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Abstract
Yams (Dioscorea spp.) consist of approximately 600 species. Presently, these species are

threatened by genetic erosion due to many factors such as pest attacks and farming prac-

tices. In parallel, complex taxonomic boundaries in this genus makes it more challenging to

properly address the genetic diversity of yam and manage its germplasm. As a first step

toward evaluating and preserving the genetic diversity yam species, we use a phylogenetic

diversity (PD) approach that has the advantage to investigate phylogenetic relationships

and test hypotheses of species monophyly while alleviating to the problem of ploidy varia-

tion within and among species. The Bayesian phylogenetic analysis of 62 accessions from

7 species from three regions of Cameroon showed that most Dioscorea sections were
monophyletic, but species within sections were generally non-monophyletic. The wild spe-

cies D. praehensilis and cultivated D. cayenensis were the species with the highest PD. At

the opposite, D. esculenta has a low PD and future studies should focus on this species to

properly address its conservation status. We also show that wild species show a stronger

genetic structure than cultivated species, which potentially reflects the management of the

yam germplasm by farmers. These findings show that phylogenetic diversity is a promising

approach for an initial investigation of genetic diversity in a crop consisting of closely related

species.

Introduction
One of the main challenges of conservation biology is to cope with the ongoing global biodiver-
sity crisis. The loss and fragmentation of natural habitats, pollution, invasive species, overex-
ploitation of ecosystems and climate change are dramatically affecting biodiversity [1]. Species
extinctions have the potential to decrease the ecological services offered by the ecosystems to
humanity, but they also result in the loss of a singular genetic heritage constituted since specia-
tion from their ancestral species. This is not only true of species, but also of taxonomic units
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below the species level [2]. Hence, local population extinction and genetic erosion due to frag-
mentation can have a profound influence on the loss of evolutionary uniqueness.

Evolutionary approaches are increasingly used in conservation because they help to identify
species or regions at risk of extinction [3,4,5,6]. Moreover, they alleviate the problems associ-
ated with the lack of agreement on species concepts, which can affect standard biodiversity esti-
mates [7,8]. One contribution of evolutionary biology to conservation biology is the concept of
phylogenetic diversity (PD), which is defined by the sum of branch lengths of the evolutionary
tree connecting a set of taxa or individuals [4]. Thus, a given set of taxa will have a greater PD if
they are more spread out on a phylogenetic tree. The loss of PD is generally interpreted as a sig-
nal of declining biodiversity [9]. Moreover, PD is related to functional diversity [10] because
evolutionarily distant species are more likely to have different functions in an ecosystem. Con-
sequently, higher PD is also associated with more diverse eco-services [5, 11]. Evolutionary
trees used for estimating phylogenetic diversity are also useful by themselves since species evo-
lution is an important criterion in the conservation policy planning [12]. Phylogenetic hypoth-
eses also improve our understanding of the current state of diversity and help to make
predictions about the future [13].

Dioscorea, commonly called yam, is a tuber crop of great economic, social and cultural rele-
vance in many tropical countries [14]. In Cameroon, yam is third after cassava and cocoyam/
taro according to the volume of plant roots and tubers produced [15]. Usually consumed
boiled, it contributes to food security in Africa. The genus Dioscorea comprises over 600 species
[16]. Of these species, Dioscorea cayenensis, D. rotundata and D. alata are the most cultivated
and of greatest economic interest in Africa [17]. In contrast to D. cayenensis and D. rotundata
that are native to Africa, D. alata comes from Asia [18]. Despite their importance, yields are
typically low in Africa due to pest attacks, diseases and their mode of propagation (vegetative
multiplication). The vegetative propagation in yam is done from tubers or fragments tuber col-
lected during the previous harvests. This mode of propagation favors the dissemination of
pathogens in the field and prevents adaptation and the formation of new varieties. Indeed, the
pest attacks and type of propagation are the main factors that contribute to genetic erosion of
Dioscorea [19, 20]. This loss of diversity, which is manifested by the disappearance of local pop-
ulations or varieties, lead to the loss of services that yams offer to humanity, especially in
Africa. Hence, it is important to study the genetic diversity of species and understand their cor-
relations to different environmental factors (climate, farming practices, etc.). A few studies
have recently investigated the genetic diversity of several species in Benin, Nigeria, and Côte
d’Ivoire [21, 22, 23]. Yet, similar efforts have been lacking in Cameroon, which is among the
African countries with the greatest yam diversity with ten cultivated species, seventeen wild
species and six species both cultivated and wild [23].

Assessing yam diversity is challenging for several reasons. One is that it is a taxonomically
complex genus due to an important morphological diversity [19]. Yet, species is the fundamen-
tal unit of biodiversity and a good knowledge of species is important to preserve biodiversity.
Another challenge is the important ploidy level variation observed within and across species.
For instance, in Cameroon the level of ploidy varies from diploid in D. dumetorum to octoploid
in D. cayenensis and some species have varying ploidy levels [24, 25]. This variation makes it
hard to compare the level of genetic variation among populations or species using nuclear
markers because an individual with a higher polyploidy level has more copies of each gene in
its genome [26,27]. Hence, all else being equal, an octoploid species is expected to have greater
genetic diversity than a diploid species. Moreover, because chromosome segregation patterns
are poorly known, it is difficult to easily correct for this bias.

In this study, we use a phylogenetic diversity (PD) approach based on chloroplast DNA in
order to assess genetic diversity within and across eight Dioscorea species of Cameroon. This
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approach has several advantages. First, unlike the nuclear genome that can be affected by
ploidy variation, the chloroplast is always haploid and therefore investigation of the chloroplast
genome would allow comparing the genetic variation of species irrespective of their ploidy lev-
els. The chloroplast is suitable for such investigations as it is generally sufficiently variable to
provide both inter-and intra-specific variations, especially when a highly variable region is
selected [28, 29]. A phylogenetic diversity approach also has the advantage of allowing the
reconstruction of phylogenetic relationships of species and as such it has the potential to
enlighten potential taxonomic problems [30]. The markersmatK and rbcL, the two plant bar-
code loci, have been used for phylogenetic studies of Dioscorea [31, 32]. However, these previ-
ous studies have established the phylogenetic relationships with only one specimen by species,
which is not sufficient for testing species monophyly. Finally, it is much more easily applied
across species compared to simple sequence repeats (SSR) that are often difficult to transfer
between even closely related species. This is the case for Dioscorea where few SSR developed
for D. alata could be transferred to its close relatives [33]. The objectives of this study are thus
twofold: (i) to use a phylogenetic diversity approach as a proxy for estimating the genetic diver-
sity of Dioscorea species, and (ii) to explore the phylogenetic relationships and test the mono-
phyly of the Dioscorea species from Cameroon using several samples per species.

Materials and Methods

Plant material
Sampling was conducted during the yams harvest period, in August and September 2011 and
2012. Tubers and plant specimens of five cultivated species (eleven accessions of D. alata, five
of D. cayenensis, nine of D. esculenta, eleven of D. dumetorum, fifteen of D. rotundata,) were
collected from farmer fields from the three main yam producing regions of Cameroon: Ada-
mawa, Centre and Southwest. These collection sites were represented on a map generated with
SimpleMappr [34] graphics with the R [35] software using the “maptools” [36] and “mapplots”
[37] packages (Fig 1). In addition to the most important crop species mentioned in the intro-
duction, D. esculenta, which might have originated in the Phillipines [38], and D. dumetorum
were also included. Three wild species (one accession of D. abyssinica, three of D. bulbifera,
seven of D. praehensilis) were collected in forests either close or far from the farmer fields. Dios-
corea bulbifera is treated as a wild species here, but it is also sometimes cultivated [39]. It is dis-
tributed in pantropical regions [38] and is widely used in traditional Chinese medicine [40].
The other wild species studied, D. abyssinica and D. praehensilis, are important sources of dios-
genin, a chemical used for the commercial synthesis of sex hormones, and corticosteroids that
are widely used for antinflammatory, androgenic and contraceptive drugs [41, 42]. In total, 62
accessions were used in this study (Fig 1). Identifications of yam accessions were validated by
the National herbarium of Cameroon. Harvested tubers collected were cultivated in an experi-
mental field for ex situ conservation, whereas young leaves of each accession were immediately
dried in silica gel for DNA extraction upon sampling in the field. Sampling was sometimes car-
ried out on private land, in which cases permission from the owners was obtained prior to col-
lecting. No permissions were required for sampling on public land.

DNA extraction
DNA was isolated from 20–30 mg of dried leaves using the Plant extraction kit of BioBasic
(Mississauga, ON, Canada). The purity and quantity of DNA extracts were checked by agarose
gel (1%) electrophoresis and using a UV spectrophotometer (Thermo Scientific Nano drop,
Montreal, Canada) at wavelengths of 260 and 280 nm.
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PCR amplification and sequencing
The rbcL and rpl32-trnL regions were amplified and sequenced on a subsample of eight acces-
sions from all seven species to select the most variable region. The rpl32-trnL region, which
was found to be the most variable (see results), was amplified and sequenced for all samples.
Annealing temperatures followed the recommendations by Gao et al. [32] and Shaw et al. [28].
Polymerase chain reactions (PCRs) were carried out in 25 ul reaction mixture containing 1X
DreamTaq buffer, 20 mMMgS02, 1U of DreamTaq DNA polymerase (Thermo Scientific),
0.3 μM of each dNTP, 50 μg BSA; 20 ng of DNA and 0.4 μM of rpl32f and TrnLr primer [28]
or rbcLf and rbcLr. PVP ranging from 1 to 2% in concentration was added to the reaction mix
to neutralize phenolic compounds capable of preventing the amplification of DNA [43]. PCR
was performed on a thermocycler programmed for an initial denaturation step at 94°C for
3 min, followed by 40 cycles that consisted of 45 s at 94°C, 30 s at 58°C (for rbcL) or 50°C
(rpl32), and 1 min at 72°C, and a final extension step at 72°C for 1min. Successful PCR prod-
ucts were sent for sequencing at the Genome Quebec Innovation Centre (Montréal, Quebec,
Canada) and were sequenced using a 3730xl DNA Analyzer (Applied Biosystems, Burlington,
ON, Canada).

Marker comparison and selection
Sequences were edited, assembled and aligned using MUSCLE [44] in Geneious v 5.6 [45].
Primer-binding regions were removed from the alignments. Sequence characteristics, pairwise
sequence divergence and parsimony statistics were calculated in PAUP v 4.0b10 using the All-
trees, Showdist and Showmatrix commands [46]. This allowed us to select the most variable
and informative marker for the analysis of the whole dataset.

Fig 1. Map indicating collection sites for wild (w) and cultivated (c) of yam species. The sizes of circles
are proportional to the number of accessions sampled, whereas the pie chart represents the relative
proportion of each species at a given locality.

doi:10.1371/journal.pone.0145364.g001
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Phylogenetic analysis
We conducted phylogenetic analyses for all taxa for rpl32-trnL region. Dioscorea elephantipes
(NCBI accession number EF380353) was used as outgroup following previous phylogenies that
suggested it is external to the studied species [31]. The best fitting substitution model for rpl32-
trnL was selected using Akaike’s Information Criterion (AIC) with jModeltest2 [47]. Phyloge-
netic analysis was performed in a Bayesian framework using MrBayes v3.2.2 [48]. Two inde-
pendent runs of four Monte Carlo Markov Chains (MCMC) were performed with the default
temperature of 0.2 for the heated chains; a run length of 10,000,000 generations sampled every
1,000th, and a TPM1uf+G substitution model. A burn-in of 25% was removed from each run
and the remaining 1,502 trees were combined using TreeCombiner [49] for the subsequent
analyses. The program Tracer v1.5 [50] and the uncorrected potential scale reduction Factor
(PSRF) in MrBayes were used to check for the adequacy of the burn-in and for the convergence
of the Markov chains. The maximum clade credibility tree was obtained with TreeAnnotator
and was visualized with FigTree v1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/).

Phylogenetic diversity and variation partitioning
The phylogenetic diversity was estimated using the PSV statistic [51] because it is independent
of species richness, unlike the original PD statistic [52]. This is important in the present case
because we had different sample sizes for the different species and regions. PSV was calculated
for each species and for each region studied. Analyses of phylogenetic diversity were performed
with the R [35] software using the ‘picante’ package [53].

To evaluate the importance of species assignment and regions in structuring the genetic var-
iation observed in our data, we used variation partitioning [54]. Variation partitioning was per-
formed through canonical redundancy analysis (RDA) in R using the ‘vegan’ package [55].
Adjusted R2 values are reported and the significance of individual fractions was tested using
partial RDA with 999 permutations, except for the shared fraction that is not testable.

Results

Marker comparison
Sequence divergence was higher for the rpl32-trnl spacer (0.0–5.0) than for the rbcL region
(0.0–2.5) and the same trend was observed for the number of variable characters and parsi-
mony informative characters (Table 1). The sequence alignment of the rpl32-trnL region also
had twice the number of indels than those of rbcL (Table 1). Consequently, rpl32-trnL was
selected to sequence all accessions in our study.

Phylogenetic relationships
The Bayesian tree of the rpl32-trnL region shows expected patterns of congruence with the tax-
onomic sections of the genus Dioscorea (Fig 2), with the exception of section Lasiophyton.
Indeed, all sections except Lasiophyton are monophyletic and strongly supported (posterior

Table 1. Sequence statistics for rbcL and rpl32-trnL region on the subsampling.

Comparison factor rbcL rpl32-trnL

Parsimony-uninformative characters 15 11

Parsimony-informative characters 4 41

Tree length (parsimony, ACCTRAN Optimization) 19 60

Number of indels 5 10

doi:10.1371/journal.pone.0145364.t001
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probability (PP) = 1; Fig 2). The relationships between these sections are also generally well
resolved. In contrast to the sections, the species were generally not monophyletic, although it is
important also to note that there is little genetic variation within each section. Dioscorea dume-
torum belongs to Lasiophyton section and has some accessions that are very closely related to
D. esculenta of the section Combilium. Dioscorea bulbifera, from section Opsophyton, is the
only species that is monophyletic (Fig 2).

Phylogenetic Diversity and genetic variation partitioning
Phylogenetic diversity estimated for each species can be classified in ascending order from the
smallest PD in D. esculenta to the largest PD obtained in D. praehensilis. The highest phyloge-
netic diversity was observed in a wild species, D. praehensilis (Fig 3). The wild species D. bulbi-
fera had a PD lower than the cultivated species D. dumetorum and D. cayenensis, but it was
sampled from a single locality (Ekona). The PD estimated by region showed that the Southwest
region had the lowest PD value (PSV = 0.58) and that the Center (PSV = 0.70) and Adamawa

Fig 2. Bayesian phylogenetic tree of wild (w) and cultivated (c) yam accessions with their sections as circumscribed by Knuth (1924).

doi:10.1371/journal.pone.0145364.g002
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(PSV = 0.72) had higher and similar PD values. The partitioning of the total genetic variation
informs us on the genetic structure of Dioscorea in Cameroon. Together, species and regions
explain 60% of the total genetic variation. Ten percent of this variation is co-explained by both
species and regions, while individual regions and species fractions explain a significant 4% and
46%, respectively (Table 2). A different result was found when cultivated and wild species were
considered separately (Table 2). First, a much larger proportion of the genetic variation could
be explained by regions and species for wild species (80%) than for cultivated species (36%).
Moreover, there is a fraction of the variation (1%, p<0.05) that is explained by regions alone
(i.e., after removing the fraction co-explained by species) in wild species, whereas this fraction
was of 0% for the cultivated species (Table 2). Together, these results suggest that 1) genetic
variation in wild species is more structured than for cultivated species and that 2) intraspecific
structure among region was detected for wild species, but not for cultivated species.

Discussion

Phylogenetic relationships and taxonomic implications
Our Bayesian tree supported the monophyly of three out of four Dioscorea sections for yams
sampled in Cameroon (Enantiophyllum, Combilium, Osophyton). Only section Lasiophyton
was found to be paraphyletic due to the grouping of two D. dumetorum individuals with

Fig 3. Phylogenetic species diversity (PSV) for each yam species (Dioscorea spp.) from Cameroon.
The letters c and w indicates the nature of the species with c for cultivated and w for wild.

doi:10.1371/journal.pone.0145364.g003

Table 2. Genetic variation partitioning between species and regions. The adjusted R2 values and p-values for testable fractions are shown.

Group of species Species Regions Species \ Regions Residual variation

All species 46% (p = 0.001) 4% (p = 0.28) 10% 40%

Wild species 71% (p = 0.001) 1% (p = 0.048) 8% 20%

Cultivated species 22% (p = 0.012) 0% (p = 0.55) 18% 64%

doi:10.1371/journal.pone.0145364.t002
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individuals of section Combilium. Consequently, our results overall supports the taxonomic
treatment of Huber [56] based on seed characters, organ morphology and inflorescence devel-
opment. This author performed a complete taxonomic treatment summarizing the classifica-
tion systems of Knuth [57] and Bukill [58] by defining sections for the genus Dioscorea. The
monophyly of the Enantiophyllum section (D. alata, D. abyssinica, D. cayenensis, D. rotundata
and D. praehensilis) supports the hypothesis of Wilkin et al. [31] that the main Old World line-
ages of Dioscorea, such as the right-twining section Enantiophyllum, are monophyletic. The
presence of both wild (D. abyssinica, D. praehensilis) and cultivated (D. alata, D. cayenensis, D.
rotundata) species within section Enantiophyllum and the proximity between wild and culti-
vated species supports the idea that the wild species D. abyssinica and D. praehensilis could
have been involved in the domestication of cultivated species D. cayenensis and D. rotundata
[59, 60]. Our results also give moderate support for the placement of section Lasiophyllum as
sister to D. esculenta (Sect. Combilium). This pattern is in contradiction with previous studies
that placed D. dumetorum as sister to D. bulbifera of the section Opsophyton [31,61]. Further
studies are clearly required to clarify all the phylogenetic relationships of D. dumetotum.

In contrast with previous phylogenetic studies on Dioscorea, we included eleven accessions
of D. alata, five of D. cayenensis, nine of D. esculenta, eleven of D. dumetorum, fifteen of D.
rotundata, three of D. bulbifera, and seven of D. praehensilis, which allowed testing hypothesis
of species monophyly. This ended up being important as it highlighted the non-monophyly of
most species: D. dumetorum, D. alata, D. cayenensis, D. rotundata and D. praehensilis. This is
even more striking given that a chloroplast gene was used and its lower effective population
size compared to that of nuclear loci reduces the likelihood of incomplete lineage sorting.
These results will have to be confirmed with other independently evolving markers, but they
clearly highlight the need for further investigation of species boundaries in Dioscorea.

Phylogenetic diversity and implications for conservation
Farmers have a strong influence on biological organization in agricultural systems through
fragmentation, modification of natural ecosystems, global mixing of species, and breeding
programs [62]. This predicts that wild and cultivated species are expected to show different
genetic structure, which is what we observed in our results. We found that the genetic diver-
sity was significantly structured by both species and regions for the species studied. The
strong taxonomic structure is not surprising as even though not all species were monophy-
letic, all accessions grouped according to the taxonomic sections of Huber [56]. The genetic
structuring by geographical regions was also expected as it reflects a scenario of isolation by
distance. However, this regional structure was found to be different between cultivated and
wild species. Indeed, for cultivated species, all the regional variation is caused by the fact that
different species are found in different regions, whereas intraspecific structure was detected
between regions in wild species. The genetic variation was also much more structured by
both species and regions for wild than for cultivated species. This different pattern in regional
genetic structure between cultivated and wild species might result from the management of
the yam germplasm by farmers. Indeed, exchange of yams tubers by farmers among villages
could have resulted in a stronger homogenization of the genetic variation among regions for
cultivated species compared to wild ones. Although more thorough studies are needed to test
this hypothesis, these results nevertheless suggest that different structuring forces affect culti-
vated and wild species.

Phylogenetic diversity estimates also provided important information on the genetic diver-
sity of wild and cultivated species of yams in Cameroon. We found that the wild species D.
praehensilis has the largest PD among the species studied. This species has often been involved
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in domestication processes in Cameroon [23] and our results based on chloroplast variation
suggest it has a large genetic pool that could potentially offer material for crop improvement.

Previous investigations on Dioscorea in Benin have shown that domestication increases the
variability within populations [60, 63]. This is likely due to the farming practices in West
Africa. Indeed, the farmers often collect wild species in the bushes (Forests, savannah and gal-
lery forest or ancient fallows), especially D. praehensilis, and then cultivate these wild tubers
next to of the cultivated species in the fields. This practice favors the introgression of characters
from wild species into cultivated ones. According to Mignouma and Dansi [59], species col-
lected by farmers in bushes can be of different nature (related wild species, interspecific hybrids
between wild relatives or between wild species and cultivars) but they are susceptible to influ-
ence the genetic variation in a population. These practices likely explain the high PD observed
for some cultivated species such as D. cayenensis and D. dumetorum.

Finally, some species were found to have a low PD, indicating that they might deserve more
specific attention. It is the case of D. esculenta that is endemic to the Center region and some
localities of Mbam, namely ombessa, kédia, Balom and Djanti in Cameroon [23]. Dioscorea
esculenta is underutilized and not well known by farmers. In our study, it presented the lowest
level of PD among the species studied. This could be related to rarity of the species and low
effective population sizes, which is directly related to phylogenetic diversity [64]. However, our
study is based on a limited geographic sampling and on a chloroplast marker. Therefore, we
cannot conclude that D. esculenta is threatened or endangered such as the edible yam D. bako
from western Madagascar and D. sphaeroidea from southeastern Brazil [65,66,67]. Neverthe-
less, further studies would be important to properly assess the threats on this species and deter-
mine its conservation status according to the IUCN criteria.

These results on genetic diversity are based on a single chloroplast marker and they will cer-
tainly need to be confirmed with additional unlinked markers from the nuclear genome.
Because genetic variation at each locus (and for each organelle) represents a unique outcome of
the stochastic population genetic processes, it might not reflect the overall genomic structure.
Moreover, the uniparental maternal transmission of chloroplasts [63] reduces its effective pop-
ulation size by one half compared to nuclear markers, which results in stronger genetic drift in
population [68, 69,70] and stronger population structure [71]. But despite these shortcomings,
the present results have the advantage of comparing all species at the same level despite their
variation in ploidy, and it provides a good approach to identify where future genetic investiga-
tions should spend their efforts.

Our results showed that PD is very useful to get a broad picture of the genetic structure and
diversity in a group of related organisms in a territory. Phylogenetic diversity provides intra-
specific genetic diversity information as well as knowledge on the phylogenetic relationships
among species. The application of the phylogenetic diversity in the genus Dioscorea from Cam-
eroon helped to clarify the relationships among the species, a very important aspect to properly
understand the structure of genetic variation in yams, but more importantly highlighted that
species boundaries in Dioscorea deserve more attention. Moreover, our results highlighted spe-
cies with low PD that deserves to be studied in more detail. For instance, the use of reduced
genome sequencing approaches (RADseq and GBS) would allow obtaining both stronger phy-
logenetic hypotheses and more precise estimates of genetic diversity and population genetic
structure. Nonetheless, the implementation of phylogenetic diversity tools in the genus Dios-
corea from Cameroun represents a very useful first step toward the establishment of a conser-
vation program for yams. Phylogenetic diversity has been repeatedly suggested to be one of the
best strategies for the preservation of genetic resources because it can be related to processes
such as extinction [3], biotic variation [72], ecosystem functioning [73], and even ecosystem
services [74]. Our study suggests that the Phylogenetic Diversity toolbox can be extended to
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infer genetic structure in non-model crops that consist of several closely related species such as
yams.
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