–0.5. Each strain was then loaded into independent chambers chosen at random to avoid poten-

tial systematic bias in measurements. For each strain, at least two fields of view were recorded dur-

ing the time-lapse acquisition interval. Each assay included a WT strain as a control. Mutants were

analyzed in at least three independent assays. In total, we collected at least 2000 cell cycles per

mutant ~25,000 cell cycles for the WT strain.

Cells were imaged every 3 min using an automated inverted microscope (Nikon TI, Nikon, Japan)

with a 60 � phase contrast objective and a sCMOS camera (Hamamatsu Orca Flash 4.0, Japan)

driven by Nikon Software (NIS). Constant focus was maintained using a Perfect Focus system. Fluoro-

phore excitation was performed using LED light (Lumencor X1) and appropriate filter sets. The cells

were allowed to grow for up to 10 hr in the device, yielding about 500 cells per field of view by the

end of the assay.
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Image processing
Raw proprietary Nikon files (.nd2 format) were converted using Bio-format and bftools packages

into MATLAB-compatible lossless jpeg files. We developed custom software (Autotrack; see Fig. Fig-

ure 1—figure supplement 2 and Supplemental Information for details) to: (1) segment and track

individual cells in yeast microcolonies, (2) quantify HTB2-sfGFP (or mCherry) levels in individual cells

and extract individual cell cycles, (3) determine the duration of individual cell cycle phases, and (4)

discard outliers based on specific criteria (detailed in Supplemental Information). Cell volumes were

calculated from segmented cell contours assuming an ellipsoid model.

Data processing
Linear regression was performed with a robust regression procedure (robustfit) function in Matlab)

using a weighting function to limit the impact of potential outliers (Error estimates correspond to a

95% confidence interval). Volume measurement errors reported in Figure 5A were estimated by

comparing the volume obtained from automated cell segmentation to a manual ground truth seg-

mentation performed over more than 500 cells of various sizes.

Dataset management and online data publishing
All variables extracted during image processing were stored in a mutant-specific database designed

to allow straightforward analysis using custom MATLAB software, as described in the Supporting

Information. We developed a web application, Yeast Cycle Dynamics, that allows custom statistical

analysis of extracted cell cycle data for all mutants in this study. In addition, raw data showing his-

tone levels and cell size as a function of time for all cells can be monitored (Tassy and Charvin,

2018). See Supplemental Information for details.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.34025.022

Autotrack: software for automated extraction of cell
cycle phases
Autotrack is software developed during this study to automate the processing of time-lapse

datasets. It is based on the project architecture of PhyloCell, which is frontend software

previously developed by our group to process time-lapse images. Both programs are available

for download at github: https://github.com/gcharvin.

The software allows parallel segmentation, tracking, and quantification of individual cells in

yeast microcolonies. Information on both the cell and nucleus is used to ensure a reliable

determination of cellular parentage (mother/bud relationships), which is mandatory for

assessing cell growth during a complete cell cycle (see Figure 1—figure supplement 6 for an

overview of the pipeline). Finally, a specific routine is used to extract the duration of individual

phases for each cell cycle, and a quality control routine is run to discard outliers. The steps are

described in detail below.

Segmentation and tracking
Segmentation of cellular contours is performed on phase contrast images using a modified

Watershed algorithm, as previously described (1). Cells are then tracked over successive

frames using an assignment-cost procedure solved with the Hungarian method. Segmentation

of nuclei is performed by thresholding after background subtraction using morphological

operators. Nuclei tracking is achieved as described for cellular contours.

Parentage analysis
Although mother/bud parentage can a priori be established in the absence of additional

markers, it is not exempt from uncertainties, leading to lineage errors. In contrast, using an

additional nuclear marker greatly alleviates concerns about potential mother/bud assignments.

In practice, cellular and nuclear contours were combined so that nuclei were identified for

each frame of interest. In the rare case when a nucleus overlapped with two cellular contours

(e.g., nuclear lengthening during anaphase), a link between a cell and its bud was established.

Otherwise, each time a nucleus appeared (following nuclear division), an optimization

algorithm allowed us to identify the best neighbor nucleus as the ‘mother’ nucleus from which

it derived (based on both spatial localization and timing of divisions). Therefore, this analysis

allowed us to link newly appearing daughter cells to their mother.

By establishing the mother/daughter links, we could build a complete pedigree analysis

and determine cell division timing by detecting the sudden drop in histone level upon

anaphase and using it as a reference point.

Cell cycle phase extraction procedure
Extraction of cell cycle phases was performed assuming a simple evolution of the pattern of

histone level during a cell cycle. Following a sudden drop in total histone level corresponding

to nuclear division, we expected the histone level to be constant during G1, then linearly

increase during S phase, and plateau during the subsequent G2/M phase until the onset of

anaphase. Therefore, we fitted the total histone fluorescence data to a piecewise linear fit

(based on the BSFK optimization, least-square fitting with Free-Knot B-spline), which allowed

us to retrieve the duration of each interval.

Determination of cytokinesis timing, which is impossible using a histone marker alone, was

assessed independently with a septin protein (Cdc10-mCherry, see Figure 1—figure

supplement 5) and was found to be very tightly correlated with anaphase. Therefore, for the
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sake of simplicity, we assumed that the duration of the anaphase–cytokinesis interval was fixed

(see main text), ignoring potential cell-to-cell variations that may, in turn, affect measurement

of the duration of the subsequent G1 phase.

Based on this analysis, we extracted a list of variables for each cell cycle, as detailed below:

Timing Definition

Tdiv Cell cycle division time (min)

TG1 G1 phase duration (min)

TS S phase duration (min)

TG2/M G2/M phase duration (min)

TAna/Cyt Anaphase to cytokinesis duration (min)

Cell size

Vbirth Cell volume at birth (daughter) or division (mother) (fL)

VG1 Cell volume at the end of G1 phase (fL)

VS Cell volume at the end of S phase (fL), excluding bud

VG2/M Cell volume at the end of G2/M phase (fL), excluding bud

VAna/Cyt Cell volume at the end of cytokinesis phase (fL), excluding bud

VbS Bud volume at the end of S phase (fL)

VbG2/M Bud volume at the end of G2/M phase (fL)

VbAna/Cyt Bud volume at the end of cytokinesis (fL)

Other

MD Boolean specifying whether cell is a mother or a daughter

Division Replicative age of the cells (Daughters: 0; Mothers: 1, 2, 3, etc.)

munb. Linear growth rate during the unbudded period of the cell cycle

mbud. Linear growth rate during the budded period of the cell cycle

Asy Daughter/Mother volume ratio at division

Cell cycle phase verification procedure
We used criteria to exclude outliers due to errors in segmentation, tracking, assignment of

buds to mother cells, and issues related to the fitting of histone level curves. In practice, we

defined time intervals to keep cell cycle durations within an acceptable range, as shown in

the table below. In addition, following a careful inspection of individual data points, we

arbitrarily chose to discard cell cycles in which a small size at birth was concomitant with a

short duration of G1 (Vbirth � TG1). We also noticed a common error related to the detection

of the linear ramp in histone level during S phase. To remove this error, we discarded cell

cycles in which the durations of both G1 and G2/M were very short (TG1 � TG2/M). Cells

without buds by the end of G2/M and Anaphase (VbG2 <0 and VbAna <0, respectively) were

also discarded, as well as cells in which the daughter was more than twice the size of its

mother at birth (Asy >2, presumably due to a wrong mother/bud association). Last, we

removed all cell cycles in which the goodness of fit to the model was below a certain

threshold, as defined by the chi-square (c2 > 0.01). In total, up to 63% of all cell cycles were

retained for cells in the wild-type background (26,945 cell cycles, including 10,091 outliers),

and similar values were obtained with mutants.

To evaluate the impact of this data filtering procedure on the measurements performed

throughout this study, first, we have quantified the cell cycle rejection rate for each selection

criterium (e.g. c2, tdiv, tg1, etc.) mentioned above (see Figure 1—figure supplement 7A).

For instance, this analysis showed that abnormal histone curve fitting contributes to 15% of

the total rejected cell cycles (using the arbitrary threshold c2 = 0.01, see Figure 1—figure

supplement 7A and B). Then, we have compared the cell cycle timings of selected cell cycles

versus the whole set of data (see Figure 1—figure supplement 7C). This analysis revealed
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that data filtering mostly changes the duration of G1, by discarding cell cycles with

abnormally short G1 in daughter cells. Therefore, this procedure is useful to get rid of major

artefacts associated with the automated tracking and fitting procedure. However, we

checked that data filtering does not qualitatively change the results related to compensatory

growth, even though the values of the corresponding slopes are slightly different in the

‘selected’ versus ‘all’ cell cycle datasets (see Figure 1—figure supplement 7D).

Variable Acceptable range

Tdiv [45–300 min]

TG1 [0–300 min]

TS [0–300 min]

TG2/M [0–300 min]

TAna/Cyt [2–30 min]

munb. >0 (in daughter cells only)

VbG2/M >0

VbAna >0

Asy <2

Other constraints

Vbirth � TG1 >300 (fL x min)

TG1 � TG2/M >9 (min2)

c2 <0.01

Yeast Cycle Dynamics: a web-based application to
explore mutants cell cycle data
Yeast Cycle Dynamics (YCD) is a tool accessible online (http://charvin.igbmc.science/

yeastcycledynamics/index.php) to compare and analyze the data acquired during this study

for both mutant and wild type strains.

Different mutants can be compared thanks to our dynamic graph system. This tool uses R

to compute several analyses involving a selection of mutants and features. Mutant lines are

selected using a dedicated interface that allows to display a short movie of the growing cells

with a representation of their main characteristics. This makes it possible to visually estimate

and compare the consequences of a mutation on the growing yeasts and their cell cycle. The

analysis tool then allows to study the distribution of a mixture of variables for both mother

and daughter cells on every selected lines. The results can be visualize as a distribution or a

whiskers box plot.

This tool offers the possibility to study the correlation existing among these variables and

see if they are conserved in the selected mutants. Here again, two graphs, a histogram and a

correlogram, are available to depict these features.

The distance segregating mutants can be computed for all or every combination of

variables. This way, it is possible to see which lines behave similarly for a given set of

parameters. This tool uses the Mahalanobis distance which minimize the influence of the

noisiest datasets for this measure.

Also, a principal component analysis module has been developed to better identify the

variables that are the most discriminant among the mutants. Variables are represented as

vectors which direction and length show their relative influence in the observed behaviors.

Last, it is possible to select specific yeasts from the database based on the volume of their

body, bud and nucleus as well as the time duration for every phase of the cell cycle. The

characteristics of the resulting cells can be further explored using their individual file. Each

page shows the cell identity, its genotype, the number of reported divisions and a summary

of all the variables recorded during the procedure. The system also generates an interactive

graph showing the evolution of the fluorescence signal as well as the volume of the cell and
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its bud over time. When yeasts have been tracked during several divisions, the user can

display these features for every step to see how they evolve in time.

YCD is developed in PHP v.5 and JavaScript. The graphs are generated using R v.3 and

the Rgraph library. Data are stored and accessed from a PostgreSQL v.9 database. The gene

descriptions used in the system have been downloaded from the Saccharomyces Genome

Database.

The whole dataset, including single cell data for each mutant, is available upon request.

Model linking size compensation mechanisms to overall
size homeostasis

Model assumptions
The linear map model was used to characterize the dynamics of cell size over successive

divisions (2). According to this framework, we let Vn be the volume of a cell at division n and

we assume that the cell grows according to an affine law during a cell cycle:

F Vnð Þ ¼ a Vnþ b (1)

with a and b being constant parameters that characterize the growth process. Therefore, if

the cell divides symmetrically, the volume Vn +1 of the two sibling cells at division is given

by:

Vnþ1 ¼
1

2
a Vnþ bð Þ (2)

In the case of budding yeast, division is asymmetrical; hence, assuming that Vn is the

volume of the daughter cell, Equation 2 becomes:

Vnþ1 ¼ r a Vnþ bð Þ (3)

where r represents the asymmetry factor (0 < r < ½).

The fixed point Veq (i.e., the steady state) of this linear map is given by:

Veq ¼ r a Veqþ b
� �

(4)

which yields:

Veq ¼
r b

1� a r
(5)

This indicates that a stable steady state is reached only when a r < 1. Under this condition,

one can re-write Equation 3 using Equation 5 as:

Vnþ1 ¼ p Vnþ 1� pð Þ Veq (6)

where p=r a characterizes the strength of convergence of the linear map. Indeed, Vn+1

appears as the weighted average between Vn and the steady state value Veq. Therefore, the

lower the value of p (0 < p < 1), the more rapid the return to equilibrium (see Figure 4).

Link to analyses based on DV vs. V plots
Most previous experimental analyses of size control have been based on measuring the

variation of volume during the cell cycle as a function of the initial volume (DV vs. V plots)

rather than on direct return map analyses.

Using the notations defined above, the variation of volume during a cell cycle can be

written as:
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DV ¼ a Vnþ b �Vn ¼ a� 1ð Þ Vnþ
1

r
� a

� �

Veq (7)

thereby showing that the variation in cell volume varies linearly with the initial cell volume,

with a slope referred to as stot in the main text, such that: stot = a - 1

Interestingly, the measurement of size control based on the slope of DV vs. V plots does

not take the asymmetry factor into account, unlike the linear map model. For instance, a

slope stot =+1, which is usually assumed to represent a perfect ‘Timer’ model (3), can still

lead to size homeostasis provided that the asymmetry factor r is smaller than ½, as in the

case of budding yeast. Indeed, with a = 2 and r < 1/2, we get p<1, which ensures the

convergence of the linear map, even though stot =+1.

The noisy linear map
A Langevin noise term h, such that <h>=0 and <h2>=constant, can be added to

equation (6) to reflect the stochastic nature of the growth process and to investigate how

this noise affects the distribution of cell size. In this context, Equation 7 becomes:

Vnþ1 ¼ p Vnþ 1� pð Þ Veqþh (8)

Whereas the mean cell volume is not changed in the presence of noise, noise generates

fluctuations around the mean, the variance of which can be calculated using Equation 8:

<V2> �<V2

nþ1>

¼< p Vnþ 1� pð ÞVeqþh
� �2

>
¼ p2<V2>þ p 1� pð ÞV2

eqþ 1� pð ÞV2

eqþ<h2>

¼ p2<V2>þ 1þ pð Þ 1� pð ÞV2

eqþ<h2>

assuming <V> =Veq. Therefore:

Variance Vð Þ � <V2>� <V>2 ¼
<h2>

1� pð Þ 1þ pð Þ
(9)

The Fano factor, which is a size-independent measure of fluctuations, is defined as:

Fano�
<V2>�<V>2

<V>
¼
<h2>

Veq

1

1� pð Þ 1þ pð Þ
(10)

Therefore, the Fano factor is the product of two terms: <h2>/Veq characterizes the

intrinsic noise in the growth process, whereas the other term is directly dependent on the

strength of size control mechanism(s).

Bayesian statistics analysis of links between cell cycle
variables
A key result of this work is to show that there is a negative correlation between bud size at

the end of S phase (VbSÞ and G2/M duration (TG2=MÞ which suggest the existence of a G2/M

size control mechanism. However, the data also show that the duration of S phase TSð Þ

correlates both with VbS and TG2=M which could be untimely the underlying cause of an

indirect correlation between VbS and TG2=M , hence the proposed underlying size control

mechanism would be artefactual. These two scenarios can be depicted with the two simple

tree belief networks shown below:

Ts!VbS! TG2=M (11)

and:
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VbS  Ts! TG2=M (12)

which link conditional dependencies between variables. In Equation 11, the dependency

between the variables TG2=M and VbS, and VbS and TS are direct which induces an indirect

correlation between the TG2=M and TS. In contrast, the dependency between TG2=M and TS is

direct in Equation 12.

The question is then whether it is possible to elucidate which of these two alternative

models is correct. A first clue can already be obtained by having a closer look at the

correlation coefficients between the three variables: � TS;VbSð Þ ¼ 0:33, � TS; TG2=M
� �

¼ �0:29

and � VbS; TG2=M
� �

¼ �0:43 (after removing cell cycles in which VbS=0). The fact that the

correlation between VbS and TG2=M is stronger than the correlation between TS and TG2=M

suggest that the conditional dependency TS ! VbS ! TG2=M agrees better with the data.

To further support this statement, we use a Bayesian statistical approach that allows us to

evaluate which tree belief network (Equation 11 versus Equation 12) fits better the data(4).

To do so we first discretize the three-dimensional space formed by the three cell-cycle

variables considered here (TG2=M ;VbS; TS) into voxels by splitting their domains into b bins.

We then and count the number of cells nxyz that lay inside each voxel labeled by the three

discrete indexes x; y; z (where the identities x ¼ TG2=M , y ¼ VbS and z ¼ TS were introduced to

simplify the notation). We then assume that there is a join discrete probability distribution

pxyz that stands for how likely is to find a cell in the bin x; y; z. The two belief network models

represent a specific factorization of the join distribution as a product of conditional

probabilities. that is pxyz ¼ pxjypyjzpz or pxyz ¼ pxjzpyjzpz. Using a Dirichlet distribution with

concentration parameters (or pseudocounts) a ¼ a; . . . ;að Þ as a prior, we can integrate out

all the discrete distributions. The likelihood of the data D � nxyz
� 	

given the first belief

network is:

P DjTS! VbS! TG2=M
� �

¼
R
Q

xyz

G pxjypyjzpz
� �nxyzþa�1

dpxjydpyjzdpz

¼

Q

xy

G nxyþbað Þ
yz

Y

G nyzþbað Þ

y

Y

G nyþb2að ÞG nþb3að Þ
:

where the sums over indexes are indicated by removing them, for example: nxy �
z

X

nxyz.

Alternatively, given the second belief network we obtain:

P DjVbS TS! TG2=M
� �

¼
R
Q

xyz

G pxjzpyjzpz
� �nxyzþa�1

dpxjzdpyjzdpz

¼

Q

xz

G nxzþbað Þ
Q

yz

G nyzþbað Þ
Q

z

G nzþb2að ÞG nþb3að Þ
:

And finally, the ratio of the two probabilities leads to:

r¼
P DjTS! VbS! TG2=M
� �

P DjVbS TS! TG2=M
� � ¼

Q

yz

G nyzþ ba
� �

Q

z

G nzþ bað Þ

Q

xz

G nxzþ b2að Þ
Q

y

G nyþ b2a
� �

Notice that the ratio depends only on the counts nyz and nxz which are the ones related to

the links of the networks that are different between the two models. that is VbS ! TG2=M and

TS ! TG2=M . Then, applying the Bayesian theorem, we obtain that the probability of model

TS ! VbS ! TG2=M given the data is:

P TS! VbS! TG2=M jD
� �

¼
P DjTS! VbS!TG2=Mð Þ

P DjTS! VbS!TG2=Mð ÞþP DjVbS TS!TG2=Mð Þ
¼ r

rþ1
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where we assume that the prior probabilities of each model are equal, that

is P TS ! VbS ! TG2=M
� �

¼ P VbS  TS ! TG2=M
� �

¼ 1=2.

Finally, substituting the data in the previous equation, that is the discrete counts

nxyz
� 	

that indicate the number of cells that showed values for the variables TG2=M , VbS and TS

within the voxel xyz, we obtain P TS ! VbS ! TG2=M jD
� �

¼ 1 for different number of bins (10,

50 and 100) and pseudocounts (10�6,0.5 and 1). Namely, the conditional dependency

structure TS ! VbS ! TG2=M is consistently supported by the data indicating that the

correlation between S and G2/M durations is indirect and the negative correlation between

bud size at the end of S phase and G2/M duration is direct. It is important to note that this

approach allows us to evaluate only conditional dependencies and not causation. Indeed, it

is not possible to distinguish the models (Equation 11 and Equation 12) from similar ones

where the direction of the arrows are flipped. However, the fact that there is a temporal

ordering of our variables (i.e. the size of the bud after S phase is determined before the

duration of the G2/M phase is realized) allows to state that the link VbS ! TG2=M must be

causative.
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