
B
N
E
L
P

C
Ji
Ji
T

*S
Sh
Im
‡D
Zh

www.transonc.com

Trans la t iona l Onco logy Volume 11 Number 3 June 2018 pp. 815–824 815

Address all c
Zhengzhou, 4
Sciences, Beij
E-mails: liyin
1 Equal contr
uilding CT Radiomics Based
omogram for Preoperative
sophageal Cancer Patients
ymph Node Metastasis
rediction
H
A
H
M
U
#U
10

orrespondence to: Yin Li or Jinrong Qu, MD, 127 Dongming Road,
50003 or Jie Tian, PhD, Institute of Automation Chinese Academy of
ing 100190, China.
825@aliyun.com, qjryq@126.com
ibutors: Chen Shen, Zhaoqi Wang, Zhenyu Liu.

Re
©
un
19
ht
hen Shen*,†, 1, Zhenyu Liu†, 1, Zhaoqi Wang‡, 1,
a Guo‡, Hongkai Zhang‡, Yingshu Wang‡,
anjun Qin§, Hailiang Li‡, Mengjie Fang†, f, Zhenchao
ang†,¶, Yin Li‡, Jinrong Qu‡ and Jie Tian*,†, f

chool of Life Science and Technology, XIDIANUniversity, Xi'an,
aanxi, 710126, China; †CAS Key Laboratory of Molecular
aging, Institute of Automation, Beijing, 100190, China;
epartment of Radiology, the Affiliated Cancer Hospital of
engzhou University, Henan Cancer Hospital, Zhengzhou,
enan, 450003, China; §Department of Thoracic Surgery, the
ffiliatedCancerHospital of ZhengzhouUniversity, HenanCancer
ospital, Zhengzhou, Henan, 450003, China; ¶School of
echanical, Electrical & Information Engineering, Shandong
niversity, Weihai, Shandong Province, 264209, China;
niversity of Chinese Academy of Sciences, Beijing,
0080,China
Abstract
PURPOSE: To build and validate a radiomics-based nomogram for the prediction of pre-operation lymph node (LN)
metastasis in esophageal cancer. PATIENTS ANDMETHODS:A total of 197 esophageal cancer patients were enrolled in
this study, and their LN metastases have been pathologically confirmed. The data were collected from January 2016 to
May 2016; patients in the first three months were set in the training cohort, and patients in April 2016 were set in the
validation cohort. About 788 radiomics featureswere extracted from computed tomography (CT) images of the patients.
The elastic-net approach was exploited for dimension reduction and selection of the feature space. The multivariable
logistic regression analysis was adopted to build the radiomics signature and another predictive nomogrammodel. The
predictive nomogram model was composed of three factors with the radiomics signature, where CT reported the LN
number and position risk level. The performance and usefulness of the built model were assessed by the calibration and
decision curve analysis. RESULTS: Thirteen radiomics features were selected to build the radiomics signature. The
radiomics signaturewas significantly associatedwith the LNmetastasis (Pb0.001). The area under the curve (AUC) of the
radiomics signature performance in the training cohort was 0.806 (95% CI: 0.732-0.881), and in the validation cohort it
was 0.771 (95% CI: 0.632-0.910). The model showed good discrimination, with a Harrell’s Concordance Index of 0.768
(0.672 to 0.864, 95% CI) in the training cohort and 0.754 (0.603 to 0.895, 95%CI) in the validation cohort. Decision curve
analysis showed our model will receive benefit when the threshold probability was larger than 0.15. CONCLUSION: The
present study proposed a radiomics-based nomogram involving the radiomics signature, so theCT reported the status of
the suspected LNand the dummyvariable of the tumor position. It canbepotentially applied in the individual preoperative
prediction of the LN metastasis status in esophageal cancer patients.
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troduction
sophageal cancer (EC) is the eighth most common malignancy in
e world and the incidence is rapidly increasing [1,2]; it is associated
ith an overall 5-year survival rate of 5% to 20% [3–5]. Surgery
mains the only curative treatment with a 5-year survival rate of
-36% for resectable EC treated with surgery alone, especially for
rly stage patients [6]. The overall 5-year survival rate after surgery is
-92% for EC patients without nodal involvement, but only
-47% for EC patients with lymph node metastasis [7,8].
Surgery approach is dependent on the location of lymph node
volvement. The left thoracic approach (Sweet procedure) has merits
a single incision and adequate exposure of the hiatus, but provides
sufficient lymphadenectomy in the upper mediastinum. On the
ntrary, the right thoracic approach (Ivor Lewis procedure) aims to
prove the survival by offering a more extended radial lymphad-
ectomy. Significantly better 3-year DFS and OS rates among
tients who received right thoracic esophagectomy were found, as
mpared with left thoracic esophagectomy. These benefits were only
en in patients with lymph node involvement and/or positive
section margins, and not in patients without lymph node
volvement and negative resection margins [9].
gure 1. The common process of a radiomics approach. (a) The feature
orking out the lesion region. All radiomics features will be calculated o
fined features and build the “radiomics signature”; and (c) the statist
Although the 7th edition of UICC TNM staging has modified the
oring system, it still remains many controversies on the accuracy
d reliability of the nodal portion of the TNM staging system. Since
me potentially relationships between the critical prognosis
formation and lymph node (LN) status were omitted [10].
urrently available imaging techniques, endoscopic ultrasound
US), Computed tomography (CT), Endobronchial ultrasound
BUS), 18F-fluorodeoxyglucose positron emission tomography
DG-PET), and FDG-PET/CT, all have their limitations, and
boptimal imaging quality often leads to an incorrect assessment of
gional lymph node involvement [11]. Currently, there are no
ceptable guidelines for upstaging the nodal status even though the
munohistochemical analysis has detected the micrometastases.
CT is the most common imaging modality and has a good
scription of EC tumors. However, identifying the LN metastasis
atus of EC in CT images is a challenging and meaningful work.
riven by the “big-data” trend, “radiomics” was proposed and then
veloped rapidly [12]. Because of its non-invasive and low-cost
operties, “radiomics” could be regarded as a proper approach for
e-diagnosis assistance. “Radiomics” converts medical images into
stract numerical features, and uses data-mining algorithms for
extraction phase, reading the raw DICOM format clinical data and
n those segmentations; (b) the feature analysis phase: select the
ical analysis phase: build and assess the nomogram.

Image of Figure 1
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alysis. It is desirable to quantify the clinicians’ years of experience as
valuable reference [13,14]. It is also known that “radiomics”-based
gnatures as biomarkers have correlations with clinical stages, LN
etastasis, and tumor heterogeneity [15,16]. Radiologists and
inicians started to pay attention and welcome “radiomics”
proaches and conclusions in many diseases including CL [17,18].
In this study, we aim to build and validate a radiomics-based
mogram involving radiomics signature and radiological observation
ctors for the individual prediction of LN metastasis in preoperative
ophageal cancer patients. Figure 1 illustrates the flowchart of the
search sequence.

aterials and Methods

atients
In the present study, we enrolled 197 patients with esophageal
ncer between January 2016 and May 2016. We collected their
e-treatment CT images and pathologically confirmed the lymph
de metastases status. The inclusion criteria we followed are: (a)
tients who had collected CT images before any treatment; (b)
tients who received lymph node dissection 15 days after the first
T acquisition; and (c) patients who had pathologically confirmed
N metastasis results after the operations. In order to guarantee the
nsistency of CT and pathological results, 15 days is our criteria
cause overdue CT images may not reveal the postoperative
thology. The exclusion criteria we followed are: (a) patients who
ere under 18 years of age; (b) patients who had further treatment
gure 2. The demonstration of our radiologists working on the tumor seg
sults in axial, sagittal, coronal planes; (d) the mesh visualization of the
ke radiotherapy and chemotherapy); (c) patients who had treatment
other institutes and (d) histological grade was unconfirmed.
Patients were divided into two individual cohorts for the cut-off
te of March 31, 2016. The training cohort consisted of patients in
e first three months (January to March 2016). The remaining
tients (in April to May 2016) formed the validation cohort.
tients’ pathological classification, clinical T and N stages were
llected from pathological reports directly. We also collected CT
ports of the enrolled patients. We extracted the number of
etastatic LN and the tumor position in CT reports. Here we defined
e semantic feature of the tumor positions depending on the degree
risk (0, 1, and 2 as the lesions in the upper, middle and lower parts
the thoracic esophagus in anatomy). All CT reports were confirmed
two level radiologists’ reviews.

age Acquisitions and Tumor Segmentation
We acquired our images from the Department of Radiology at
enan Cancer Hospital between Jan 2016 and May 2016. We
rformed the contrast-enhanced CT of Chest on every patient after a
s delay following intravenous administration of 90 ml of iodinated
ntrast material (Ousu, Yangtze River Pharmaceutical, Taizhou,
hina) at a rate of 3.0–4.0 ml/s with a pump injector (Spectris Solaris
P; One Medrad Drive Indianola, PA, USA). Three multi-detector
w CT (MDCT) systems were used for acquisition: Phillips 256
T, Phillips Medical System; Bright speed 16-slice CT or light speed
o 32-slice VCT, GE Medical systems, USA. The acquisition
rameters were set as follows: 110-120 kV; 168-324 mA; 0.5 or 0.4 s
mentation with ITK-SNAP. (a), (b), (c) screenshots of segmentation
lesion sample.

Image of Figure 2
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tation time; detector collimation: 64 × 1.25 mm or 64 × 0.625mm
16 × 1.25mm or 32 × 1.25mm; field of view, 500 × 500mm;
atrix, 512 × 512. Contrast-enhanced CT was performed. All CT
ages were reconstructed with a standard kernel. These CT images
ere retrieved from the picture archiving and communication system
ACS) (Neusoft v5.5.60801, Shenyang, China).
Radiologists with over 5 years of experience examined each layer of
e patients’ CT data. In China, radiologist with over 5 years of
perience can have the right to check the report. We performed the
anual segmentation of the esophageal tumor on each patient's CT
ages. We introduced “ITK-SNAP” for this task (www.itksnap.org)
9]. ITK-SNAP is an open-source and free software application used
segment structures in 3D medical images. Two radiologists with
ore than five years of experience in interpreting chest radiology
tlined all of the tumor regions in each patient’s CT image layer
igure 2). These regions of interests (ROIs) would be used in
bsequent feature extraction for further analysis.

adiomics Feature Extraction
Radiomics feature extraction was based on the segmentation results
om the previous section. We implemented the calculation through
r homemade Matlab scripts (Matlab 2014b, Mathworks, USA).
eatures included certain categories: first-order histogram statistics,
ray-Level Co-occurrence Matrix (GLCM), Gray-Level Run-length
atrix (GLRL), Fractal Dimensions, and wavelet filtered GLCM and
LRL [20–22]. A total of 788 features were extracted, which covered
e major high-throughput radiomics features of current studies. The
ble 1. Demographic statistics of patients in the training and validation cohorts

Training cohort

aracteristics LN+ LN- P

n = 42 n = 98

nder
Male 16 51 0.1
Female 26 47

e
Mean 59.5 63.6 0.0
Median 60.0 64.5
Range 42~74 46~86
SD 7.4 7.6

sition
0 5 13 0.9
1 20 49
2 17 36

stage
1 0 18 0.0
2 6 24
3 33 52
4 3 4

stage
0 - 98
1 23 -
2 15 -
3 4 -

Report
0 24 65 0.4

umber 1~2 17 29
N3 1 4

ote:
value is calculated from the univariable association test between sub-groups
test and Fisher’s exact test for categorized variables; two-sample t-test for continues variables
value b 0.05
he comparison between the training cohort and validation cohort
breviations: LN, lymph node; +, metastasis positive; - metastasis negative, CT, computed tomography; SD, sta
tails of the radiomics features calculation can be found in the
pplementary Doc. S1.

adiomics Signature Building
We built the radiomics signature with selected features on the
aining cohort. The feature selection approach we adopted was the
lastic-net”, which is a combination and expansion of the least absolute
rinkage selection operator (LASSO) and the Ridge Regression
3,24]. To screen out the effective and predictable features from
gh dimensional feature space, ten-fold cross validation was used in the
rameters tuning of the “elastic-net”. We exploited the logistic
gression model to build the radiomics signature for each patient. The
diomics signature is a linear combination of selected features with
spective weights, which would be calculated as a factor (radiomics
ore, Rad-score) for the further prediction model. The assessment
ethod of the logistic regression model is the receiver operating
aracteristic curve (ROC) and its area under the curve (AUC).

omogram Building
The nomogram with the predicting model was based on the
ultivariable logistic regression analysis. The following candidate
ctors: CT-reported LN status (dichotomized variable: “0” for no
etastasis, “1” for metastasis), CT-reported positions (dummy
riable: “0”, “1” and “2”) and Rad-scores were involved in a
agnostic model for predicting LN metastasis. The nomogram is a
aphical representation of this prediction model in the training
hort. It would be tested in the validation cohort.
Validation cohort P†

LN+ LN- P

n = 19 n = 38 0.734

0.453
30 12 26 0.769

7 12
0.919

04* 63.2 62.2 0.660
63.0 62.5
50~79 50~75
7.5 7.3

0.863
12 3 6 0.827

10 17
6 15

0.372
05* 1 10 0.209

5 10
12 15
1 3

0.957
- 38
11 -
6 -
2 -

0.093
30 15 29 0.970

3 7
1 2

ndard deviation.

http://www.itksnap.org
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Table 2. Selected Features with Descriptions

Feature Name Description

Length The lesion length measured by the CT layers
Energy Measure of the overall intensity of the ROI
Kurtosis Measure of the sharpness of the histogram
GLRL_RLN_45 Measure of the gray scale texture repeatability
a1_GLRL_LRE_135 High dimensional wavelet texture analysis
a1_GLRL_SRHGE_0
a2_GLCM_PROBABILITY_0
a2_GLRL_HGRE_0
a2_GLRL_LGRE_45
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omogram Validation
The building of a radiomics nomogram was assessed by calibration
rves in both training and validation cohorts. The discrimination power
the predicting model was evaluated by Harrell’s concordance index
-Index) [25]. We used the bootstrap approach for resampling in 1000
es, to calculate theC-indexwith 95%confidence intervals [26] in both
horts. The calibration curves were drawn for assessing the agreement
tween the predicted results and true outcomes of LN metastasis [27].
he decision curve analysis was introduced to evaluate the quantified net
nefit of our prediction model in the validation cohort [28].
hd_GLRL_SRHGE
hd_GLRL_SRE_45
hd_GLRL_SRE_90
hd_GLRL_SRHGE_135

Note:
1. prefix of “a1”, “a2”, “hd”mean the different densities and directions of the wavelet transform performed in
Matlab
2. suffix of “0”, “45”, “90”,“135” mean the directions of gray-level matrix directions.
atistical Tools
We performed the statistical analysis in R (version 3.3.0; http://
ww.Rproject.org). The used R packages of this paper are listed in
e Supplementary Table S1. The statistical significance levels were all
se
cu
is
lo
w
Fi
M
co
tr
co
fe

gure 3. Feature selection using the elastic-net method with a
gistic regression model. (a) Tuning parameter λ in the elastic-net
odel. The parameter λwere selected under the minimum criteria.
e vertical line was drawn at the value selected by using 10-fold
oss-validation, including optimized 13 nonzero coefficients. (b)
e model coefficient trendlines of the 788 radiomics features. The
ofile graph was plotted by coefficients against the L1 norm
verse proportional to log λ).

Fi
di
tr
67
0.
61
t as two-sided at P = 0.05 in our report. We assessed the calibration
rves with the Hosmer-Lemeshow test. The Hosmer-Lemeshow test
a common statistical test for evaluating the goodness of fit for
gistic regression. Common comparisons of patients’ characteristics
ere conducted by a two-sample t-test for continuous variables.
sher’s exact test and χ2 test were used for categorical variables. The
ann-Whitney U test was utilized for testing the potential
rrelation of the radiomics signatures and the LN status in both
aining and validation cohorts. We introduced the inter-observer
rrelation coefficients (ICCs) to assess the agreement of extracting
atures by two-level radiologists.
gure 4. ROCs were employed to assess the radiomics signature
scriminative performance of the LN metastasis. ROC in the
aining cohort with 0.806 (95% CI: 0.732-0.881, sensitivity =
.9%, specificity = 82.7%); ROC in the validation cohort with
771 (95% CI: 0.632-0.910, sensitivity = 76.7%, specificity =
.2%).

http://www.Rproject.org
http://www.Rproject.org
Image of Figure 3
Image of Figure 4
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Figure 5. (a): Rad-score for each patient in the training cohort (b): Rad-score for each patient in the validation cohort
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esults

atients’ Characteristics
Patients’ characteristics with statistics are listed in Table 1. There
e 140 patients enrolled in the training cohort and 57 patients in the
lidation cohort. Two cohorts have no significant difference in the
N metastasis (P = 0.734, χ2 test). There were no significant
fferences in other factors. We have found that the accuracy of the
T reported LN metastasis number in our cases was quite low (0.59),
d with an extremely high false negative rate (0.64).
elected Radiomics Features
Based on the elastic-net approach in the training cohort, we selected
e features with non-zero coefficients. As a result, 13 radiomics features
ere screened out from 788 features. Figure 3 illustrates the parameter

Image of Figure 5
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Table 3. Results of the Multivariable Logistic Regression

Coefficient Odds Ratio 95% CI P

Lower Upper

Intercept -1.798 b0.001*
Radiomics signature 0.807 1.255 1.100 1.433 b0.001*
CT Report LN status 0.581 1.788 1.144 2.796 0.046*
Position 0.600 3.323 1.637 6.741 0.002*

Note: * P b 0.05.
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ning procedure of the regression model and the feature space
duction. As a result, Table 2 lists the name and description of the
lected features. The inter-observer correlation coefficients (ICCs)
tween two radiologists’ agreement is 0.873 (0.758 to 0.921, 95%CI).
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adiomics Nomogram Development
We employed the selected features in the last section to build the
diomics signature, which is the linear combination of the logistic
gression model with the selected features. The radiomics signature’s
scriminative power of the LN metastasis was assessed by two ROCs
the both cohorts correspondingly (Figure 4). Radiomics scores
ad-scores) of patients were calculated through the elastic-net model
ith selected features with their corresponding weights. Figure 5
ows each patient’s Rad-scores in both the training cohort and
lidation cohort. We enrolled the Rad-scores, the status of the
spected LNs by the CT report and tumor positions as factors in a
ultivariable logistic regression analysis to build the personalized LN
atus prediction model. The coefficients of the model are listed in
able 3. All factors met the significant level, but the “CT Report LN
atus” was on the edge of significance. Hence, we discarded this
ctor out of our model. Subsequently, the radiomics-based
mogram was developed by the prediction model (Figure 6).
gure 6. The nomogram of diagnosis model. Our radiomics based nom
T reported the suspecting lymph node (LN) status and the tumor pos
alidation of the Radiomics Nomogram
We achieved an acceptable calibration in the validation cohort as
own in Figure 7. The Hosmer-Lemeshow test showed that the
atistical difference between the calibration curves and the ideal
rves was non-significant (P = 0.541 for the training cohort and P =
093 for the validation cohort). The C-index of the radiomics-based
mogram was 0.768 (0.672 to 0.864, 95% CI) for the training
hort and 0.754 (0.603 to 0.895, 95% CI) for the validation cohort.
he decision curve analysis (DCA) for the prediction model derived
om the radiomics-based nomogram is presented in Figure 8. The
CA showed that our prediction model had a better net benefit than
ther the treatment or no treatment schemes when the threshold
obability was greater than 0.15.
iscussion
the present study, we developed a predictive model of preoperative

C LN metastasis. The model incorporated three factors: radiomics
nature, CT reported suspicious LN number and the tumor position
predict the LN metastasis status. The radiomics signature was
nificantly associated with the risk of LN metastasis. The nomogram
as derived from the prediction model with good calibration and
lidation. The nomogram has the potential to assist in a preoperative
inical diagnosis, to some extent, which is intuitive to clinicians.
Selecting features from a massive feature pool is the key procedure
a radiomics study. The less useful features can streamline the
ediction model and prevent overfitting issues. In this study, 13
atures were screened out from the 788 features’ pool using the
astic-net approach, which also created a radiomics signature
multaneously through the embedded logistic-regression. According
some statistical modeling reference [29], 13 features of the 197
ses had a proper ratio for building the prediction model that could
oid overfitting. Hence, we found similar ROCs with close AUCs
.806 and 0.771) in two cohorts of the radiomics signature for the
scrimination power of the LN metastasis (Figure 4). The selected
ogram was built in the training cohort. The radiomics signature,
ition (dummy variable) was incorporated as factors.

Image of Figure 6
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Figure 7. Calibration curves of the radiomics-based diagnosis
nomogram. The red dotted line closer to the blue dotted line
indicates a better calibration. (a) The calibration curve of the
training cohort; (b) the calibration curve of the validation cohort.
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diomics features with a description are listed in Table 2. Features of
ength” and “Energy” are highly consistent with the normal
diological experience, which describes the external contour
formation of the tumor. The longer length and higher CT
hanced values mean more tumor invasions, hence this leads to
gher risk of LN metastasis. These two features can be captured by
ked eyes, but our model quantified those experiences into accurate
efficients and factors. The feature of “Kurtosis” is a common
easure of a CT gray-level histogram. It often appeared in the early
ar's medical image post-processing studies. The feature of
LRL_RLN_45” and the resting wavelet features mainly represent
e texture complexity of tumors. Several papers proved that the
xture information of tumors is highly associated with the tumors’
terogeneity, and the heterogeneity is closely related to the patient’s
ognosis [22,30]. Yip et al. introduced this idea into their recent
search in EC [18]. Our results supported this view, and we also
monstrated that these features are associated with esophageal cancer
N metastasis. Sequentially, the radiomics signature combined these
ultiple imaging features into one biomarker, “Rad-score”, involved
a multivariable logistic regression model.
We sorted all patients’ Rad-scores with the labeled LN status in
igure 5. It clearly shows that the Rad-score could potentially separate
e two types of patients. The corresponding statistical tests have also
nfirmed that the radiomics signature could be considered as an
age-biomarker. The radiomics signature occupied a dominating
ctor position in our model-derived nomogram, compared to the
osition”. It means the radiomics signature has better discrimination
wer compared to the classical radiologists’ perspective. On the
her hand, many researches are currently working on various novel
ognostic markers for EC patients [31]. Our proposed potential
age-based biomarker is preoperative, noninvasive and low-cost.
entification of lymph node metastases on CT imaging is often
fficult, especially for nodal micrometastases. In our study, the
curacy of conventional CT evaluation of lymph node metastases
as only 0.61 with a false negative rate of 0.66. The meta-analysis
pports this low rate result [32]. However, the radiomics signature
hieved the AUC over 0.75 (with reasonable sensitivities and
ecificities), and the accuracy was over 0.8 (Figures 4 and 5). We
lieve it is a gratifying improvement for non-invasive approaches.
rediction model included the CT reported status and position of
nventional CT factors and they also showed the ability of
fferential diagnosis for the LN status, especially for the position.
me reports showed that the position of the EC was correlated with
ognosis, so a dummy variable procedure was used for the risk degree
the position, and it works in the model. A nomogram was built to
sist radiologists in providing predictive information by simple
oring, and any other new useful factors could be absorbed into the
odel to elaborate the model of the nomogram.
Patients without LN metastases (N0) accounted for the majority in
r datasets. This is because we take the surgical treatment as the first
oice for early stage EC patients (T1 or T2) in China. For advanced
tients (T3 or T4), we tend to take the strategy of chemotherapy first
d then surgery, those patients are out of the inclusion criteria. The
rms maybe different between west countries and the East Asia.
est countries normally thought
Controversies is still going on regarding the optimal surgical
proach for better patient overall survival. In Western countries,
ore attention is paied to transhiatal or transthoracic procedures
3,34]. The transthoracic approach is widely used in China, however,
e debate between the left and right thoracic approaches is still
going. The left thoracic approach shows advantages of a single
cision and adequate exposure of the hiatus, but difficulty for sufficient
mphadenectomy in the upper mediastinum. On the contrary, the
ght thoracic approach aims to increase the survival by offering
fficient radial lymphadenectomy [9], even after several years of being
commended by the Chinese Anti-Cancer Association [35]. Mean-
hile, it was reported that extent of lymph node dissection should
cord to the incidence of metastasis [36].
A pooled sensitivity of 80% and specificity of 70% of N-staging
ere reported in a recent meta-analysis including both EUS and
US-FNA studies [32]. Both understaging (3 %) and overstaging (25
) of lymph node involvement were reported [37]. A study that
mpared EUS (without FNA) with FDG-PET and CT found that
e accuracy of EUS was not significantly higher than FDG-PET or
T (75%vs. 66%and 63 %, respectively, P N 0.05) [38]. Similar
sults were found in a third study where the accuracy of EUS in
agnosing lymph node metastases was 65 % and only 44 % for

Image of Figure 7
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Figure 8. The decision curve analysis (DCA) of the radiomics-based nomogram. The blue line describes the scheme of no treatment. The
green line describes the scheme of treatment. The red line represents our personalized prediction model. The x-axis is the threshold
probability and the y-axis is the net benefit. The decision curve shown by the pink line (our prediction model) received more net benefit
when the threshold probability was larger than 0.15. Hence, if the patient would choose the treatment when his probability of cancer was
larger than 15%, then he would receive benefit from taking our radiomics-based nomogram guidance.
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all-sized lymph node metastases (b1 cm) [39]. Likewise, the
ited value of CT in determining lymph node status is indicated by

meta-analysis reporting a sensitivity of 50 % (95% CI 41–60 %)
d specificity of 83 % (95% CI 77–89 %) [32]. Regarding
G-PET in the assessment of regional lymph node metastases, a

eta-analysis revealed a poor pooled sensitivity of 51 % (95% CI
–69 %) and specificity of 84 % (95% CI 76–91 %) [40].
Limitations of the present study include three aspects. First, the
ount of dataset information is inadequate. Commonly, a larger
ount of data will improve the confidence and performance of our
odel. Second, there was only one imaging modality in our study
volving dynamic contrast enhanced images and more image
odalities, such as MRI, which will expand the feature pool and
ay find more valuable radiomics features. Finally, the genomic
formation was not considered in our study. Currently, many works
e seeking the correlation between genetic markers and image
atures so-called “radio-genomics”.

cknowledgement
his paper is supported by the National Natural Science Foundation of
hina under Grant No. 81772012, and 81501549, the National Key
esearch and Development Plan of China under Grant No.
17YFA0205200 and 2016YFC0103001, the International Innova-
n Team of CAS under Grant No. 20140491524, Beijing Municipal
ience & Technology Commission No. Z161100002616022,
171100000117023.

isclosure Statement
This retrospective study was approved by the institutional review
ard of the Affiliated Cancer Hospital of Zhengzhou University,
enan Cancer Hospital, which waived the requirement for the
tients’ informed consent. Medical record review was performed in
cordance with the institutional ethics review board guidelines. All
thors had full access to all of the data in the study and had final
sponsibility for the decision to submit for publication. All authors
s no conflict of interest.

ppendix A. Supplementary data
Supplementary data to this article can be found online at https://
i.org/10.1016/j.tranon.2018.04.005.

eferences

1] Enzinger PC and Mayer RJ (2003). Esophageal cancer. N Engl J Med 349(23),
2241–2252.

2] van Hagen P, et al (2012). Preoperative chemoradiotherapy for esophageal or
junctional cancer. N Engl J Med 366(22), 2074–2084.

3] Kumbasar B (2002). Carcinoma of esophagus: radiologic diagnosis and staging.
Eur J Radiol 42(3), 170–180.

4] Siegel R, Naishadham D, and Jemal A (2012). Cancer statistics for
hispanics/latinos, 2012. CA Cancer J Clin 62(5), 283–298.

5] Tanaka K, et al (2016). Negative influence of programmed death-1-ligands on
the survival of esophageal cancer patients treated with chemotherapy. Cancer Sci
107(6), 726–733.

6] Omloo JM, et al (2007). Extended transthoracic resection compared with limited
transhiatal resection for adenocarcinoma of the mid/distal esophagus: five-year
survival of a randomized clinical trial. Ann Surg 246(6), 992–1001.

7] Lerut TE, et al (1994). Advanced esophageal carcinoma. World J Surg 18(3),
379–387.

8] Waterman TA, et al (2004). The prognostic importance of immunohistochemi-
cally detected node metastases in resected esophageal adenocarcinoma. Ann
Thorac Surg 78(4), 1161–1169.

9] Li B, et al (2017). Extended right thoracic approach compared with limited left
thoracic approach for patients with middle and lower esophageal squamous cell
carcinoma: three-year survival of a prospective, randomized, Open-label Trial.
Ann Surg.

https://doi.org/10.1016/j.tranon.2018.04.005
https://doi.org/10.1016/j.tranon.2018.04.005
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0005
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0005
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0010
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0010
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0015
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0015
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0020
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0020
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0025
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0025
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0025
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0030
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0030
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0030
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0035
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0035
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0040
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0040
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0040
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0045
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0045
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0045
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0045
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0045
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0045
Image of Figure 8


[1

[1

[1

[1

[1

[1

[1

[1

[1

[1

[2

[2

[2

[2

[2

[2
[2

[2

[2

[2

[3

[3

[3

[3

[3

[3

[3

[3

[3

[3

[4

824 CT Radiomics LN Prediction for Preoperative Esophageal Cancer Shen et al. Translational Oncology Vol. 11, No. 3, 2018
0] Kayani B, et al (2011). Lymph node metastases and prognosis in oesophageal
carcinoma – a systematic review. Eur J Surg Oncol 37(9), 747–753.

1] van Rossum PS, et al (2013). Imaging strategies in the management of
oesophageal cancer: what’s the role of MRI? Eur Radiol 23(7), 1753–1765.

2] Gillies RJ, Kinahan PE, and Hricak H (2015). Radiomics: images are more than
pictures, they are data. Radiology 278(2), 563–577.

3] Yip SS and Aerts HJ (2016). Applications and limitations of radiomics. Phys Med
Biol 61(13), R150.

4] Zhou M, et al (2014). Radiologically defined ecological dynamics and clinical
outcomes in glioblastomamultiforme: preliminary results. Transl Oncol 7(1), 5–13.

5] Aerts HJ, et al (2014). Decoding tumour phenotype by noninvasive imaging
using a quantitative radiomics approach. Nat Commun 5.

6] Coroller TP, et al (2017). Radiomic-based pathological response prediction from
primary tumors and lymph nodes in NSCLC. J Thorac Oncol 12(3), 467–476.

7] Huang Y-q, et al (2016). Development and validation of a radiomics nomogram
for preoperative prediction of lymph node metastasis in colorectal cancer. J Clin
Oncol 34(18), 2157–2164.

8] YipC, et al (2015). Assessment of changes in tumor heterogeneity following neoadjuvant
chemotherapy in primary esophageal cancer. Dis Esophagus 28(2), 172–179.

9] Yushkevich PA, et al (2006). User-guided 3D active contour segmentation of
anatomical structures: significantly improved efficiency and reliability. Neuro-
Image 31(3), 1116–1128.

0] Haralick RM and Shanmugam K (1973). Textural features for image
classification. IEEE Trans Syst Man Cybern 3(6), 610–621.

1] Galloway MM (1975). Texture analysis using gray level run lengths. Comput
Graph Image Process 4(2), 172–179.

2] Ganeshan B, et al (2012). Tumour heterogeneity in oesophageal cancer assessed
by CT texture analysis: preliminary evidence of an association with tumour
metabolism, stage, and survival. Clin Radiol 67(2), 157–164.

3] Tibshirani R (1996). Regression shrinkage and selection via the lasso. J R Stat Soc
Ser B Methodol , 267–288.

4] Friedman J, Hastie T, and Tibshirani R (2010). Regularization paths for
generalized linear models via coordinate descent. J Stat Softw 33(1), 1.

5] Harrell Jr FE (2008). Hmisc: harrell miscellaneous. R package version; 2008. 1(2).
6] Canty A and Ripley B (2012). boot: Bootstrap R (S-Plus) functions. R package

version; 2012. 1(7).
7] Pencina MJ, D'Agostino RB, and Steyerberg EW (2011). Extensions of net

reclassification improvement calculations to measure usefulness of new
biomarkers. Stat Med 30(1), 11–21.
8] Vickers AJ, et al (2008). Extensions to decision curve analysis, a novel method for
evaluating diagnostic tests, prediction models and molecular markers. BMC Med
Inform Decis Mak 8(1), 53.

9] Harrell F (2015). Regression modeling strategies: with applications to linear
models, logistic and ordinal regression, and survival analysis. Springer; 2015.

0] Ng F, et al (2013). Assessment of primary colorectal cancer heterogeneity by
using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker
of 5-year survival. Radiology 266(1), 177–184.

1] Okabayashi K, et al (2012). Cancer-testis antigen BORIS is a novel
prognostic marker for patients with esophageal cancer. Cancer Sci 103(9),
1617–1624.

2] Van Vliet E, et al (2008). Staging investigations for oesophageal cancer: a
meta-analysis. Br J Cancer 98(3), 547–557.

3] Khullar OV, et al (2015). Transthoracic versus transhiatal resection for
esophageal adenocarcinoma of the lower esophagus: A value-based comparison.
J Surg Oncol 112(5), 517–523.

4] Hulscher JB, et al (2002). Extended transthoracic resection compared with
limited transhiatal resection for adenocarcinoma of the esophagus. N Engl J Med
347(21), 1662–1669.

5] Mao Y, et al (2013). Nationwide speaking tour of standardized diagnosis and
treatment for esophageal cancer. Zhonghua Wei Chang Wai Ke Za Zhi 16(9),
801–804.

6] Tachimori Y (2017). Pattern of lymph node metastases of squamous cell
esophageal cancer based on the anatomical lymphatic drainage system: efficacy of
lymph node dissection according to tumor location. J Thorac Dis 9(Suppl. 8),
S724–S730.

7] Salminen JT, et al (1999). Endoscopic ultrasonography in the preoperative
staging of adenocarcinoma of the distal oesophagus and oesophagogastric
junction. Scand J Gastroenterol 34(12), 1178–1182.

8] Räsänen JV, et al (2003). Prospective analysis of accuracy of positron emission
tomography, computed tomography, and endoscopic ultrasonography in staging
of adenocarcinoma of the esophagus and the esophagogastric junction. Ann Surg
Oncol 10(8), 954–960.

9] Luketich JD, et al (1997). Minimally invasive surgical staging is superior to
endoscopic ultrasound in detecting lymph node metastases in esophageal cancer.
J Thorac Cardiovasc Surg 114(5), 817–823.

0] Van Westreenen H, et al (2004). Systematic review of the staging performance of
18F-fluorodeoxyglucose positron emission tomography in esophageal cancer. J
Clin Oncol 22(18), 3805–3812.

http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0050
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0050
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0055
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0055
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0060
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0060
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0065
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0065
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0070
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0070
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0075
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0075
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0080
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0080
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0085
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0085
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0085
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0090
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0090
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0095
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0095
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0095
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0100
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0100
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0105
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0105
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0110
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0110
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0110
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0115
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0115
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0120
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0120
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0125
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0130
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0130
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0135
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0135
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0135
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0140
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0140
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0140
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0145
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0145
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0145
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0150
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0150
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0150
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0155
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0155
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0155
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0160
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0160
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0165
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0165
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0165
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0170
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0170
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0170
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0175
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0175
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0175
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0180
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0180
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0180
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0180
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0185
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0185
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0185
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0190
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0190
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0190
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0190
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0195
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0195
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0195
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0200
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0200
http://refhub.elsevier.com/S1936-5233(18)30050-0/rf0200

	Building CT Radiomics Based Nomogram for Preoperative Esophageal Cancer Patients Lymph Node Metastasis Prediction
	Introduction
	Materials and Methods
	Patients
	Image Acquisitions and Tumor Segmentation
	Radiomics Feature Extraction
	Radiomics Signature Building
	Nomogram Building
	Nomogram Validation
	Statistical Tools

	Results
	Patients’ Characteristics
	Selected Radiomics Features
	Radiomics Nomogram Development
	Validation of the Radiomics Nomogram

	Discussion
	section16
	Acknowledgement
	Disclosure Statement
	Appendix A. Supplementary data
	References


