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Abstract

Macrophage plasticity is an important feature of these innate immune cells. Macrophage 

phenotypes are divided into two categories, the classically activated macrophages (CAM, M1 

phenotype) and the alternatively activated macrophages (AAM, M2 phenotype). M1 macrophages 

are commonly associated with the generation of proinflammatory cytokines, whereas M2 

macrophages are anti-inflammatory and often associated with tumor progression and fibrosis 

development. Macrophages produce high levels of reactive oxygen species (ROS). Recent 

evidence suggests ROS can potentially regulate macrophage phenotype. In addition, macrophages 

phenotypes are closely related to their metabolic patterns, particularly fatty acid/cholesterol 

metabolism. In this review, we briefly summarize recent advances in macrophage polarization 

with special attention to their relevance to specific disease conditions and metabolic regulation of 

polarization. Understanding these metabolic switches can facilitate the development of targeted 

therapies for various diseases.
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Origins of Macrophages

Macrophages are innate immune cells of the mononuclear phagocyte system that play an 

important role in the cross-talk between the innate and adaptive immunity [1,2]. The 

function of macrophages varies significantly with regard to tissue specificity, such as the 

alveolar macrophages, the adipose tissue macrophages, Kupffer cells in the liver, and 

microglia cells in the central nerve system. Based on the expression of F4/80, murine tissue 

macrophages can trace their origin back to two sources. Macrophages that are derived within 
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bone marrow usually express low F4/80, whereas macrophages that originate from the 

embryonal yolk sac typically express high level of F4/80 and are capable of proliferating in 

situ, a scenario seen in the radiation-induced chimeras and the bone marrow transplant mice 

[3–5]. To further delineate the circulating monocyte derived macrophages, studies using 

specific surface markers, lymphocyte antigen 6C (Ly6C), C-C chemokine receptor type 2 

(CCR2), and CX3C chemokine receptor 1 (CX3CR1), two sets of monocytes are identified: 

the Ly6C-high and Ly6C-low monocytes [6]. The Ly6Chigh monocytes are inflammatory 

monocytes, which have high expression of CCR2 and a low level of CX3CR1. They are 

short-lived and rapidly recruited to the site of inflammation during the acute infectious 

process. The Ly6Clow monocytes do not express CCR2 but have high level of CX3CR1. 

They usually do not migrate immediately to the site of infection due to their low expression 

of CCR2. However, Ly6Clow monocytes are usually long-lived cells and play an important 

role in chronic processes, such as tumorigenesis and fibrotic remodeling.

Macrophage Polarization

Macrophage polarization is a process through which macrophages obtain different 

phenotypes. The phenotype of a macrophage is closely related to the microenvironment in 

which they reside, as macrophages are able to switch phenotypes constantly both in vivo and 

in vitro [7,8]. In an analogy to the T-helper-cell nomenclature, where Th1 cells are 

associated with the response against bacteria or viruses, and Th2 cells are associated with 

the response to parasitic infection and tissue remodeling, macrophages can be denoted as 

M1 and M2 macrophages. M1 macrophages (or classically activated macrophages, CAMs) 

are pro-inflammatory and have potent microbicidal and tumoricidal activity, whereas the M2 

macrophages (or alternatively activated macrophages, AAMs) are involved in tumor 

progression and tissue remodeling, including fibrosis [9,10].

Classical macrophage activation requires priming with IFN-γ, the canonical cytokine 

generated by Th1 cells, and activation of the downstream transcription factors, such as 

signal transducer and activator of transcription 1 (STAT1), nuclear factor-kappa lightchain-

enhancer of activated-B cells (NF-κB), and interferon regulatory factor 5 (IRF-5). These M1 

macrophages express inflammatory genes, including TNF-α, IL-1β, and IL-6. Alternatively 

activated macrophages are usually activated by Th2 cytokines, IL-4 and/or IL-13. The wide 

range of immunosuppressive cytokines and growth factors alternatively activated 

macrophages produce, such IL-10, IL-1ra (IL-1 receptor antagonist), and transforming 

growth factor-β (TGF-β), are closely related to their ability to attenuate inflammation and 

promote extracellular tissue remodeling. Transcription factors involved in M2 polarization 

include STAT3, STAT6, IRF-4, and peroxisome proliferator-activated receptor (PPAR)-γ 

(Figure 1). Differential metabolism of L-arginine is characteristic of M1 and M2 

macrophages. L-arginine is metabolized by iNOS to generate nitric oxide (NO) in M1 

macrophages and by arginase-1 in M2 macrophages to augment the production of 

polyamines and L-proline, which are essential substrates for collagen synthesis [11,12].

The origin of macrophages also plays a critical role in determining macrophage phenotype. 

L. sigmodontis infection induces M2 macrophage proliferation in situ, rather than by the 

recruitment and differentiation of circulating monocytes [13]. In contrast, in a LPS-induced 
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COPD model, using MRI tracking of nanoparticles-labeled ex vivo, prepolarized bone 

marrow-derived macrophages, both M1 and M2 are recruited to the sites of inflammation in 

the lung at similar level [14].

Macrophage polarization and human diseases

The classically activated M1 macrophages boast the basic macrophage function as implied 

by the name given by Elie Metchnikoff in 1887. They are the dominant cells in acute 

infection, participating in bacteria/pathogen clearance and antigen presenting by their 

effective phagocytic ability. They also have compelling tumoricidal activity. M2 

macrophages are actively involved in many processes associated with parasitic infection, 

immune tolerance, wound healing, and tumorigenesis. The function of M1 and M2 

macrophages are detailed below with a particular focus of M2 macrophage and human 

diseases.

Inflammation, infection, and sepsis

The generation and role of alternatively activated macrophages (AAMs) has been studied 

extensively in helminth-related diseases [15–17]. After N. brasiliensis subcutaneous 

inoculation, their larvae travel to the lung and trigger a potent M2 polarization in alveolar 

macrophages [15]. Helminth infection not only initiates M2 polarization, but also is also 

capable of subverting the M1 polarization as shown in Francisella tularensis infection [18]. 

In an animal model of schistosomiasis, conditional macrophage/neutrophil IL-4 receptor 

alpha-deficient mice (LysMCre-IL-4Rα (−/flox)) show a predominant M1 polarization and 

more severe infection with 100% mortality [19]. Endotoxin or lipopolysaccharide (LPS) 

tolerance is the reduced responsiveness to LPS stimulus after repeated exposure. It is a 

common scenario in patients with persistent sepsis, especially in intensive care settings [20]. 

TNF-α production was significantly elevated in monocytes treated with one dose of LPS. 

However, if these cells were pre-challenged with the same dose of LPS 24 h before the 

second dose, the level of TNF-α production was greatly reduced [21]. Peripheral blood 

monocytes and macrophages from these patients often display features resembling 

alternative activation of monocytes, including reduced production of pro-inflammatory 

mediators and expression of genes involved in tissue remodeling [21,22]. Similarly, 

peripheral monocytes collected from septic patients have higher level of T17 and Treg cell 

populations with elevated CD206 and CD163 expression, suggesting LPS-tolerance and M2 

polarization [23].

Wound and tissue remodeling

Wound macrophages are known to undergo alternative activation [24]. Delayed healing 

occurs in mice with dysfunctional M2 macrophages or deficiency of signature M2 gene 

expression, such as arg1 [25]. Arginase-1 is pertinent to fibrosis development as it 

metabolizes arginine to generate L-ornithine, which will be utilized by ornithine 

decarboxylase to generate L-proline and polyamines. While induction of arginase-1 by IL-4 

and/or IL-13 is commonly believed to contribute to collagen deposition and fibrosis 

development [26,27], reports suggest that up-regulation of arginase-1 in macrophages 

actually inhibits fibrosis development as they compete with fibroblasts for arginine as the 
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substrate for L-ornithine synthesis and by inhibiting Th2 cytokine production, particularly 

IL-13 [28]. Both IL-4 and IL-13 receptors have been shown to be essential for fibrosis 

development in S. mansoni granuloma formation [29]. Alternative activation of 

macrophages is the predominant macrophage phenotype in tissue samples from patients with 

chronic pancreatitis, and mice lacking IL-4Rα have less M2 macrophages and are protected 

from developing fibrotic changes after ceruletide injection [30]. By using an IL-4/IL-13 

blocking peptide, similar anti-fibrotic effects can be achieved via inhibition of M2 

polarization [30].

Cardiovascular diseases

The exact mechanism of how different macrophage phenotypes influence myocardial 

remodeling remains largely unknown. M2 macrophages have been shown to be crucial for 

post-myocardial infarction remodeling as IL-13−/− mice have significant worsening outcome 

in an infarction model compared to wild-type mice [31]. Another study showed that 

mineralocorticoid receptor knockout mice displayed a dominant M2 polarization pattern, 

and these mice are protected against cardiac hypertrophy, fibrosis, and vascular damage 

caused by angiotensin II. Additionally, aldosterone can induce M1 polarization, while 

eplerenone, an aldosterone antagonist, inhibits M1 activation, underscoring the 

cardioprotective role of M2 macrophages [32].

Pulmonary diseases

Alternatively activated macrophages are also implicated in various pulmonary disorders, 

including COPD, asthma, pulmonary hypertension, and pulmonary fibrosis. Plasma 

Chitinase-1, a signature M2 protein, has been used to quantify disease severity in COPD 

patients [33]. One study shows a remarkable example of a pathogenic role of IL-13 in 

chronic obstructive pulmonary disease (COPD) that underscores the effect of M2 

macrophages. The macrophages upregulate IL-13Rα1 expression and become alternatively 

activated by an autocrine or paracrine mechanism [34], which leads to COPD progression. 

The role of different macrophage phenotypes in pulmonary hypertension remains 

undetermined. It is known that fibroblast-derived IL-6 polarizes alveolar macrophages into 

an M1 pattern and drives the development of pulmonary hypertension in a paracrine fashion, 

together with activation of signature M1 transcription factors, STAT3 and HIF-1α [35]. 

Others have found that macrophages acquire an M2 phenotype during hypoxia, and M2 

macrophages lead to the proliferation of pulmonary artery smooth muscle cells. Blocking 

M2 polarization can potentially attenuate the progression of pulmonary hypertension by 

attenuating smooth muscle cell proliferation [36]. Additionally, M2 macrophages are known 

to be prevalent in the lungs of patients with idiopathic pulmonary fibrosis, sarcoidosis, 

systemic sclerosis, asbestos-induced pulmonary fibrosis, and gamma-herpes virus-induced 

pulmonary fibrosis [7,37,38]. Conversely, mice with predominant M1 macrophages are 

protected from developing asbestos-induced pulmonary fibrosis [7,39]. Similarly, in a 

bleomycin-induced pulmonary fibrosis model, both fibrosis and alternative activation of 

macrophages are prolonged in TNF-α−/− mice. Intra-tracheal delivery of recombinant TNF-

α can ameliorate established pulmonary fibrosis, partially via inducing Fas-mediated 

fibroblast apoptosis [40,41]. Moreover, CCL-18, a signature M2 chemokine, is known to 
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induce lung fibroblast collagen production [42], highlighting the importance of crosstalk 

between macrophages and fibroblasts.

Cancer

Tumor-associated macrophages (TAMs) have many properties of M2 macrophages, and 

they contribute to tumor local invasion through secreting proteinases, such as cathepsin [43]. 

GB111-NH2, an inhibitor of cathepsin, decreases expression of the classic M2 genes, fizz1 

and jmjd3, resulting in tumor regression [44]. TAMs also promote angiogenesis and tumor 

growth through VEGF, leading to chemo-resistance [45,46]. M2 macrophages promote 

tumorigenesis by increasing signature M2 markers, such as CCL-18 [47]. IL-13, along with 

its receptors IL-13Rα2, induces TGF-β expression and contributes to tumor development by 

inhibiting cytotoxic T cells [48]. In contrast, blockage IL-13Rα2 via siRNA reduces 

metastasis and promotes survival [49]. Exposing TAMs to the canonical Th1 cytokine, INF-

γ, can reprogram TAMs to acquire M1 features and regain anti-tumor activity [50]. 

Similarly, targeting transcription factors crucial for TAM differentiation, such as STAT3, 

can also achieve tumoricidal function [51]. Molecular inhibitors targeting M2 macrophages, 

such as the pro-apoptotic peptide [52] and anti-VEGF antibody [53], are considered to be 

potential candidates for cancer treatment.

Metabolic regulation of macrophage polarization

Redox status regulates macrophage polarization

The role of oxidative stress in macrophage polarization is controversial. The development of 

granulomas from S. mansoni exposure is not impaired in IL-4-deficient mice [54,55], as 

other Th2 cytokines remain elevated. In addition, wound macrophages are known to 

undergo alternative activation despite a deficiency of Th2 cytokines in the wound 

environment, and the macrophage phenotype is sustained in mice lacking IL-4R. It is not 

clear from these studies what induced the alternative activation.

Oxidative stress has long been known to play an important role in the development and 

progression of pulmonary diseases. Pro-inflammatory M1 genes, such as tnf-α, il-1β, and 

inos, have all been shown to be regulated by redox proteins, including Cu,Zn-SOD [56–58]. 

ym1 and fizz1, two signature M2 genes, are elevated in ovalbumin-challenged asthmatic 

mice, and their expression can be attenuated by treatment with N-acetylcysteine, a thiol-

reducing agent, linking M2 polarization to oxidative stress [59]. Previous studies have 

shown that increases in the oxidative metabolic environment fuels alternative activation of 

macrophages [60], while others show that M2 macrophages generate low levels of ROS 

[61]. The H2O2 gradient, generated by dual oxidases (DUOX) in wound epithelium of 

zebrafish larvae, is known to be the chemo-attractants for macrophage recruitment [62]. 

IL-4-stimulated M2 macrophages have an enhanced mitochondrial oxygen-consumption rate 

[63], and inhibition of mitochondrial respiration by oligomycin dramatically increased the 

mRNA expression level of pro-inflammatory genes, such as il-6, tnf-α, and il-1β, 

underscoring an important role of mitochondrial respiration in M2 polarization [64].

Data linking ROS to macrophage activation are emerging, but the exact role of ROS still 

requires further investigation. The loss of NADPH in a type I diabetes mouse model, 
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superoxide-deficient bone marrow-derived macrophages had a marked reduction in 

proinflammatory M1 gene expression and showed increased M2 polarization, together with 

STAT6 activation [65]. Deficiency of nuclear-encoded protein NADH: ubiquinone 

oxidoreductase iron-sulfur protein 4 (Ndufs4), a critical component of mitochondrial 

complex I, is known to be related to impairment of oxidative phosphorylation [66]. Global 

Ndufs4 loss causes systemic inflammation with a predominant M1 polarization [67]. At the 

same time, a metabolic shift from fatty acid oxidation (FAO) to glycolysis was observed in 

Ndufs4−/− pups. Moreover, Ndufs4−/− bone marrow macrophages have significantly higher 

superoxide levels, which can be attenuated by MitoTEMPO to further decrease pro-

inflammatory gene expression. Conversely, circulating M2 macrophages accelerate the 

pathological progression of amyotropic lateral sclerosis (ALS), a disease characterized with 

aberrant Cu,Zn-SOD function and excessive H2O2 production [68]. Over-expression of 

Cu,Zn-SOD, the redox protein that catalyzes the generation of H2O2, polarizes macrophages 

to an M2 phenotype via activation of STAT6 with a cysteine residue (Cys528) serving as the 

redox switch [7]. Moreover, Cu,Zn-SOD-mediated macrophage polarization can be altered 

by modulating H2O2 generation. As previously mentioned, differential metabolism of L-

arginine is characteristic of M1 and M2 macrophages. Overexpression of Cu,Zn-SOD leads 

to a reduction of inos gene expression and NO synthesis, while arginase-1 expression and 

urea generation is enhanced [7] (Figure 2). Acute chlorine gas exposure leads to oxidation of 

surfactant protein and augmentation of M2 genes, such as arg1, fizz1, and ym1 [69]. Another 

study showed that alveolar macrophages exposed to ozone have elevated levels of both M1 

and M2 genes [70]. Interestingly, one study has compared macrophage phenotype in two 

Nox2-deficient mouse models, gp91phox−/− and p47phox−/−. Mice deficient in p47phox−/− 

have a significant increase of M2 gene expression upon IL-4 stimulation and are protected 

from Listeria monocytogenes infection compared with gp91phox−/− mice [71]. Explanations 

for the differences include that macrophage polarization is driven by specific reactive 

oxygen species (H2O2 vs O2 •−), the different origin of ROS (membrane-bound NADPH 

oxidase, particularly Nox2 versus mitochondria), or the different tissue and intracellular 

distribution of NADPH oxidases or SODs.

Redox regulation in macrophage polarization is closely related to hypoxic conditions and 

hypoxia-inducible factors (HIFs) activation. In murine macrophages, the expression of 

hypoxia-inducible factors HIF-1α and HIF-2α appears to be dependent on respective 

inducers. M1-promoting factors induce the expression of HIF-1α, whereas IL-4 primarily 

induces HIF-2α that regulates M2 polarization [72]. HIF-1α−/− macrophages exhibit 

diminished production of TNF-α and IL-6 in response to LPS/IFN-γ stimulation in a model 

of tumor spheroids [73].

Oxidative stress, particular the mitochondrial redox signal, is known to cause endoplasmic 

reticulum (ER) stress due to the proximal distance between mitochondria and ER [74]. 

Asbestos-treated macrophages, which show M2 polarization, have elevated ER stress with 

elevated level of binding immunoglobulin protein (BiP) and C/EBP homologous protein 

(CHOP) [75]. Induction of ER stress induces macrophage polarization from the M1 into the 

M2 phenotype leading to increased cholesterol deposition and enhanced foam cell formation 

[76]. MCP-1-induced protein (MCPIP), induced by either STAT6 or KLF-4, inhibits NF-κB 
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in murine macrophages and instigates M2 polarization via induction of ER stress [77]. BiP 

and CHOP levels are elevated in THP-1 monocytes treated with ER-stress inducers, 

tunicamycin or thapsigargin, and the THP-1 cells undergo M2 polarization via the PPAR-γ 

pathway. Interestingly, M2 polarization could be reversed by treating with ER stress 

inhibitor 4-phenylbutyrate (PBA), emphasizing a potential therapeutic target [78].

Metabolism of fatty acid/cholesterol regulates macrophage polarization

Prior data show that M2 polarization is dependent on fatty acid oxidation (FAO), whereas 

M1 macrophages rely on aerobic glycolysis [79]. The differences between the two metabolic 

pathways involve a switch in the expression of 6-phosphofructo-2-kinase/fructose-2,6-

bisphostase (PFK2). M1 macrophages display a high expression of glycolytic enzymes and 

glycolysis-related metabolites. This shift toward aerobic glycolysis, known as the Warburg 

effect in cancer biology, rapidly provides immune cells with ATP and metabolic 

intermediates. In contrast, M2 macrophages have increased expression of genes encoding 

molecules in FAO and oxidative phosphorylation pathways [63]. Blocking oxidative 

metabolism not only selectively abrogates the ability of cells to undergo alternative 

activation but also potentiates the expression of M1 genes. Conversely, overexpressing 

PGC-1β, a key transcriptional proponent of oxidative metabolism, potentiates alternative 

activation and prevents classical activation by augmenting FAO [60] (Figure 3). Compared 

with M1 macrophages, which exert their functions over short time periods, M2 macrophages 

are engaged in long-term cellular activities, and the relative efficiency of FAO versus that of 

glycolysis is well suited to meet the metabolic requirements of their roles [80]. M2 

macrophages have been shown to have longer survival compared to their M1 counterparts 

[63], and FAO is known to support cellular longevity [81].

The isoprenoid pathway, which is essential for cholesterol metabolism, is a new target of 

modulating macrophage function. The use of statins has been associated with interstitial 

lung abnormalities in smoking individuals, a condition known to have a predominance of 

M2 macrophages [82]. Statins have potent anti-inflammatory properties and are known to 

orchestrate the immune response toward alternative activation via regulating isoprenoid 

biosynthesis [83]. The inhibition of farnesyltransferase, geranylgeranyltransferase I, and 

geranylgeranyltransferase II decreases cell survival, migration, and proliferation in many 

cancers [84]. Activation of Rac1 by geranylgeranylation in alveolar macrophages promotes 

characteristics of M2 macrophages and associates with the development of oxidative stress 

and pulmonary fibrosis. Digeranyl bisphosphonate (DGBP), which impairs 

geranylgeranylation of Rho GTPases by inhibiting geranylgeranyl diphosphate synthase, 

reduces mitochondrial oxidative stress and abrogates progression of pulmonary fibrosis by 

inhibiting Rac1 activation and its mitochondrial translocation [85].

Both the Akt pathway and the isoprenoid pathway are important in maintaining cell survival. 

Akt regulates apoptosis by modulating isoprenoid pathway. Akt-deficient macrophages 

(Akt+/−) have a significant increase of apoptosis. Akt overexpressing macrophages have a 

distinct M2 polarization pattern and promote fibrotic development. Conversely, Akt+/− mice 

are protected from developing pulmonary fibrosis [86]. Statins activate Akt and, as 

previously mentioned, the use of statins has been associated with interstitial lung 
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abnormalities in smoking individuals [82,87]. Surface scavenger receptors, which are crucial 

for internalization of extracellular oxidized lipid particles, are capable of regulating 

macrophage polarization. CD36 is known to be important for triacylglycerol substrate 

uptake and sequential oxidative phosphorylation, which leads to M2 polarization [63]. 

Another surface scavenger receptor, MARCO (macrophage receptor with collagenous 

structure) has been shown to increase mitochondrial oxidative stress and regulates 

macrophage polarization. Over-expression of wild-type MACRO leads to increased M2 

gene expression, while knockdown of MARCO reduces M2 gene expression. Moreover, 

MACRO−/− mice are protected from developing asbestos-induced pulmonary fibrosis. 

Inhibition of the scavenger receptor by fucoidan reduces mitochondrial H2O2 production, 

which inhibits macrophage M2 polarization [88]. Similarly, MARCO can limit 

inflammatory response as MARCO-deficient mice show an early-enhanced development of 

inflammation in response to influenza infection [89]. CD163, a scavenger receptor for the 

hemoglobin-haptoglobin complex, is expressed at high level by M2 macrophages in patients 

with idiopathic pulmonary fibrosis [90].

Conclusion

Macrophage polarization is a dynamic process that our immune system utilizes to maintain 

an immunological homeostasis. Various factors influence polarization and further 

investigation for metabolic regulation in shaping the macrophage differential profile is 

warranted. In this review, we briefly summarize recent advances in macrophage polarization 

with special attention to their relevance to specific disease conditions and metabolic 

regulation of polarization. Understanding these metabolic switches can facilitate the 

development of targeted therapies for various diseases related to the distinct macrophage 

subtype.
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Figure 1. 
General concepts of macrophage polarization and properties of M1 and M2 macrophages. 

INF-γ induces M1 (classical) macrophage polarization whereas IL-4 and/or IL-13 induce 

M2 (alternative) macrophage polarization.
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Figure 2. 
Redox regulation of macrophage polarization. Superoxide generated by either membrane-

bound NADPH oxidase or mitochondrial electron transfer chain (ETC) will be converted to 

H2O2 by superoxide dismutase, which will inhibit M1 polarization and activate M2 

polarization via STAT6. Revised from [7].
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Figure 3. 
Metabolic regulation of macrophage polarization. M1 macrophages have increased uptake of 

glucose and augmented glycolysis, whereas M2 macrophages have increased uptake of lipid 

and augmented fatty acid oxidation. Specific cytokines and transcription factors regulate 

these pathways. Activation of PFK2 leads to M1 polarization while over-expressing PGC-1β 

leads to M2 polarization.

He and Carter Page 16

J Clin Cell Immunol. Author manuscript; available in PMC 2016 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


