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Abstract

Background: Biogenic histamine plays an important role in immune response, neurotransmission, and allergic
response. Although endogenous histamine production has been extensively studied, the contributions of histamine
produced by the human gut microbiota have not been explored due to the absence of a systematic annotation of
histamine-secreting bacteria.

Results: To identify the histamine-secreting bacteria from in the human gut microbiome, we conducted a
systematic search for putative histamine-secreting bacteria in 36,554 genomes from the Genome Taxonomy
Database and Unified Human Gastrointestinal Genome catalog. Using bioinformatic approaches, we identified 117
putative histamine-secreting bacteria species. A new three-component decarboxylation system including two
colocalized decarboxylases and one transporter was observed in histamine-secreting bacteria among three different
phyla. We found significant enrichment of histamine-secreting bacteria in patients with inflammatory bowel disease
but not in patients with colorectal cancer suggesting a possible association between histamine-secreting bacteria
and inflammatory bowel disease.

Conclusions: The findings of this study expand our knowledge of the taxonomic distribution of putative histamine-
secreting bacteria in the human gut.

Keywords: Histidine decarboxylase, Histamine-secreting bacteria, Human gut microbiota, Inflammatory bowel
disease

Background
Histamine is a health-relevant biogenic amine that plays
important physiological roles in vascular permeability,
mucus secretion, and neurotransmission via immuno-
modulation [1–3]. The enzyme histidine decarboxylase
produces histamine via the decarboxylation of the amino
acid histidine [4]. Two major families of histidine de-
carboxylase have been identified: pyridoxal-5′-phosphate
(PLP) dependent histidine decarboxylases, which require

PLP as a cofactor; and pyruvoyl-dependent histidine dec-
arboxylases, which require a covalently bonded pyruvoyl
moiety instead of PLP [5]. The decarboxylation of histi-
dine occurs in the bacterial cytoplasm, therefore the his-
tidine/histamine antiporter, which transports histidine
into the cell and exports histamine out of the cell, is ne-
cessary for histidine decarboxylation to occur [6, 7].
While endogenously-produced histamine has been ex-

tensively studied, studies on exogenously-produced his-
tamine have focused mostly on food-borne poisoning via
histamine present in fish and dairy products [8, 9]. For
example, food contaminated with a high concentration
of histamine can cause neurological, gastrointestinal, and
respiratory disorders [10, 11]. Histamine accumulated in
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food products is primarily derived from histamine-
secreting bacteria, which generate histamine and other
amines to maintain neutral cytoplasmic pH, allowing
them to survive in acidic conditions [12]. For example,
Lactobacillus vaginalis was found to produce histamine
to maintain appropriate cytosolic pH in acidic conditions
[13]. Pathogenic enteric bacteria also utilize amino acid
decarboxylases to survive passage through the highly
acidic gastric environment before reaching the gut. For
example, the decarboxylation of L-arginine to agmatine
offers Escherichia coli a robust acid-resistance mechan-
ism [14, 15]. Alterations in microbiome taxonomic com-
position have been linked to many inflammatory
diseases such as Inflammatory Bowel Disease (IBD) and
asthma [16, 17]. For example, a recent study showed that
histamine-secreting bacteria were increased in the gut of
asthma patients [18]. Studies also demonstrated that the
histamine secreted by the microbes influences immune
responses within the gut via the host histamine receptor
2 and could exhibit anti-inflammatory effects [19–21].
However, our understanding of histamine-secreting

bacteria and exogenous histamine production in the hu-
man gut is incomplete and limited to only a few cultured
species [8, 22]. Despite the sequencing of numerous bac-
terial genomes, we lack a clear understanding of which
gut bacteria are capable of producing and secreting his-
tamine [23]. Therefore, a systematic functional annota-
tion of histamine-secreting bacteria is needed to provide
a comprehensive understanding of the abundance and
prevalence of histamine-secreting bacteria in the human
gut and to assess the role of bacterially-derived hista-
mine in human health and disease. In this study, we con-
ducted a systematic in-silico search of putative
histamine-secreting bacteria in the 31,910 genomes from
the Genome Taxonomy Database (GTDB) [24, 25] and
the 4644 genomes in the Unified Human Gastrointes-
tinal Genome database (UHGG) [26]. We further ana-
lyzed the relative abundance of putative histamine-
secreting bacteria in metagenomic sequencing data from
colorectal cancer (CRC) and inflammatory bowel disease
(IBD) cohorts. Here, we aim to increase our understand-
ing of the prevalence and abundance of histamine-
secreting bacteria in the human gut microbiome and
probe whether the abundance of histamine-secreting
bacteria is altered in inflammatory disease.

Results
Histamine-secreting bacteria are sporadically distributed
across six bacterial phyla
We manually collected and curated profile hidden mar-
kov models (HMM) for gene families involved in the his-
tidine decarboxylation pathway and performed a
systematic search on the proteomes from 31,910 ge-
nomes in GTDB. We identified 97 putative histamine-

secreting bacteria with at least one histidine decarboxyl-
ase (hdcA) and one amino acid transporter (hdcP) local-
ized in a gene cluster. Of these, 57 species contained the
pyruvoyl-dependent histidine decarboxylase, 39 species
contained the PLP-dependent histidine decarboxylase,
and one species, Plesiomonas shigelloides, contained both
pathways (Table S1). Plesiomonas shigelloides is a known
histamine producer that causes acute diarrhea in
humans after seafood consumption [27].
The putative histamine-secreting bacteria we identified

were distributed across 6 phyla. Among the identified
putative histamine-secreting bacteria, the species con-
taining the pyruvoyl-dependent histidine decarboxylase
were found in 6 phyla: Proteobacteria, Actinobacteriota,
Bacteroidota, Firmicutes, Fusobacteriota, Verrucomicro-
biota (Fig. 1A). Species containing the PLP-dependent
histidine decarboxylase were found only in the phylum
Proteobacteria (Fig. 1B). Proteobacteria expansion is
considered to be a potential indicator of gut dysbiosis, a
characteristic of proinflammatory diseases such as IBD
[28]. Thirty-seven of the putative histamine-secreting
bacteria we computationally identified in GTDB were
experimentally confirmed to be histamine producers in
prior studies (Table S2), validating the search strategy
used in this study. Compared to previously identified
species, we have identified additional putative histamine-
secreting species in the Phyla Fusobacteriota and Verru-
comicrobiota including Cetobacterium somerae, Fusobac-
terium ulcerans, Fusobacterium ulcerans A,
Fusobacterium varium, Fusobacterium varium A, and
21–14–0-10-35-9 sp002773835 (in Verrucomicrobiota).
To the best of our knowledge, no species in these two
phyla has been experimentally verified to produce
histamine.
Among the putative histamine-secreting bacteria in

GTDB, five genera including Bacteroides, Clostridium,
Bifidobacterium, Fusobacterium, and Lactobacillus are
common in the human gut microbiota [29–32]. There-
fore, we searched for histamine-secreting bacteria in the
UHGG database following the same procedure as in the
GTDB database. Among the 4644 species in UHGG, we
identified 44 putative histamine-secreting bacteria. Of
these, 35 species encode a pyruvoyl-dependent decarb-
oxylase, 8 species encode a PLP-dependent decarboxyl-
ase, and Plesiomonas shigelloides encodes both pyruvoyl-
dependent and PLP-dependent decarboxylases (Fig. S1,
Table S3). All phyla, 21 out of 24 genera, and 33 out of
44 species of putative histamine-secreting bacteria found
in UHGG were also identified in GTDB. Among the 11
species exclusively found in UHGG, five are unassigned
new species and unique in UHGG, while the other 6
species are likely due to the strain-level difference be-
tween the species collected in the GTDB and UHGG
database.
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We further examined the validity of the decarboxylases
with structural modeling. We performed 3D protein
homology modeling of pyruvoyl-dependent hdcA based
on a high-resolution crystal structure (Lactobacillus
saerimneri PDB: 1PYA) [33]. The backbone RMSD
scores of pyruvoyl-dependent hdcA models were within
1 Å when comparing with the crystalline template (Fig.
S2), indicating significant structural similarity between
the putative histamine-secreting bacteria and the known
histamine-secreting bacterium Lactobacillus saerimneri.
Figure S2A shows the similarity between the model of
hdcA of Clostridium perfringens and the template Lacto-
bacillus saerimneri 30a (PDB: 1PYA) with a backbone
RMSD of only 0.61 Å. The experimentally confirmed key
residues in the active site of hdcA in Lactobacillus saer-
imneri 30a were illustrated in Fig. S2B including the
Ser-81 and Ser-82 as the autocleavage pair [5], Ile-59 as
the “lid” on the substrate-binding pocket [6], the Asp-
198 and Asp-53 pair as the pH-regulating bridge [7], and
the Tyr-62 and Asp-63 as the ligand-binding residues

[33, 34]. The high structural similarity and identical key
residues, as shown in Fig. S2C, strengthens the evidence
of the genomic potential to produce histamine in these
bacteria. We did not perform modeling on hdcP and
PLP-dependent hdcA due to the lack of crystal struc-
tures and established enzymatic mechanisms for these
proteins.
The ability to produce and secrete histamine is not a

core function in all identified species. Out of the 97 spe-
cies with a putative histamine-secretion operon in
GTDB, 21 species belong to a clade where more than
50% of the strains lack the operon. These strain-specific
histamine-secreting bacteria were predominantly ob-
served in the phyla Firmicutes and Proteobacteria.
Within the Proteobacteria, the genomic potential for
histamine-secretion was found to be strain-specific in
the families Pasteurellaceae, Vibrionaceae, and Entero-
bacteriaceae. In the Firmicutes, the genomic potential of
histamine secretion was also found highly strain-specific
in the Bacillaceae, Enterococcaceae, Lactobacillaceae,
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Fig. 1 Distribution of putative histamine-secreting bacteria across the Genome Taxonomy Database (GTDB) collection. Phylogenetic trees of (A)
pyruvoyl-dependent and (B) PLP-dependent putative histamine-secreting bacteria across the 31,910 genomes of the representative GTDB
collection were shown. The tip label colors represent different phyla. Stacked bar charts aligned to tree tips represent the percentages of
genomes with and without HDC clusters in the species. The following red and blue numbers indicate the number of genomes with HDC present
and absent, respectively
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Staphylococcaceae, and Streptococcaceae families (Table
S1). Species such as Streptococcus thermophilus,
Staphylococcus warneri, Lactobacillus parabuchneri, and
Lactobacillus reuteri have been previously reported as
strain-specific in terms of histamine production [35–38],
which agrees with the results of our computational search.
The strain-specificity of histamine-secretion may be

due to the frequent loss of the histamine-secretion genes
during evolution. Strain-specific gene loss is a common
reason for the functional variation between different
strains of the same species [39–42]. The strain-
specificity could also be attributed to the horizontal gene
transfer of genes encoding histamine-secretion pathways
by mobile genetic elements. For example, while the histi-
dine decarboxylase gene cluster is located on the

chromosome of the Lactobacillus reuteri JCM 1112
strain, it is located on the pLRI01 plasmid of the
Lactobacillus reuteri I5007 strain. The histidine de-
carboxylase gene cluster on the plasmid can be mobi-
lized via conjugation and might have been
horizontally transferred to Clostridium thermobutyri-
cum (GCF_000371465.1). In Clostridium thermobutyr-
icum, the histidine decarboxylase cluster is both
phylogenetically closer (Fig. S3) and syntenically more
similar (Fig. 2) to the histidine decarboxylase cluster
in the plasmid of Lactobacillaceae than that in other
Clostridiaceae. Such mobility of histidine decarboxyl-
ase gene clusters was also reported in a study on the
species of Lactobacillus parabuchneri [44], supporting
the hypothesis that mobile genetic elements could

//
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hdcA PLP

hdcA pyruvoyl 

hdcB
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other
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Acidobacteria bacterium

Bacterium BMS3Abin01
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Fig. 2 Representative histidine decarboxylase gene clusters for putative histamine-secreting bacteria. Two types of bacterial histidine
decarboxylases were labeled as hdcA pyruvoyl and hdcA PLP respectively. Two arginine decarboxylases were identified in some histidine
decarboxylase species including aaxB and adiA. Three different types of amino acid antiporters in histidine decarboxylase clusters (hdcP) were
labelled as gadC, aaxC and adiC. The phylogenetic tree was a subtree extracted from a pre-built GTDB phylogenomic tree based on 120 bacterial
marker genes. Gene clusters along with the tree were visualized by ggtree (version 2.5.1) [43]. The break symbol (double slash mark) was placed
between two distant histidine decarboxylase gene clusters for species Plesiomonas shigelloides
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play an important role in the strain-specificity of
histamine-secreting traits.

New gene clusters observed in the putative histamine-
secreting bacteria
Three different types of antiporters (hdcP) were found in
the histidine decarboxylase gene clusters. These antipor-
ters were annotated as the glutamate/gamma-aminobu-
tyrate antiporter “gadC”, and the arginine/agmatine
antiporters “aaxC” and “adiC”. The gadC and aaxC
genes were observed with the pyruvoyl-dependent hdcA
whereas adiC was found with the PLP-dependent hdcA.
The only exception was seen in Plesiomonas shigelloides,
which has both the pyruvoyl-dependent and PLP-
dependent pathways, where the adiC antiporter was
found in the gene cluster of both the PLP-dependent
and pyruvoyl-dependent hdcA. At the phylum level, in
Bacteroidota, Firmicutes, and Fusobacteriota, histidine
decarboxylase was adjacent to aaxC; in Verrucomicro-
biota, histidine decarboxylase was adjacent to gadC; and
in Actinobacteroiodota, histidine decarboxylase was adja-
cent to either aaxC or gadC (Fig. S3).
Duplications of the antiporters were observed in some

Proteobacteria where antiporter genes were found both
upstream and downstream of the PLP-dependent hdcA.
In addition to hdcA and hdcP, hdcB, which catalyzes the
maturation of pyruvoyl-dependent hdcA, was occasion-
ally found in close proximity to hdcA as seen in Strepto-
coccus thermophilus CHCC1524 [45]. The genes, hisRS,
which encode histidyl-tRNA synthetase were also found
in the histidine decarboxylase cluster [46–48]. Through-
out our search, the hdcA/antiporter/hdcB cluster was
observed in Firmicutes such as Clostridium thermobutyr-
icum and Streptococcus thermophilus. The hdcA/hdcB/
antiporter/hisRS cluster was also observed in Firmicutes
such as Tetragenococcus halophilus and Lactobacillus
reuteri. The hdcA/antiporter/hisRS cluster was observed
in Proteobacteria such as Klebsiella aerogenes and She-
wanella marina.
In several phyla of the pyruvoyl-dependent histamine-

secreting bacteria, we found a two-decarboxylase, one-
transporter three-component decarboxylation system
(Fig. 2) composed of arginine decarboxylase, histidine
decarboxylase, and an antiporter. This arginine/histidine
system was similar to the lysine/ornithine three-
component decarboxylation system in Lactobacillus
saerimneri 30a [49], the first reported bacterial three-
component decarboxylation system. A difference be-
tween the arginine/histidine system found in histamine-
secreting bacteria and the lysine/ornithine system found
in Lactobacillus saerimneri 30a is that gene components
of the histidine/arginine system were adjacent to each
other, while the genes for the lysine/ornithine system
were 24 kb apart.

The two decarboxylases in the three-component histi-
dine/arginine system can utilize different enzymatic
mechanisms and cofactors. Similar to histidine decarb-
oxylase, two types of arginine decarboxylases have been
previously identified, a PLP-dependent arginine decarb-
oxylase (adiAYC) and a pyruvoyl-dependent arginine de-
carboxylase (aaxABC) [50]. In the histidine/arginine
systems, the histidine decarboxylases were pyruvoyl-
dependent while the arginine decarboxylases were either
pyruvoyl-dependent (aaxB) or PLP-dependent (adiA).
For example, in Actinobacteriota and Fusobacteriota, the
adiA (PLP-dependent)/antiporter/hdcA (pyruvoyl-
dependent) cluster was observed, while in Bacteroidota,
both the adiA/antiporter/hdcA (Ornithobacterium rhino-
tracheale) and aaxB/antiporter/hdcA (Bacteroides ster-
corirosoris) clusters were observed.

Putative histamine-secreting bacteria were significantly
enriched in inflammatory bowel disease patients but not
in colorectal cancer patients compared to healthy
controls
Analyzing 2451 stool metagenomes from IBD patients
and 506 stool metagenomes from CRC patients, we
found the putative histamine-secreting bacteria identi-
fied in UHGG were significantly enriched in IBD (Ul-
cerative colitis and Crohn’s disease combined) patients
but not in CRC patients. We identified UHGG species
with differential abundance between the patients and
healthy controls in eight studies, including four IBD
studies and four CRC studies. To avoid bias caused by
detection methods, we used three methods, namely
DESeq2, MaAsLin2, and LEfSe to perform the differen-
tial abundance analysis. We then performed one-tailed
two-proportion Z-tests with continuity correction to test
the hypothesis that histamine secreting species have a
higher probability to be positively associated with dis-
ease. In the IBD studies, we found that putative
histamine-secreting bacteria were significantly enriched
when compared to all gut species through Z-tests with
p < 0.05 in all four studies and by all three statistical
methods (Fig. 3, Table S4-S5). The results from DESeq2,
MaAsLin2, and LEfSe generally agreed well with each
other, with DESeq2 being the most relaxed method in
determining enrichment. Unlike IBD studies, no signifi-
cant differential abundance was observed in putative
histamine-secreting bacteria when compared to the
overall gut species in any CRC studies by any method.
The enrichment of histamine-secreting species was

not attributed to a single taxon and we found the
enriched species in IBD studies to be highly cohort-
specific. For example, in the cohort in Hall et al. 2017,
histamine-secreting bacteria were mainly enriched in
Actinobacteriota and slightly enriched in Firmicutes. For
Franzosa et al. 2019, histamine-secreting bacteria were
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mainly enriched in Firmicutes and Proteobacteria (Fig. 3,
Table S4). For HMP2, histamine-secreting bacteria were
mainly enriched in Bacteroidiota and Proteobacteria and
for Nielsen et al. 2014, histamine-secreting bacteria were
enriched in Actinobacteriota (Fig. 3, Table S4). In addition,
we analyzed the abundance of histidine decarboxylase op-
eron in IBD and CRC studies. Consistent with the results
of differential abundance analysis of putative histamine-
secreting bacteria, a similar trend was found that HDC
gene clusters were enriched in IBD studies. Our result in-
dicated the operon abundance was significantly enriched
in all of the IBD studies including Franzosa et al. 2019,
Hall et al. 2017, HMP2 and Nielson et al. 2014, and one of
the CRC studies, namely Yu et al. 2017 (Fig. S4).

Discussion
In this study, we performed a systematic search for his-
tamine secreting operons in species from the human gut
microbiota. In total, we identified 117 species with the
genomic potential to secrete histamine. We identified a
few discrepancies in the histamine-secreting bacteria be-
tween our systematic search and previous experimental
studies (Table S2). Several reasons could contribute to
the discrepancies. First, the putative histamine-secreting
operon was highly strain-specific in a number of
histamine-secreting species [36]. The difference could be
due to different strains used in this study and previous
work. Second, we focused on the well-known pyruvoyl-
dependent and PLP-dependent histidine decarboxylases
and this approach might miss newly discovered histidine
decarboxylases [60]. What’s more, the techniques to de-
tect histamine produced by histamine-secreting bacteria
varied between studies [8, 61]. For example, in Citrobac-
ter freundii, 21 out of 21 strains were classified as posi-
tive for histamine-secretion by Niven’s agar method but
only 1 out of 21 were classified as positive for histamine-
secretion by PCR [61]. The Niven’s agar is a differential
growth medium with a pH indicator. Bacteria that grow
and increase the pH of the Niven’s agar are inferred to
be as histamine-secreting bacteria. This method has a
high false-positive rate largely due to the fact that bac-
teria can secrete alkaline other than histamine. The PCR

based method is subject to primer bias which can lead
to false negative results. The possible inaccuracy in the
histamine detection methods has likely led to non-
histamine-secreting bacteria mislabeled as histamine-
secreting and vice versa. Further studies may include ex-
perimental evaluation of selected representatives of the
putative histamine-secreting bacteria identified in this
study, especially at some health-related taxonomic levels
where no histamine-secreting bacteria have been de-
scribed and explored before.
In this study, we identified that putative histamine-

secreting bacteria were significantly enriched in IBD pa-
tients. Combined with the previous knowledge that
histamine-secreting bacteria were found to be increased
in the gut communities of asthma patients [18], it sug-
gests a possible association between histamine-secreting
bacteria and inflammatory diseases. Because the lumenal
environment is more acidic in the small intestine than in
the colon, the genomic potential of histamine-secretion
may be expressed in the small intestine but not in the
colon. As a result, the presence of putative histamine-
secreting bacteria in prominent families found in the
small intestines, such as Enterobacteriaceae and Lacto-
bacillaceae, may have significant immunological implica-
tions (Table S3) [62]. The deeper relationships between
histamine-secreting bacteria and host in terms of inflam-
matory and immunological diseases are yet to be
elucidated.
To the best of our knowledge, the histidine/arginine

decarboxylation system observed in a number of
histamine-secreting bacteria from three phyla is the first
three-component decarboxylation system identified in a
cluster of colocalized genes. Our findings suggest that
some amino acid antiporters are likely capable of trans-
porting multiple amino acids with similar structural and
chemical properties. The capability to transport multiple
amino acids using a single antiporter may increase the
robustness and efficiency of acid resistance in the bac-
teria. Further studies may include the exploration of
other three-component or multi-component decarboxyl-
ation systems other than the histidine/arginine and ly-
sine/ornithine systems.

(See figure on previous page.)
Fig. 3 Differential abundance analysis of putative histamine-secreting bacteria. The analysis was performed on stool metagenomic samples
between patients with colorectal cancer (CRC), inflammatory bowel disease (IBD) and healthy controls by DESeq2 (A), MaAslin2 (B) and LefSe (C).
Relative abundances (counts) were calculated using Kraken2 (2.0.8-beta) (see methods section for more details). The criteria for enriched species
for DEseq2 are log2FC > 1 (the Integrative Human Microbiome Project, i.e. HMP2 > 0.5) and q < 0.05, for MaAsLin2 are coef > 0.2 (HMP2 > 0) and
q < 0.05, and for LefSe are LDA > 2 and q < 0.001. The statistical differences between all bacteria and histamine-secreting bacteria (HSB) were
determined by one-tailed two-proportion Z-test with continuity correction and the p values were converted to asterisks (n.s. for p > 0.05; * for
p≤ 0.05; ** for p≤ 0.01; *** for p ≤ 0.001 and **** for p ≤ 0.0001). Number of samples by disease state for each study are: Feng 2015 [51]:
control = 61, CRC = 46; Vogtmann 2016 [52]: control = 52, CRC = 52; Yu 2017 [53]: control = 75, CRC = 53; Zeller 2014 [54]: control = 66, CRC = 91;
Hall 2017 [55]: control = 74, IBD = 188; Franzosa 2019 (discovery cohorts) [56]: control = 34, IBD = 121; HMP2 [57, 58]: control = 429, IBD = 1209;
Nielsen 0214 [59]: control = 248, IBD = 148. See also Table S4 for the enrichment of individual species and Table S5 for the detailed results
of Z-test
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Conclusions
In conclusion, we have systematically annotated bacterial
histidine decarboxylase in two large databases. 117 puta-
tive histamine-secreting bacteria species were identified
throughout GTDB and UHGG including those in Fuso-
bacteriota and Verrucomicrobiota where no histamine-
secreting bacteria had been previously described. We
have identified a novel three-component decarboxylase
system which contains an arginine decarboxylase, a histi-
dine decarboxylase and an antiporter. Differential abun-
dance analysis showed that the putative histamine-
secreting bacteria were significantly enriched in IBD pa-
tients but not in CRC patients. Our findings would ex-
pand the knowledge and provide a comprehensive
understanding of histamine-secreting bacteria in the hu-
man gut and facilitate advances in potential therapeutic
targets toward histamine-related inflammatory and im-
munological diseases.

Methods
Histidine decarboxylase operon identification
The Unified Human Gastrointestinal Genome (UHGG)
[26] and Genome Taxonomy Database (GTDB) (release
95) were used as the databases for histamine-secreting
bacteria identification [24, 25]. To identify PLP-
dependent histidine decarboxylases, we performed a
multiple sequence alignment of known PLP-dependent
histidine decarboxylase genes (WP_191935110.1,WP_
068969528.1,WP_152135723.1 and WP_136342781.1)
with MUSCLE 3.8.31 [63] and then built a customized
profile HMM with hmmbuild from HMMER 3.3.1 pack-
age [64]. This customized profile was used to search
query protein databases using hmmscan. Hits with e-
value 1e-100 or less were selected and manually curated
and annotated as PLP-dependent histidine decarboxy-
lases. To identify pyruvoyl-dependent histidine decar-
boxylases, we searched the query database using
hmmscan against Pfam profile PF02329 (Histidine carb-
oxylase PI chain) with cutoff e-value 1e-40. We searched
for amino acid antiporters using hmmscan against PAN-
THER profile PTHR42770 with cutoff e-value 1e-40.
The genomic loci where histidine decarboxylase and
antiporters are present in the same gene neighborhood
(less than three genes away) were identified as histamine
secretion gene clusters. The gene structure in putative
histamine-secreting bacteria was then manually screened
in Geneious Prime 2021.0.3 [65].

Histidine decarboxylase 3D modeling
For the putative pyruvoyl-dependent decarboxylase
hdcA, the amino acid sequences of histamine-secreting
bacteria from UHGG and GTDB were aligned with
Clustal Omega [66, 67]. BLAST and HHpred servers
were used to identify potential structural templates from

the Protein Data Bank [68, 69]. We used the 2.5 Å X-ray
crystal structure of a bacterial HhdA from Lactobacillus
saerimneri 30a (UniProt ID P00862, PDB entry 1PYA)
as the sole template [33]. Due to the inter-oligomeric
contacts and active site, a trimer C3 symmetry was de-
fined based on 1PYA and used in modeling. The 3mer
and 9mer fragment files were obtained from the Robetta
server (http://old.robetta.org/). RosettaCM was then
employed to generate at least 1000 models of each pro-
tein. We selected the top ten models based on the Ro-
setta energy and, among these ten, selected the lowest
backbone RMSD to the 1PYA trimer crystal structure as
the final protein models. Unlike pyruvoyl-dependent
hdcA with auto-cleavage and multi-chain modeling with
only one good template, no crystal structure was re-
ported for bacterial hdcP and the PLP-dependent hdcA
therefore no model was built upon hdcP and the PLP-
dependent hdcA.

Phylogenetic analysis
To construct the phylogeny of pyruvoyl-dependent hdcA
genes, a multiple sequence alignment was performed by
Clustal Omega v1.2.3 with fifty-eight pyruvoyl hdcA pro-
teins [66] and trimmed with trimAl v1.2 on strictplus
mode [70]. A maximum-likelihood phylogenetic tree was
inferred by IQ-TREE v2.1.2 using its suggested LG + I +
G4 model with 1000 ultrafast bootstrap replicates [71].
This tree was rooted using the Minimal Ancestor Devi-
ation (MAD) method via mad v2.2 [72] and was visual-
ized and annotated using iTOL v5 (https://itol.embl.de/)
[73].

Metagenomic data processing
The raw sequencing reads of metagenomic samples used
in this study were downloaded and extracted using Na-
tional Center for Biotechnology Information (NCBI)‘s
SRA Toolkit [74] v2.10.9 under the accession numbers
of PRJEB1220 [59], HMP2 (PRJNA398089 [58],
PRJNA389280 [57]), PRJNA385949 [55], and
PRJNA400072 [56] for IBD studies and accession num-
bers for studies are PRJEB6070 [54], PRJEB7774 [51],
PRJEB12449 [52], and PRJEB10878 [53] for colorectal
cancer (CRC) studies. Quality control and adapter trim-
ming of the fastq sequence files were done with Trim
Galore wrapper v0.6.6 [75]. Quality trimmed sequences
were screened against the human assembly NCBI build
37 (hg19) using Bowtie2 v2.4.2 alignment software [76]
and Samtools v1.11 [77] was then used to remove hu-
man genome contamination unmapped sequence from
SAM files. Taxonomic assignment of filtered reads was
performed using Kraken2 v2.0.8-beta (with default set-
tings) [78] against a pre-built database of the UHGG
ca t a l o g ( h t t p : / / f t p . e b i . a c . u k /pub /d a t a b a s e s /
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metagenomics/mgnify_genomes/human-gut/v1.0/uhgg_
kraken2-db/) [26].

Differential taxonomic abundance analysis
The kraken species-level abundance outputs and meta-
data were imported into the phyloseq R package
(v.1.34.0) for analyses [79]. Samples with sequencing
depth less than 1 million counts were excluded. Rare
taxa with a relative abundance of less than 0.01% across 10%
of all samples were filtered. To minimize the bias of a single
method and report a robust analysis, we employed three
commonly used statistical methods including DESeq2 [80],
Multivariate Association with Linear Models 2 (MaAsLin2)
[81], and Linear discriminant analysis effect size (LEfSe) [82]
for differential abundance analysis. For DEseq2, the “local”
method was employed to estimate dispersion, and the “pos-
counts” size factor estimator was employed in the
normalization step to exclude the zeros when calculating the
geometric mean. The DEseq2 “poscounts” normalized
counts were used as input for LEfSe. For MaAsLin2, the
trimmed mean of M-values (TMM) method was applied as
the normalization method based on its satisfactory perform-
ance in a recent benchmark [83]. We defined species with
more than 50% of the strains encoding histidine decarboxyl-
ase gene clusters as histamine-secreting species. One-tailed,
two-proportion Z-tests with continuity correction were per-
formed to compare the difference between the proportion of
disease-associated species in defined histamine secreting spe-
cies and the proportion of disease-associated species in all
species.

Histidine decarboxylase operon abundance estimation
and analysis
We created a set of reference genomes mainly from the rep-
resentative genomes from the UHGG. If the representative
genome for a species in the UHGG does not contain the his-
tidine decarboxylase operon and a different genome of the
same species has, we replaced it with the genome with the
histidine decarboxylase operon instead. We aligned the
cleaned metagenomic reads to the reference genomes using
bowtie2 [76]. Samples with total read counts less than 1 mil-
lion were filtered out. The abundance of histidine decarb-
oxylase operon was estimated by the number of per million
reads mapped to the histidine decarboxylase operon divided
by the total number reads mapped to the reference genomes
(namely measured in counts per million reads mapped,
CPM). One sided Wilcoxon’s rank-sum test with continuity
correction was performed to test the difference of the histi-
dine decarboxylase operon abundance in the patient’s sample
and that in the healthy control.
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