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ABSTRACT The paradigm called genomic selection (GS) is a revolutionary way of developing new plants
and animals. This is a predictive methodology, since it uses learning methods to perform its task. Un-
fortunately, there is no universal model that can be used for all types of predictions; for this reason, specific
methodologies are required for each type of output (response variables). Since there is a lack of efficient
methodologies for multivariate count data outcomes, in this paper, a multivariate Poisson deep neural
network (MPDN) model is proposed for the genomic prediction of various count outcomes simultaneously.
The MPDN model uses the minus log-likelihood of a Poisson distribution as a loss function, in hidden layers
for capturing nonlinear patterns using the rectified linear unit (RELU) activation function and, in the output
layer, the exponential activation function was used for producing outputs on the same scale of counts. The
proposed MPDN model was compared to conventional generalized Poisson regression models and
univariate Poisson deep learning models in two experimental data sets of count data. We found that the
proposed MPDL outperformed univariate Poisson deep neural network models, but did not outperform, in
terms of prediction, the univariate generalized Poisson regression models. All deep learning models
were implemented in Tensorflow as back-end and Keras as front-end, which allows implementing these
models on moderate and large data sets, which is a significant advantage over previous GS models for
multivariate count data.
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The selection of the best candidate genotypes is done by observing the
phenotype of traits of interest in conventional breeding programs, which
is very expensive since all the candidate genotypes have to be planted in
the field. For these reasons, phenotypic selection (PS) is being replaced by
genomic selection (GS) inmany crops around the world, since it makes it
possible to select the best candidate genotypes early in time using a
statistical learningmodel that is able to learn the relationship between the
genotyped (marker data) and phenotyped information of the training
set (Meuwissen et al., 2001). GS is a technology that is transforming the
conventional breeding process since we select the genotypes of

interest early in time and we need only the genotypic information for
the genotypes we want to select. However, since there is no universal
statistical machine learning model that always performs the best for all
types of data, we need specific algorithms for some types of data (Wolpert
and Macready 1997). For example, it is very well documented that for
each type of response variable there are specific predictive machines that
are more appropriate for each circumstance. For example, multiple
regression performs well for continuous data with linear patterns in
the data, while logistic regression is a good option for binary data with
linear patterns, and multinomial regression is a reasonable option for
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categorical response variable with linear patterns. However, there is
evidence that deep learning (DL) models are good candidates for non-
linear patterns in the data (Chollet and Allaire 2017; Patterson and
Gibson 2017). But to implement DL models we also need to be careful
since it is very well documented that for continuous outcomes, the mean
square error (mse) loss function is one of the best options, although it is
not a reasonable option for binary and categorical outcomes (Chollet and
Allaire 2017; Patterson and Gibson 2017). For binary and categorical
response variables, the best options are the binary-cross-entropy and
categorical-cross-entropy loss functions, respectively (Chollet and Allaire
2017; Patterson and Gibson 2017). These examples illustrate that un-
fortunately there is no universal statistical machine learning model that
works well for all types of data (Wolpert and Macready 1997).

In addition to the appropriate selection of the statistical machine
learning model, there are other issues that need to be considered to
successfully implement GS. Some of these issues are: (a) to select a
representative (training) set (Guo et al., 2019), (b) to guarantee the
quality of genotypic and phenotypic data in the training set (Edwards
et al., 2019), and (c) to have a representative sample (good coverage) of
the markers in the complete genome. The empirical evidence of the
usefulness of GS continues to grow, showing that it is a power tool that
can revolutionize the way plant breeders perform the selection of
candidate genotypes (Crossa et al., 2013; Meuwissen et al., 2013;
Crossa, et al., 2017; Vivek et al., 2017; Smallwood et al., 2019; Môro
et al., 2019; Salam and Smith 2016). Some research studies showing that
the GS methodology works as well as PS are given next: Vivek et al.
(2017), Smallwood et al. (2019), Môro et al. (2019), and Salam and Smith
(2016). However, it is important to point out that the empirical evidence
supports that GS is not better than PS, since no relevant differences are
observed between GS and PS, but GS has the advantage over PS because
it requires fewer resources, reduces the cost per cycle and shortens the
generation interval (Crossa et al., 2017; Farah et al., 2016). GS could
become a key selection methodology in plant science, since more high-
quality data are becoming available, and predictive algorithmswill be able
to combine different types of data more efficiently and thereby improve
the prediction accuracy. Although GS is not yet the main tool for plant
breeders, it has been implemented in many crops like maize, wheat,
chickpea, cassava and rice, among others (Crossa et al., 2017; Roorkiwal
et al., 2016; Wolfe et al., 2017; Huang et al., 2019), and the number of
breeding programs that are moving from conventional breeding to GS
continues to grow. As mentioned above, one important aspect of the
successful implementation of GS is correctly selecting the algorithm for
prediction. However, for multivariate count data, only univariate models
are available, such as the Poisson deep neural network (PDNN) model
proposed by Montesinos-López, unpublished results), which can be
implemented very efficiently for moderate [at least ten of thousands
of observations (rows)] or large data sets (more than twenty-five
thousand observations; Emmert-Streib et al., 2020).

Count data are common in many domains since they reflect the
number of occurrences of an outcome variable measured in a fixed
period of time (for example, per hour or day), area (for example, per
square meter) or volume (for example, per cubic meter). Some examples
in particular domains are in information technology (number of visits per
day to a web site; number of spam emails received per day), demography
(number of families in poverty in a city or region; number of accidents per
day in a city), animal science (number of sick animals per herd; number of
offspring per sow), social science (number of religious families per region
or area), chemistry (number of red blood cells per millimeter), physics
(number of alpha particles emitted from a source in a given time interval),
etcetera. Count data are also common in plant breeding since they allow,
for example, measuring the number of panicles per plant, number of seeds
per plant, number of infected spikelets per plant, days to heading, days to
maturity, and days to germination, among others (Montesinos-López et al.,
2016;Montesinos-López et al., 2017). Count data take on values of 0, 1, 2,...
with an unrestricted upper limit. Usually, count data are analyzed in-
correctly with ordinal least square regression or models for continuous
outcomes, even though there is a lot of evidence that the Poisson or
negative binomial family of regressions are better alternatives for modeling
count data. The Poisson family has the inconvenience that it assumes that
the variance is equal to themean, that is, many times it is unable to capture
over-dispersion efficiently, but the negative binomial family allows mod-
eling this problem of over-dispersion appropriately most of the time.

For multivariate data under Poisson distribution, it is not possible to
implement closed form Bayesian estimation; only approximate Bayesian
estimation is available, but it is inefficient (Montesinos-López et al., 2015,
2016, and 2017) since there is no analytical Gibbs sampler available to draw
samples of the posterior distribution of the parameters of interest. However,
these observations are also valid for classic estimations of multivariate
Poisson and negative binomial distribution. For this reason, Montesinos-
López, unpublished results) proposed the univariate PDNN model for
count data using Tensorflow as back-end and Keras in R as front-end
(Chollet andAllaire 2017); this framework is useful for large data sets. Deep
learning (DL) models are generalized artificial neural networks, but with
more than one hidden layer. Hidden layers consist of non-linear trans-
formations applied to the input information with the goal of filtering the
data and removing the noise in a way that helps to increase the prediction
performance in the testing set. For complex input data, usuallymore hidden
layers are required to improve the prediction performance. DL models try
to mimic the functioning of our brain when performing complex tasks.

Successful applications of DL models are applied for tasks like: face
recognition, voice recognition (Chollet and Allaire 2017), self-driving
cars that are capable of sensing their environment andmoving safely with
little or no human input (Chollet and Allaire 2017), cancer and skin
predictions using images as information (Kadampur and Al Riyaee
2020), human resource selection in companies, genomic selection
(Montesinos-López et al., 2018a, b; Montesinos-López et al., 2019a,
b), etcetera. Empirical evidence shows that DL models are competitive
(with at least the same performance) with conventional statistical
machine learning models, mostly for larger data sets. However, until
now there is no flexible framework that allows researchers without a
strong background in computer science and statistics to implement
univariate and multivariate models for modeling multivariate count data
in DL; for this reason, we propose a deep neural network framework for
implementing multivariate count models. This framework captures non-
linearity in a better way than conventional statistical machine learning
models since it is able to use many hidden layers that apply no linear
transformations. The proposed multivariate Poisson deep neural net-
work (MPDN)model for count data uses the negative log-likelihood of a
Poisson distribution as the loss function and the exponential activation
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function for each trait in the output layer, to ensure that all predictions
are positive.

MATERIAL AND METHODS

Univariate generalized Poisson regression model
The Poisson distribution with parameter m belongs to the exponential
family and its probability function is equal to:

f
�
yi
� ¼ e2mim

yi
i

yi!
;     yi ¼ 0;   1;   2;⋯;

where yi=0,1,2,3,. . . is the value of the counting variable associ-
ated with unit i; given a set of explanatory variables. The mean
and variance of a Poisson random variable are equal to
EðyiÞ ¼ VarðyiÞ ¼ mi. This Poisson distribution is often used to
model responses that are “counts.” Given that our training set is
composed of pairs of inputs (yi, xTi ) with xTi ¼ ½xi1;   . . . ; xip�, for
i ¼ 1;   2; . . . ; n, the logarithm of the likelihood is given by:
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According to Stroup (2012), the specification of a generalized Poisson
regression model is given as:

Predictor: logðmiÞ ¼ hþPp
j¼1

xijbj

Distribution: yi � PoissonðmiÞ
Link function: log
where h is the intercept, xij is the jth  independent variable

measured in observation i, where j ¼ 1; 2; ::; p, bj is the beta co-
efficient corresponding to the independent variable j. Thus, the

expected value is EðyijxTi Þ ¼ mi ¼ expðhþPp
j¼1

xijbjÞ. Since the link

function is the log function, this means that the inverse link function is
the exponential function, which is called the activation function in the
specification of the multivariate Poisson deep neural network model.
The optimization process can be performed by minimizing the
negative loglikelihood (called loss function=LL). However, when
the number of independent variables (p) is larger than the number
of observations, it is better to use a penalized version of the negative
loglikelihood (LL), which is equal to:

LL ¼ 2
Xn
i¼1

½2mi þ yilogðmiÞ� þ l
�
ð12aÞ½

Xp
j¼1

b2
j þ a

Xp
j¼1
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where l is the tuning hyper-parameter that can be chosen by cross-
validation and a is a parameter that causes Ridge penalization, Lasso
penalization or a mixture of both. For example, when a ¼ 0; the LL
corresponds to a univariate Generalized Poisson Ridge Regression
(GPRR); when a ¼ 1, the LL corresponds to a univariate Generalized
Poisson Lasso Regression (GPLR), and when 0,a, 1; the LL corre-
sponds to a univariate Generalized Poisson elastic net regression (GPER).
The optimization of this loss function (LLÞ was done using the R package
glmnent (Lasso and Elastic-Net Regularized Generalized Linear Models)
(Friedman et al., 2010). The selection of the tuning hyper-parameter (l)
was performedwith 10 fold cross-validations createdwith each training set.

Multi-trait Poisson deep neural network (MPDN) model
The topology of the multi-trait Poisson deep neural network (MPDN)
consists of a feedforward neural network with an input layer (8 inputs,

as shown in Figure 1), at least one hidden layer (3, as shown in Figure
1) and an output layer (with at least two outputs). The input layer
receives all the independent variables that are supposed to be related
to the output (in our case, environments and lines taking into account
the marker data). Each neuron of the first hidden layer receives
as input a net input that is a weighted sum of those indepen-
dent variables with their corresponding weights, plus an intercept

(
Pp
i¼1

wð1Þ
ji xi þ bðjÞ   for  j ¼ 1; . . . ;  M1Þ to which a nonlinear transfor-

mation is applied to capture complex patterns (in our case, for all
neurons in all hidden layers we applied the ReLU nonlinear trans-
formation, also called activation function). Then the output of the

neurons of the first hidden layers (V1j ¼ g1ð
Pp
i¼1

wð1Þ
ji xi þ bðjÞÞ for

j ¼ 1; . . . ;  M1) were used as input for the neurons of the second hidden
layer, and again a net input was created from the output of the neurons of

the first hidden layers (
PM1

j¼1
wð2Þ
kj V1j þ bðkÞ   for  k ¼ 1; . . . ;  M2), which

was transformed with a nonlinear transformation, g2 (also ReLU) to
produce the output of each neuron. Then the output of each of

the neurons in the second hidden layer (V2k ¼ g2ð
PM1

j¼1
wð2Þ
kj V1j þ bðkÞÞ

for k ¼ 1; . . . ;  M2) was used as input for the neurons of the third
hidden layer, for which its corresponding net input was equal to

(
PM2

k¼1
wð3Þ
lk V2k þ bðlÞ for l ¼ 1; . . . ;  M3Þ, after applying the nonlinear

transformation (also ReLU) produced as output of each neuron

(V3l ¼ g3ð
PM2

k¼1
wð3Þ
lk V2k þ bðlÞÞ for l ¼ 1; . . . ;  M3). Since we are assum-

ing only three hidden layers, finally the net input of each of the outputs is
created with the output of all neurons in the third hidden layer

(
PM3

l¼1
wð4Þ
tl V3l þ bðtÞ for t ¼ 1; . . .T) to which we apply an exponential

activation function (transformation) for each output to guarantee positive

outcomes (yt ¼ expðPM3

l¼1
wð4Þ
tl V3l þ bðtÞÞ for t ¼ 1; . . .T) on the same

scale of the count data.
All model equations for a MPDN with p inputs, M1 hidden

neurons (units) in hidden layer 1, M2 hidden units in hidden layer
2,M3 hidden units in hidden layer 3, and T outputs, are given by the
following equations (1-4):

V1j ¼ g1
�Xp

i¼1

wð1Þ
ji xi þ bð jÞ

�
    for    j ¼ 1; . . . ;  M1 (1)

V2k ¼ g2
�XM1
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wð2Þ
kj V1j þ bðkÞ

�
    for    k ¼ 1; . . . ;  M2 (2)

V3l ¼ g3
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�
  for  l ¼ 1; . . . ;  M3 (3)

yt ¼ exp
�XM3

l¼1

wð4Þ
tl V3l þ bðtÞ

�
    for    t ¼ 1; . . .T (4)

where equation (1) produces the output of each of the neurons in the
first hidden layer, equation (2) produces the output of each of the
neurons in the second hidden layer, equation (3) produces the output
of each of the neurons in the third hidden layer and finally, equation
(4) produces the output of the T count response variables. The
learning process is achieved with the weights (wð1Þ

ji ;wð2Þ
kj ;w

ð3Þ
lk   and

wð4Þ
tl Þ and biases (bðjÞ; bðkÞ; bðlÞ   and bðtÞÞ that correspond to the first

hidden layer, second hidden layer, third hidden layer and the output
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layer, respectively. To obtain the outputs of each of the neurons in the
three hidden layers (g1;   g2   and  g3Þ;   we used the rectified linear
activation unit (ReLU) activation function. However, for the output
layer, we used the exponential activation functions (g4Þ ½see equation
(4)�, since the response variables we wanted to predict are counts.
However, the ReLU activation function can also be used for count
data because it guarantees positive predicted values (Chollet and
Allaire 2017; Patterson and Gibson 2017). In theory, a neural network
with enough hidden units can approximate any arbitrary functional
relationships (Cybenko 1989; Hornik 1991). The proposed MPDN
model was implemented in the Keras library as front-end and in
Tensorflow as back-end (Chollet and Allaire 2017). It is important to
point out that when the MPDN model (described in equations 1-4)
has only one output (only one response variable), this model is
reduced to the univariate Poisson deep neural (UPDN) model.

To select the hyper-parameters, we used a different grid search for
each data set. For data set 1, the grid search method contained
10 combinations of hyper-parameters with five neurons (120, 160,
200, 240, 280) and two lambda parameters for the Lasso penalization
(0.001, 0.01); the remaining hyper-parameters were fixed (batch_size
= 273, learning_rate = 0.001, 0% of dropout, ReLU activation function
for hidden layers, Poisson loss function, validation split was 20% of
the outer training set, number of epochs used was 1000 in the outer
training set, and an adam optimizer). By epoch we mean the number
of times the learning algorithm will work across the entire training
data set. For data set 2, we used 16 combinations of hyper-parameters:
four values of neurons (400, 600, 800, 1000), two values of percent
dropout (0, 0.05), and two values of the lambda parameter for Lasso
penalization (0.001, 0.01). The remaining hyper-parameters were
fixed as for data set 1, except for the batch size, which now was
set at 500. It is important to point out that each of the 10 (data set 1)
and 16 (data set 2) combinations were run with these fixed hyper-
parameters under 1, 2, 3 and 4 hidden layers, using the early stopping
approach that allows selecting the optimal number of epochs. From

combinations 10 and 16, we selected the best combination for each
hidden layer (1, 2, 3 and 4) in terms of the lower mean square error of
prediction inside each outer training set since this metric is one of the
default metrics in Keras. Then, with this optimal combination of
hyper-parameters, the model was refitted using all the information of
the outer training set. Finally, predictions were made for the corre-
sponding outer testing set using the estimated model with the refitted
model. This process was done in each of the five folds. The optimal
hyper-parameters for each hidden layer (1, 2, 3, 4) were selected using
the grids given above; therefore, all these models belong to the MPDN
and UPDN (same as the MPDN, except that it only contains one
output) even though when only one hidden layer is used, these
models are only a conventional artificial neural network.

Furthermore, the generalized Poisson regression model depends
on the value of alpha (a), and with different alphas we get a different
model. For this reason, 5 models were built using different values of a.
Table 1 shows the 13 models generated, 4 belonging to the MPDN,
4 to the UPDN and 5 to generalized Poisson regression.

Data

Phenotypic data set 1: The phenotypic data set used included
182 spring wheat lines developed by the International Maize and
Wheat Improvement Center (CIMMYT) that were assembled and
evaluated for resistance to Fusarium graminearum in three experi-
ments conducted at El Batan experiment station in Mexico in 2011.
For the application, we call these three experiments Env1, Env2, and
Env3. In all the experiments (environments), the genotypes were
arranged in a randomized complete block design, in which each plot
comprised two 1-m double rows separated by a 0.25-m space.
Fusarium head blight (FHB) severity data were collected 20 and
30 days (d) before maturity by counting symptomatic spikelets on five
randomly selected spikes in each plot. We used the counts collected at
20 d as trait 1 and the counts collected at 30 d as trait 2.

Figure 1 A feedforward deep neural network with one input layer, three hidden layers and one output layer. There are eight neurons in the input
layer that correspond to the input information, three neurons in each of three hidden layers, with two neurons in the output layers that correspond to
the traits that will be predicted.
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Genotypic data set 1: DNA samples were extracted from young leaves
2–3 weeks old, taken from each line, using Wizard Genomic DNA
purification (Promega) and following themanufacturer’s protocol. DNA
samples were genotyped using an Illumina 9K SNP chipwith 8632 single
nucleotide polymorphisms (SNPs) (Cavanagh et al., 2013). For a given
marker, the genotype for the ith line was coded as the number of copies
of a designated marker-specific allele carried by the ith line (absence =
zero and presence = one). SNP markers with unexpected AB (hetero-
zygous) genotype were recoded as either AA or BB, based on the
graphical interface visualization tool of GenomeStudio (Illumina) soft-
ware. SNP markers that did not show clear clustering patterns were
excluded. In addition, 66 simple sequence repeat markers were screened.
After filtering the markers for 0.05 minor allele frequency and deleting
markers with 0.10% of no calls, the final set of SNPs included 1635 SNPs.

1. Phenotypic data set 2: This data set contains 438 lines for which
three diseases were recorded. Pyrenophora tritici-repentis (PTR) that
causes a disease originally named yellow spot but also known as tan
spot, yellow leaf spot, yellow leaf blotch or helminthosporiosis.
Parastagonospora nodorum (SN) is a major fungal pathogen of wheat
fungal taxon that includes several plant pathogens affecting the leaves
and other parts of the plants.

Bipolaris sorokiniana (SB) is of economic importance as the cause
of seedling diseases, common root rot and spot blotch of several crops
like barley and wheat. The 438 wheat lines were evaluated in the
greenhouse for several replicates during a long period of time. The
replicates were considered as different environments (Env1, Env2,
Env3, Env4, Env5, and Env6). The total number of observations were
438·6=2628 observations for which the three traits were measured.

Genotypic data set 2: DNA samples were extracted from each line,
following the manufacturer’s protocol. DNA samples were genotyped
using 67,436 single nucleotide polymorphisms (SNPs). For a given
marker, the genotype for the ith line was coded as the number of
copies of a designated marker-specific allele carried by the ith line
(absence = zero and presence = one). SNP markers with unexpected
heterozygous genotype were recoded as either AA or BB. We kept
those markers that had less than 15% missing values. After that, we
imputed the markers using observed allelic frequencies. We also
removed markers with MAF , 0.05. After Quality Control and
imputation, a total of 11,617 SNPs were still available for analysis.

Metrics used to measure prediction performance
Cross-validation is a strategy for model selection and is also used
to evaluate the prediction performance in unseen data. For this
reason, we used cross-validation to evaluate the prediction per-
formance in unseen data. Since our data contain the same lines in I
environments, we used a type of cross-validation that mimics a
situation where lines were evaluated in some environments for all
traits but where some lines were missing in other environments.
We implemented a fivefold cross-validation, where four folds were
used for training and one fold for testing. We reported the average
prediction performance for the test data in terms of mean square
error of prediction (MSE), mean arctangent absolute percentage
error (MAAPE) for each environment and average Pearson cor-
relation (APC) for each environment. It is important to point out
that the process for tuning the hyper-parameter (l) in the gen-
eralized Poisson regression (GPR_0.75, GPR_0.5, GPR_0.25,
GPR_Lasso and GPR_Ridge) was done with ten-fold cross-validation,
while the tuning process for the Poisson deep neural network
models (MPDN and UPDN) was done in each of the five folds
of the fivefold cross-validation (see Figure 2) strategy; in each fold,
20% of the data were used for testing (TST), 64% of the information
for training (TRN) and 16% for tuning (TUN) (see Figure 2). Each
of the 10 (data_set_1) and 16 (data_set_2) combinations of the grid
search was trained with the training set in each fold and its pre-
diction performance was evaluated in the tuning (TUN) set. After
selecting in terms of MSE the best combination of hyper-parameters,
the model was refitted but using the whole training set (80% of data,
since the TRN+TUN sets were joined) in each fold. Finally, for each
testing set, we computed each of the three metrics (MSE, MAAPE and
APC) with its corresponding standard error (SE) which were com-
puted using 500 bootstrap samples (of observed and predicted values
of the testing set); then the average of the 5 folds and its SE was
reported as a measure of prediction performance and variability in
each metric. It is important to point out that the five fold cross-
validation strategy was implemented with only 1 replication.

Data availability
The phenotypic and genotypic data used in this study are contained in
the following R files Data_set 1.RData and Data_set 2.RData, avail-
able at the following link: http://hdl.handle.net/11529/10548438.

n■ Table 1 Proposed and implementedmodels. NN denotes that the parameters are not needed for a model. Alpha is the parameter a and
is needed only in generalized Poisson regression models. UPDN_1 denotes the univariate Poisson deep neural network with 1 hidden layer,
UPDN_2 denotes a UPDN with two hidden layers and so on. MPDN_1 denotes the multivariate Poisson deep neural network with 1hidden
layer, MPDN_2 denotes a MPDN with two hidden layers, and so on

Model Model name
Abbreviation
of model

Hidden
layer Alpha

1 Univariate Poisson deep neural network UPDN_1 1 NN
2 Univariate Poisson deep neural network UPDN_2 2 NN
3 Univariate Poisson deep neural network UPDN_3 3 NN
4 Univariate Poisson deep neural network UPDN_4 4 NN
5 Multivariate Poisson deep neural network MPDN_1 1 NN
6 Multivariate Poisson deep neural network MPDN_2 2 NN
7 Multivariate Poisson deep neural network MPDN_3 3 NN
8 Multivariate Poisson deep neural network MPDN_4 4 NN
9 Univariate Generalized Poisson Elastic net regression GPR_0.75 0 0.75
10 Univariate Generalized Poisson Elastic net regression GPR_0.5 0 0.5
11 Univariate Generalized Poisson Elastic net regression GPR_0.25 0 0.25
12 Univariate Generalized Poisson Lasso regression GPR_Lasso 0 1
13 Univariate Generalized Poisson Ridge regression GPR_Ridge 0 0
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RESULTS
The results are given in three sections. The first section provides the
distribution of the phenotypic information of both data sets. The second
provides the results of the 13 models for data_set_1 and data_set_2.

Distribution of the phenotypic data sets
Table 2 shows the distribution of each of the two count traits (y1, y2)
of data set 1 and the three count traits (SN, TPR and SB) of data set 2.
Figure 2A and Figure 2B indicate that for the two traits of data set 1,
the closer to zero the counts are, the larger the frequency; this is
clearly an asymmetric distribution and the counts are between zero
and less than 70. For the three traits (Figure 2C, 2D and 2E) of data set
2, the distribution of the three traits is also asymmetric, but now the
counts with larger frequencies are above zero and under 5, and the
counts are between zero and 20. Figure 2F gives a box plot of the five
traits that shows the minimum, maximum, mean, median, quantile
25% and quantile 75% for each trait (Figure 3).

Prediction performance under data set 1
First, we compared the prediction performance of the 13 models
across environments and traits without taking into account the
genotype by environment interaction. Table 2 shows that the best
predictions for data set 1 under MSE were under model GPR_Ridge
with an MSE= 33.6, while the worst prediction was under model
UPDN_1 with an MSE= 50.556. This means that the best models
(GPR_Ridge) outperformed the worst model in terms of MSE by
=((50.556-33.6)·100/33.6)= 50.464%. Under MAAPE, the best pre-
dictions were obtained under models GPR_Ridge and MPDN_1 with
a MAAPE = 0.582, while the worst model was UPDN_3 with a
MAAPE = 0.652. Thus, the GPR_Ridge and MPDN_1 models out-
performed the UPDN_3 model by ((0.652-0.582)  · 100/0.582)=
12.0274%. In terms of Pearson’s correlation, the best performance
was also observed under model GPR_Ridge, with an APC = 0.897,
while the worst performance was observed under model UPDN_1
with an APC = 0.5350, proving the superiority of GPR_Ridge over
UPDN_1, which was equal to ((0.897-0.5350)   · 100/0.5350)=
67.66355% (Table 2).

Now we present the results for data set 1 taking into account
genotype by environment interaction. Under MSE, the GPR_L1_0.25
(MSE = 54.10) model was the best in terms of prediction performance,
while the worst was UPDN_1 (MSE = 116.154). The superiority of the
GPR_L1_0.25 over UPDN_1, was equal to ((116.154-54.10)  · 100/
54.10)= 114.7024%. In terms of MAAPE, the best model was also

model GPR_L1_0.25 with a MAAPE= 0.615, but now the worst
model was GPR_Ridge with a MAAPE= 0.782; for this reason, the
GPR_L1_0.25 model outperformed the GPR_Ridge model by
((0.782-0.615)  · 100/0.615)= 26.969%. Finally, in terms of APC,
the best model was GPR_Ridge (APC = 0.841), while the worst
was model UPDN_4 with APC = 0.351, which means that the best
model (GPR_Ridge) outperformed the worst model (UPDN_4) in
terms of APC by ((0.841-0.351)  · 100/0.351)= 139.601% (Table 2).

Figure 4 provides a summary of the five generalized regression
models (GPR_L1_0.75, GPR_L1_0.5, GPR_L1_0.25, GPR_Lasso,
GPR_Ridge), the four multivariate Poisson deep learning models
(MPDN_1, MPDN_2, MPDN_3, MPDN_4) and the four univariate
Poisson deep learning models (UPDN_1, UPDN_2, UPDN_3,
UPDN_4). Figure 4A shows that in terms ofMSE, the best predictions
were observed when the genotype by environment interaction was
ignored. For example, under the generalized Poisson regression
models (GPR), we can observe in Figure 4A, that without interaction
in terms of MSE, they outperformed by ((65.6-37.5)  · 100/37.5)=
74.933% those models with the interaction term, while under the
MPDN models when the interaction term was ignored, the perfor-
mance was better by ((96.2-43.1)  · 100/43.1)= 123.202%. Also, under
the UPDN, the prediction performance was better without the in-
teraction term than when it was taken into account, by ((93.8-47.8)  ·
100/47.8)= 96.23%. This provides empirical evidence that for this data
set, taking into account the genotype by environment interaction did
not help improve the prediction performance. In general, we did not
find statistical differences between the prediction performances of the
univariate generalized Poisson regression and MPDNN models;
however, when the genotype by environment interaction was taken
into account, the GPR model outperformed the MPDN by ((96.2-
65.61)  · 100/65.61)= 46.631%, while when the interaction term was
ignored, the GPR was better than the MPDN models by ((43.1-
37.5)  · 100/37.5)= 14.933%. It is very important to point out that
without the interaction term, the best and worst performance was
under the GPR models and the worst under the UPDNmodel. When
the interaction term was taken into account, the GPR was also the
best, but now the worst performance was observed under the MPDN
(Figure 4A).

In terms of MAAPE, we found no statistical differences between
taking into account genotype by environment interaction and ignor-
ing it in the three models (GPR, MPDN and UPDN). But results
showed a gain of ((0.654-0.586)  · 100/0.586)= 11.604% under the
GPR when the genotype by environment interaction was ignored,

Figure 2 Strategy of fivefold cross-validation. In
each fold, 20% of the data were used for testing
(TST), 64% for training (TRN) and 16% for the tuning
process (TUN). This strategy was used only for deep
learning (MPDN and UPDN) models.
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n■ Table 2 Prediction performance of data set 1 in terms of mean square error (MSE), mean arctangent absolute percentage error (MAAPE)
and Average Pearson Correlation (APC) without taking into consideration genotype3environment interaction (WI) and taking it into
account (I) in the 13 models. SE_1 denotes the standard error of theMSE, SE_2 denotes the standard error of theMAAPE and SE_3 denotes
the standard error of the APC

Model Interaction Trait MSE SE_1 MAAPE SE_2 APC SE_3

UPDN_1 WI y1 49.792 7.579 0.596 0.024 0.546 0.054
UPDN_1 WI y2 51.319 7.742 0.662 0.015 0.523 0.06

Average 50.556 7.661 0.629 0.020 0.535 0.057
UPDN_2 WI y1 46.03 4.51 0.607 0.023 0.55 0.043
UPDN_2 WI y2 46.611 7.902 0.668 0.024 0.535 0.067

Average 46.321 6.206 0.638 0.024 0.543 0.055
UPDN_3 WI y1 46.08 4.969 0.623 0.021 0.553 0.048
UPDN_3 WI y2 48.441 6.686 0.681 0.021 0.524 0.061

Average 47.261 5.828 0.652 0.021 0.539 0.055
UPDN_4 WI y1 44.609 5.645 0.625 0.018 0.554 0.032
UPDN_4 WI y2 49.637 7.102 0.673 0.015 0.523 0.078

Average 47.123 6.374 0.649 0.017 0.539 0.055
MPDN_1 WI y1 45.507 10.464 0.581 0.047 0.87 0.025
MPDN_1 WI y2 37.971 9.21 0.583 0.048 0.865 0.026

Average 41.739 9.837 0.582 0.048 0.868 0.026
MPDN_2 WI y1 45.294 10.069 0.591 0.048 0.863 0.026
MPDN_2 WI y2 36.453 9.294 0.582 0.049 0.86 0.027

Average 40.874 9.682 0.587 0.049 0.862 0.027
MPDN_3 WI y1 48.682 10.454 0.595 0.048 0.854 0.027
MPDN_3 WI y2 39.857 8.977 0.612 0.047 0.853 0.028

Average 44.270 9.716 0.604 0.048 0.854 0.028
MPDN_4 WI y1 49.999 10.283 0.625 0.046 0.831 0.031
MPDN_4 WI y2 41.182 8.96 0.614 0.048 0.834 0.031

Average 45.591 9.622 0.620 0.047 0.833 0.031
GPR_L1_0.5 WI y1 39.964 8.811 0.583 0.047 0.889 0.022
GPR_L1_0.5 WI y2 36.945 9.926 0.592 0.048 0.861 0.025

Average 38.455 9.369 0.588 0.048 0.875 0.024
GPR_L1_0.25 WI y1 36.732 7.982 0.577 0.047 0.896 0.021
GPR_L1_0.25 WI y2 35.138 9.154 0.592 0.049 0.867 0.025

Average 35.935 8.568 0.585 0.048 0.882 0.023
GPR_L1_0.75 WI y1 41.012 9.051 0.583 0.047 0.886 0.022
GPR_L1_0.75 WI y2 37.738 10.202 0.592 0.049 0.859 0.026

Average 39.375 9.627 0.588 0.048 0.873 0.024
GPR_Lassso WI y1 41.99 9.299 0.585 0.047 0.884 0.023
GPR_Lassso WI y2 37.958 10.251 0.592 0.048 0.858 0.026

Average 39.974 9.775 0.589 0.048 0.871 0.025
GPR_Ridge WI y1 33.521 7.205 0.57 0.048 0.905 0.02
GPR_Ridge WI y2 33.701 8.817 0.594 0.049 0.888 0.02

Average 33.611 8.011 0.582 0.049 0.897 0.020
UPDN_1 I y1 133.047 7.442 0.695 0.024 0.373 0.055
UPDN_1 I y2 99.26 11.279 0.711 0.021 0.402 0.05

Average 116.154 9.361 0.703 0.023 0.388 0.053
UPDN_2 I y1 95.62 7.786 0.669 0.025 0.409 0.053
UPDN_2 I y2 75.986 11.879 0.691 0.019 0.389 0.051

Average 85.803 9.833 0.680 0.022 0.399 0.052
UPDN_3 I y1 97.618 6.255 0.687 0.023 0.389 0.064
UPDN_3 I y2 72.15 9.406 0.698 0.017 0.397 0.051

Average 84.884 7.831 0.693 0.020 0.393 0.058
UPDN_4 I y1 102.29 7.787 0.679 0.02 0.346 0.061
UPDN_4 I y2 74.66 12.035 0.7 0.014 0.356 0.057

Average 88.475 9.911 0.690 0.017 0.351 0.059
MPDN_1 I y1 111.247 23.885 0.662 0.044 0.766 0.04
MPDN_1 I y2 102.691 23.825 0.668 0.044 0.758 0.043

Average 106.969 23.855 0.665 0.044 0.762 0.042
MPDN_2 I y1 98.646 21.658 0.653 0.046 0.782 0.041
MPDN_2 I y2 90.899 21.828 0.643 0.046 0.771 0.04

Average 94.773 21.743 0.648 0.046 0.777 0.041
MPDN_3 I y1 96.984 21.958 0.66 0.046 0.766 0.042
MPDN_3 I y2 89.359 22.391 0.638 0.047 0.769 0.041

Average 93.172 22.175 0.649 0.047 0.768 0.042

(continued)
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compared to when it was taken into account. However, this gain was
of ((0.651-0.598)  · 100/0.598)= 8.863% and ((0.691-0.642)  · 100/
0.642)= 7.632% under MPDN and UPDN, respectively. Also, in
general in terms of MAAPE, between the three types of models,
GPR, MPDN and UPDN, we found no statistical differences since
the performance of the three models was very similar (Figure 4B);
however, in general terms, the UPDN was the worst. In terms of
Pearson’s correlation, we found the three models performed better
when ignoring genotype by environment interaction. For example,
the GPR that ignored genotype by environment interaction out-
performed the models with the interaction term by ((0.879-0.811)  ·
100/0.811)= 8.385%, while the MPDN and UPDN outperformed
the modelswith genotype by environment interaction by ((0.854-0.771)  ·
100/0.771)=10.765% and ((0.538-0.383)  · 100/0.383)= 40.469%, respec-
tively. However, in terms of Pearson’s correlation, we found no
statistical differences in prediction performance between the GPR
and MPDN models (Figure 4C). Also, under Pearson’s correlation,
the worst performance was under the UPDN and the best under the
GPR and MPDN models (Figure 4C).

Prediction performance of data set 2
We compared the prediction performance of the 13 models across
environments and traits, first without taking into account the gen-
otype·environment (WI) interaction term and then taking into
account the interaction term (I). First, under the MSE, the best model
was GPR_L1_0.25 with aMSE= 8.56, while the worst was UPDN_1 with
a MSE= 12.429, which means that GPR_L1_0.25 outperformed the
UPDN_1model by ((12.429-8.56)·100/8.56)= 45.198% (Table 3). Under
the MAAPE, the best model was MPDN_4 with a MAAPE = 0.357,
while the worst was UPDN_1 with a MAAPE = 0.420; for this
reason, MPDN_4 outperformed UPDN_1 by ((0.420-0.357)·100/
0.357)=17.647%. Under the APC, the best and worst models were
MPDN_2 (APC= 0.556) and UPDN_1 (APC= 0.444), respectively,
which means that the best model (MPDN_2) outperformed the worst
model by ((0.556-0.444)·100/0.444)= 25.225%.

Now when the genotype·environment interaction was taken
into account under MSE, the best and worst models were UPDN_4
(MSE = 9.922) and UPDN_1 (MSE = 12.87), respectively. This means
that the best model outperformed the worst by ((12.87-9.922)·100/
9.922)=29.711%. Under the MAAPE, the best model was MPDN_4

(MAAPE = 0.363), while the worst was UPDN_1 (MAAPE = 0.402),
and the best model outperformed the worst model by ((0.402-0.363)·
100/0.363)= 10.743%. In terms of APC, the best model GPR_Ridge
(APC = 0.522) outperformed the worst model UPDN_1 (APC = 0.394)
by ((0.522-0.394)·100/0.394)= 32.487%.

Figure 5 summarizes the five generalized regression models
(GPR_L1_0.75, GPR_L1_0.5, GPR_L1_0.25, GPR_Lasso, GPR_
Ridge), the 4 multivariate Poisson deep neural networks (MPDN_1,
MPDN_2, MPDN_3, MPDN_4) and the 4 univariate Poisson deep
neural networks (UPDN_1, UPDN_2, UPDN_3, UPDN_4). In Fig-
ure 5A we can see that the generalized Poisson regression models
(GPR) without interaction in terms of MSE statistically outperformed
by ((10.3- 8.57)  · 100/ 8.57)= 20.186% those models with the in-
teraction term. However, under the MPDN models when the in-
teraction termwas ignored, the performance was statistically better by
((10.9- 8.89)  · 100/ 8.89)= 22.609%, while the UPDN models, also
under MSE, without the interaction term outperformed by ((11.2-
10.1)  · 100/10.1)= 10.891% those models with the interaction term.
This provides empirical evidence that for data set 2, taking into
account genotype by environment interaction did not help improve
the prediction performance. Also, in this data set we found no
statistical differences between the prediction performance of the
generalized Poisson regression and MPDN and UPDN models;
however, when the genotype by environment interaction was taken
into account, the GPR model outperformed the MPDN and UPDN
by ((10.9- 10.3)  · 100/ 10.3)= 5.825% and ((11.2- 10.3)  · 100/ 10.3)
=8.737%, respectively; while when the interaction term was ignored,
the GPR was better than the MPDN and UPDN models by ((8.89-
8.57)  · 100/ 8.57)= 3.734% and ((10.1-8.57)  · 100/ 8.57)= 17.852%,
respectively.

In terms of MAAPE, we only found statistical differences between
taking into account the genotype by environment interaction and
ignoring it in the GPR models; without genotype by environment
interaction, they outperformed by ((0.401- 0.361)  · 100/ 0.361)=
11.080% those models with genotype by environment interaction.
Also, under MPDN and UPDN models without the interaction term
outperformed by ((0.380- 0.365)  · 100/ 0.365)= 4.109% and ((0.391-
0.386)  · 100/ 0.386)=1.29%, respectively, those models with the
interaction term. However, no statistical differences were observed
between GPR and MPDN and UPDN models in both scenarios with

n■ Table 2, continued

Model Interaction Trait MSE SE_1 MAAPE SE_2 APC SE_3

MPDN_4 I y1 94.62 21.06 0.651 0.046 0.779 0.039
MPDN_4 I y2 85.397 21.374 0.632 0.047 0.78 0.038

Average 90.009 21.217 0.642 0.047 0.780 0.039
GPR_L1_0.5 I y1 64.279 14.495 0.624 0.046 0.825 0.031
GPR_L1_0.5 I y2 48.417 10.777 0.623 0.048 0.783 0.04

Average 56.348 12.636 0.624 0.047 0.804 0.036
GPR_L1_0.25 I y1 62.199 13.912 0.61 0.046 0.83 0.03
GPR_L1_0.25 I y2 46.086 10.418 0.621 0.048 0.787 0.04

Average 54.143 12.165 0.616 0.047 0.809 0.035
GPR_L1_0.75 I y1 65.515 14.917 0.627 0.045 0.824 0.032
GPR_L1_0.75 I y2 49.455 11.066 0.624 0.048 0.781 0.039

Average 57.485 12.992 0.626 0.047 0.803 0.036
GPR_Lassso I y1 67.005 15.7 0.628 0.046 0.82 0.033
GPR_Lassso I y2 50.073 11.395 0.624 0.048 0.78 0.04

Average 58.539 13.548 0.626 0.047 0.800 0.037
GPR_Ridge I y1 116.056 22.719 0.788 0.049 0.857 0.028
GPR_Ridge I y2 86.785 18.019 0.775 0.049 0.826 0.032

Average 101.421 20.369 0.782 0.049 0.842 0.030
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and without genotype by environment interaction (Figure 5B), but in
general the worst prediction performance was observed under the
UPDN model. Finally, in terms of Pearson’s correlation under the
GPR models, we also found statistical differences between models

taking into account genotype by environment interaction and models
ignoring it; those models without genotype by environment inter-
action outperformed by ((0.547- 0.460)  · 100/ 0.460)= 18.913%
(under GPR), by ((0.549- 0.479)  · 100/ 0.479)= 14.613% (MPDN)

Figure 3 Histograms of pheno-
typic data of data set 1 [traits y1
(A) and y2 (B)] and of data set 2
[traits SN (C), PTR (D), and SB (E)].
In (F) is the boxplot of the five
traits of both data sets.
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and by ((0.503- 0.456)  · 100/ 0.456)= 10.307% (under UPDN) those
models with the interaction term. However, no statistical differences
were found between the three models (GPR, MPDN and UPDN) in
terms of APC with and without the interaction term (Figure 5C).

DISCUSSION
Due to the lack of multi-trait prediction models for count data, in this
study we propose a multi-trait deep neural network for count data.
Our proposed model is useful for the following reasons: (a) it is a
multi-trait approach for count data, (b) it is powerful enough to
capture linear and nonlinear patterns since it was built under the
umbrella of deep learning models, (c) it is powerful when used with
moderate or large data sets since the training process is performed
using batches of the whole training set, thus avoiding memory
problems; its implementation is possible using Tensorflow as
back-end and Keras as front-end, and (d) it works with raw inputs
like images, or other non pre-preprocessed inputs since this model is
under the umbrella of deep neural networks (Pound et al., 2017). For
these reasons, since the proposed MPDN can be implemented in
Keras, it is a very friendly and powerful framework for moderate or
large data sets. Also, the ability of the proposed MPDN to capture
nonlinear patterns is due to the fact that it belongs to models called
“artificial deep neural networks” that are inspired in the biological
functioning of the brain, and that work by stacking many layers with
hundreds or thousands of neurons in each layer. The larger the
number of stacked layers, the more powerful the model for capturing
non-linear patterns due to the fact that in each layer, a specific non-
linear transformation is applied to its inputs (Haykin 2009). The
power of the proposed MPDN is theoretically supported by the
approximation theorem that states that under artificial deep neural
networks we can approximate any function to the desired degree with
a large enough number of neurons (Cybenko 1989; Hornik 1991).
However, it is important to point out that Keras/Tensorflow is a very
flexible framework for implementing deep neural networks since
without a strong background in mathematics and computer science,
the user can implement univariate models for continuous, binary,
categorical, count data, and multivariate models with any type of
response variable including mixed response variables (Chollet and
Allaire 2017).

The proposed MPDN model also has its disadvantages; some of
them are: (a) we need to tune many hyper-parameters, which is still a
very time-consuming process in all deep neural networks models,
since there are no well-established methods and most of them are
more art than science, (b) in the proposed MPDN, a covariance
(correlation) matrix is not estimated to more efficiently capture the
degree of similarity between traits; for this reason, many times
multivariate deep learning models do not outperform univariate
deep neural networks since the clear advantage of multivariate deep
neural networks over the univariate deep neural network model is the
amount of data used for training the model, and (c) there is a lot of
empirical evidence that, in general, deep neural networks outperform
conventional statistical machine learning methods when the num-
ber of observations used to train the model is very large, and the
larger the better (Patterson and Gibson 2017), which is not easy in
the context of genomic selection since most of the time in data sets
collected in the field, there are few observations and a very large
number of independent variables (markers). Also, the proposed
MPDN cannot be used to estimate breeding values since breeding
values, as pointed out by one reviewer, are additive effects and the
proposed MPDN incorporates non-additive effects (Varona et al.,
2018). Also, the proposed MPDN is not able to decompose the
genetic variance orthogonally into additive, dominance, additive-
·additive, dominance·additive, etc., variance components, since
this orthogonal decomposition is valid only under restricted as-
sumptions such as linkage equilibrium, random mating and no
inbreeding (Gianola et al., 2006). Despite these limitations, the
proposed MPDN is attractive and fills the lack of multi-trait models
for count data that can be implemented for moderate and large
data sets. Also, its implementation is very friendly since it can be
implemented using Keras as front-end and Tensorflow as back-
end.

Another important matter that needs to be taken into account in
the implementation of deep neural networks is the choice of the
network architecture (topology). In this application, we used a fully
connected network (feedforward network), where the information
always flows in one direction. However, there are other topology
options like the convolutional neural networks that are very efficient
for images as inputs that are the state of the art for deep learning

Figure 4 Prediction performance of
data set 1 in terms of mean square
error (MSE) (A), mean arctangent ab-
solute percentage error (MAAPE) (B)
and Average Pearson Correlation (APC)
(C) across the traits and models of the
same type. GPR denotes the univariate
generalized Poisson regression model,
MPDN denotes multivariate Poisson
deep neural network and UPDN de-
notes univariate Poisson deep neural
network.

4186 | O. A. Montesinos-López et al.



n■ Table 3 Prediction performance of data set 2 in terms of mean square error (MSE), mean arctangent absolute percentage error (MAAPE)
and Average Pearson Correlation (APC) without taking into consideration the genotype3environment interaction (WI) and taking it into
account (I) in the 13 models. SE_1 denotes the standard error of theMSE, SE_2 denotes the standard error of theMAAPE and SE_3 denotes
the standard error of the APC

Model Interaction Trait MSE SE_1 MAAPE SE_2 APC SE_3

UPDN_1 WI PTR 16.682 3.268 0.503 0.025 0.371 0.045
UPDN_1 WI SB 9.640 0.816 0.408 0.019 0.408 0.029
UPDN_1 WI SN 10.965 1.144 0.350 0.016 0.552 0.037

Average 12.429 1.743 0.420 0.020 0.444 0.037
UPDN_2 WI PTR 11.323 1.172 0.438 0.019 0.458 0.039
UPDN_2 WI SB 8.244 0.671 0.383 0.021 0.449 0.041
UPDN_2 WI SN 8.786 0.716 0.306 0.014 0.622 0.032

Average 9.451 0.853 0.376 0.018 0.510 0.037
UPDN_3 WI PTR 12.444 1.38 0.462 0.023 0.458 0.043
UPDN_3 WI SB 7.833 0.562 0.379 0.016 0.467 0.044
UPDN_3 WI SN 8.542 0.621 0.313 0.014 0.634 0.033

Average 9.606 0.854 0.385 0.018 0.520 0.040
UPDN_4 WI PTR 10.651 0.863 0.421 0.022 0.492 0.032
UPDN_4 WI SB 7.382 0.493 0.373 0.018 0.487 0.038
UPDN_4 WI SN 8.364 0.835 0.294 0.015 0.64 0.034

Average 8.799 0.730 0.363 0.018 0.540 0.035
MPDN_1 WI SN 8.287 0.815 0.300 0.015 0.644 0.031
MPDN_1 WI PTR 11.433 0.892 0.438 0.019 0.514 0.034
MPDN_1 WI SB 8.060 0.683 0.380 0.016 0.474 0.038

Average 9.260 0.797 0.373 0.017 0.544 0.034
MPDN_2 WI SN 8.362 0.816 0.292 0.015 0.649 0.031
MPDN_2 WI PTR 10.523 0.791 0.429 0.019 0.538 0.033
MPDN_2 WI SB 7.357 0.572 0.369 0.016 0.482 0.037

Average 8.747 0.726 0.363 0.017 0.556 0.034
MPDN_3 WI SN 8.312 0.790 0.304 0.015 0.656 0.030
MPDN_3 WI PTR 10.252 0.801 0.420 0.019 0.544 0.033
MPDN_3 WI SB 7.616 0.564 0.375 0.016 0.460 0.038

Average 8.727 0.718 0.366 0.017 0.553 0.034
MPDN_4 WI SN 8.233 0.796 0.278 0.015 0.653 0.030
MPDN_4 WI PTR 10.371 0.778 0.422 0.019 0.528 0.033
MPDN_4 WI SB 7.855 0.593 0.372 0.016 0.449 0.038

Average 8.820 0.722 0.357 0.017 0.543 0.034
GPR_L1_0.5 WI SN 8.389 0.787 0.304 0.015 0.630 0.031
GPR_L1_0.5 WI PTR 10.139 0.769 0.408 0.019 0.535 0.033
GPR_L1_0.5 WI SB 7.168 0.555 0.371 0.016 0.482 0.037

Average 8.565 0.704 0.361 0.017 0.549 0.034
GPR_L1_0.25 WI SN 8.384 0.786 0.304 0.015 0.631 0.031
GPR_L1_0.25 WI PTR 10.132 0.769 0.408 0.019 0.534 0.033
GPR_L1_0.25 WI SB 7.163 0.556 0.371 0.016 0.483 0.037

Average 8.560 0.704 0.361 0.017 0.549 0.034
GPR_L1_0.75 WI SN 8.389 0.787 0.304 0.015 0.631 0.031
GPR_L1_0.75 WI PTR 10.140 0.769 0.408 0.019 0.535 0.033
GPR_L1_0.75 WI SB 7.170 0.555 0.371 0.016 0.482 0.037

Average 8.566 0.704 0.361 0.017 0.549 0.034
GPR_Lassso WI SN 8.390 0.787 0.304 0.015 0.631 0.031
GPR_Lassso WI PTR 10.140 0.769 0.408 0.019 0.535 0.033
GPR_Lassso WI SB 7.171 0.556 0.371 0.016 0.482 0.037

Average 8.567 0.704 0.361 0.017 0.549 0.034
GPR_Ridge WI SN 8.346 0.785 0.303 0.015 0.627 0.032
GPR_Ridge WI PTR 10.262 0.767 0.413 0.019 0.512 0.035
GPR_Ridge WI SB 7.159 0.552 0.372 0.016 0.479 0.038

Average 8.589 0.701 0.363 0.017 0.539 0.035
UPDN_1 I PTR 16.213 1.677 0.503 0.024 0.326 0.047
UPDN_1 I SB 10.089 0.923 0.404 0.021 0.361 0.044
UPDN_1 I SN 12.308 1.113 0.353 0.019 0.494 0.051

Average 12.870 1.238 0.420 0.021 0.394 0.047
UPDN_2 I PTR 13.014 1.308 0.45 0.018 0.391 0.046
UPDN_2 I SB 9.448 0.766 0.382 0.016 0.396 0.046
UPDN_2 I SN 10.923 1.016 0.322 0.014 0.562 0.038

Average 11.128 1.030 0.385 0.016 0.450 0.043

(continued)
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applications where the inputs are raw images; these topologies are
very efficient for capturing correlated patterns in the inputs. Also,
using this topology there are successful applications in the context
of genomic selection like those of Ma et al. (2018) and Waldmann
et al. (2020) that in these particular applications outperformed
feedforward networks. Other deep neural network topologies are
recurrent neural networks that are more appropriate for time series
data because they allow previous outputs to be used as inputs
(Chollet and Allaire 2017).

We found that, in terms of prediction performance, the MPDN
outperformed its univariate Poisson deep neural network counterpart
in both data sets, which can be attributed in part to the fact that for the
training process it used more data, which makes the training process
more efficient in capturing better complex patterns in in the data.
However, our results also provide evidence that, in terms of pre-
diction performance, the proposed multi-trait Poisson deep neural

network model does not outperform the conventional univariate
generalized Poisson regression, since in most cases, we found no
statistical differences between the GPR and MPDN models. This
can be attributed in part to the fact that the data may not have
strong nonlinear patterns and thus it is enough with linear models
like generalized Poisson regression models, and also that our data
sets are small with regard to the number of observations. However,
although the MPDN was not better in terms of prediction perfor-
mance than the GPR models, its performance is competitive and
has the advantage that it can be implemented for moderate-to-large
data sets and is able to capture nonlinear patterns in the data when
they are present. For these reasons, the proposed MPDN model is
an attractive tool for breeders for performing genomic selection
with count multi-traits, and it can enrich the analytical tools
available for genomic prediction for multi-trait count data with
complex nonlinearities.

n■ Table 3, continued

Model Interaction Trait MSE SE_1 MAAPE SE_2 APC SE_3

UPDN_3 I PTR 13.346 1.472 0.456 0.019 0.43 0.045
UPDN_3 I SB 9.061 0.598 0.384 0.015 0.431 0.04
UPDN_3 I SN 10.718 1.042 0.323 0.018 0.575 0.047

Average 11.042 1.037 0.388 0.017 0.479 0.044
UPDN_4 I PTR 12.421 1.364 0.434 0.021 0.441 0.046
UPDN_4 I SB 8.028 0.62 0.372 0.016 0.451 0.039
UPDN_4 I SN 9.317 0.913 0.309 0.019 0.62 0.035

Average 9.922 0.966 0.372 0.019 0.504 0.040
MPDN_1 I SN 11.878 1.120 0.338 0.014 0.535 0.035
MPDN_1 I PTR 15.276 1.231 0.487 0.018 0.391 0.040
MPDN_1 I SB 10.068 0.776 0.400 0.015 0.370 0.041

Average 12.407 1.042 0.408 0.016 0.432 0.039
MPDN_2 I SN 11.503 1.044 0.323 0.014 0.595 0.031
MPDN_2 I PTR 12.745 1.017 0.440 0.018 0.473 0.037
MPDN_2 I SB 9.341 0.718 0.379 0.015 0.427 0.038

Average 11.196 0.926 0.381 0.016 0.498 0.035
MPDN_3 I SN 9.942 0.896 0.310 0.015 0.585 0.033
MPDN_3 I PTR 11.654 0.910 0.424 0.019 0.471 0.037
MPDN_3 I SB 8.226 0.622 0.375 0.016 0.425 0.038

Average 9.941 0.809 0.370 0.017 0.494 0.036
MPDN_4 I SN 10.314 0.914 0.297 0.015 0.589 0.033
MPDN_4 I PTR 12.018 0.933 0.418 0.019 0.462 0.036
MPDN_4 I SB 8.245 0.616 0.373 0.016 0.423 0.039

Average 10.192 0.821 0.363 0.017 0.491 0.036
GPR_L1_0.5 I SN 10.649 0.884 0.365 0.014 0.527 0.036
GPR_L1_0.5 I PTR 11.539 0.864 0.434 0.018 0.462 0.035
GPR_L1_0.5 I SB 8.482 0.622 0.400 0.016 0.347 0.040

Average 10.223 0.790 0.400 0.016 0.445 0.037
GPR_L1_0.25 I SN 10.661 0.883 0.366 0.014 0.526 0.036
GPR_L1_0.25 I PTR 11.542 0.866 0.435 0.018 0.462 0.035
GPR_L1_0.25 I SB 8.488 0.623 0.400 0.016 0.347 0.040

Average 10.230 0.791 0.400 0.016 0.445 0.037
GPR_L1_0.75 I SN 10.654 0.886 0.365 0.014 0.528 0.036
GPR_L1_0.75 I PTR 11.557 0.865 0.434 0.018 0.460 0.035
GPR_L1_0.75 I SB 8.475 0.621 0.400 0.016 0.347 0.040

Average 10.229 0.791 0.400 0.016 0.445 0.037
GPR_Lassso I SN 10.652 0.886 0.365 0.014 0.528 0.036
GPR_Lassso I PTR 11.553 0.865 0.434 0.018 0.460 0.035
GPR_Lassso I SB 8.490 0.622 0.401 0.016 0.347 0.040

Average 10.232 0.791 0.400 0.016 0.445 0.037
GPR_Ridge I SN 11.722 0.962 0.395 0.013 0.601 0.033
GPR_Ridge I PTR 11.986 0.885 0.438 0.018 0.503 0.035
GPR_Ridge I SB 8.444 0.659 0.386 0.015 0.461 0.038

Average 10.717 0.835 0.406 0.015 0.522 0.035
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However, as one of the reviewers pointed out, a good model not
only has good generalization performance, but it gives some insight
into the workings of the system. For this reason, the current state-of-
the-art of deep learning models are not really useful for inference and
association studies, since their parameters (weights) many times
cannot be interpreted as in many statistical models; also, since neither
feature selection nor feature importance are obvious, for this reason,
the DL methodology inhibits testing hypotheses about the biological
meaning with parameter estimates. But there are nowadays current
research in this direction for implementing appropriate DL models,
that in addition to doing good prediction performance, allow an
understanding of the biological significance of the outputs. This
research is of paramount importance since there are still large
difficulties in understanding the biological background and genetic
architecture of many traits. Particularly for traits that are difficult or
expensive to measure in (poorly defined) phenotypes, where the
relationship between genome and phenome is far from being
understood.

It is important to point out that the proposed MPDN model is
very flexible since it allows using raw inputs as images and other
non-preprocessed inputs that cannot be applied directly with
most conventional statistical machine learning methods used in
genomic selection. For these reasons, the proposed MPDN can be
used in other domains like biomedical informatics (Du et al.,
2011) finance, health science, marketing, etc., where there is a
great need for predicting multivariate counts as a function of
complex inputs.

Finally, although the proposed model was evaluated with only
two data sets, the results provide evidence that it is competitive with
univariate deep learning tools and conventional statistical learning
tools and has the advantage that it can capture nonlinear patterns
better than generalized Poisson regression and can be implemented
in existing software (such as Keras as front-end and Tensorflow
as back-end) that is very user friendly. Also, like all deep neural
networks, the proposed MPDN will perform better than conven-
tional statistical learning models in the context of large data sets,
complex input information like images and very complex nonlinear

patterns. However, more applications are needed in the context of
genomic selection to gain more insight into the power of these
models.

CONCLUSIONS
A model for count multi-trait data were proposed under a multi-
variate deep neural framework. The proposed MPDN model can be
implemented using Tensorflow as back-end and Keras as front-end,
and for this reason, it can be implemented for moderate and large
data sets in a very user friendly environment. Also, due to the fact that
the proposed MPDN model is an artificial deep neural network
model, it is able to capture nonlinear patterns by including in the
specification of the network more than one hidden layer, which
applies nonlinear transformation to the data to be able to capture
these complex patterns. We found that the proposed MPDN out-
performed the univariate Poisson deep neural network model, but it
was not better than the generalized univariate Poisson regression
models using two real data sets; thus more research is needed to prove
the power of the MPDN model in the context of genomic selection.
Although we obtained evidence that the proposed MPDN is com-
petitive with regard to univariate deep learning models and conven-
tional generalized Poisson regression models and is able to fill the lack
of multi-trait predictions for count data in genomic selection, it also
allows using raw inputs like images (which is not straightforward in
conventional genomic prediction models) and its implementation
does not require a lot of knowledge of statistics, machine learning and
computer science since the libraries that currently exist for imple-
menting these models are very user friendly.
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