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ABSTRACT

Objective: The spread of coronavirus disease 2019 (COVID-19) has led to severe strain on hospital capacity in

many countries. We aim to develop a model helping planners assess expected COVID-19 hospital resource utili-

zation based on individual patient characteristics.

Materials and Methods: We develop a model of patient clinical course based on an advanced multistate sur-

vival model. The model predicts the patient’s disease course in terms of clinical states—critical, severe, or mod-

erate. The model also predicts hospital utilization on the level of entire hospitals or healthcare systems. We

cross-validated the model using a nationwide registry following the day-by-day clinical status of all hospitalized

COVID-19 patients in Israel from March 1 to May 2, 2020 (n¼2703).

Results: Per-day mean absolute errors for predicted total and critical care hospital bed utilization were 4.726 1.07 and

1.686 0.40, respectively, over cohorts of 330 hospitalized patients; areas under the curve for prediction of critical ill-

ness and in-hospital mortality were 0.886 0.04 and 0.966 0.04, respectively. We further present the impact of patient

influx scenarios on day-by-day healthcare system utilization. We provide an accompanying R software package.

Discussion: The proposed model accurately predicts total and critical care hospital utilization. The model ena-

bles evaluating impacts of patient influx scenarios on utilization, accounting for the state of currently hospital-

ized patients and characteristics of incoming patients. We show that accurate hospital load predictions were

possible using only a patient’s age, sex, and day-by-day clinical state (critical, severe, or moderate).

Conclusions: The multistate model we develop is a powerful tool for predicting individual-level patient out-

comes and hospital-level utilization.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic is taking its

toll on healthcare systems around the world, with some patients re-

quiring lengthy general and intensive care.1–4

Given the danger of unprecedented burden on healthcare systems

due to COVID-19, there is a need for tools helping decision makers

plan resource allocation on the unit, hospital and national levels.

COVID-19 hospitalization times are often lengthy and can vary sub-

stantially among patients.5 Therefore, in this study, we aimed to de-

velop a model of hospitalization trajectories of COVID-19 patients,

in order to accurately predict the number of hospitalized and critical

care patients. The predictions are based on the clinical state of each

of the currently hospitalized patients, and projections of hospital pa-

tient influx.

We validated the model using a nationwide hospitalization regis-

try, which includes the day-by-day hospitalization record of all con-

firmed COVID-19 patients in Israel between March 1 and May 2,

2020, totaling 2703 patients (see Table 1).

To facilitate use of the model, we provide an R (version 3.5.1; R

Foundation for Statistical Computing, Vienna, Austria)6 software

package (https://github.com/JonathanSomer/covid-19-multi-state-

model), enabling anyone with similar data to develop a model tai-

lored to specific patient and healthcare system characteristics, and a

Web application (https://covid19-hospitalcourse.net/), taking as in-

put the patient characteristics and predicting the probabilities of dif-

ferent disease courses. Finally, we share an anonymized version of

the dataset used to develop the tool.

MATERIALS AND METHODS

The main idea behind our proposed model is tracking the manner in

which hospitalized COVID-19 patients transitions between different

clinical states. Specifically, we assume a hospitalized patient is in 1

of 3 clinical states: moderate, severe, or critical; the exact definition

of the states for the validation cohort was given by the Israeli Minis-

try of Health (MOH) and is detailed subsequently.

As an example, a patient might be hospitalized in a severe state,

deteriorate into a critical state after 5 days, spend 10 days in a criti-

cal state, and then recover and spend 3 days in a severe state and 2

more days in a moderate state before being discharged from the hos-

pital. In Table 2, we show the distribution of all transitions observed

in the Israeli COVID-19 registry, including patients dying and

patients being discharged from hospital (here, we merged moderate

and severe, as explained subsequently). In general, the transition

process is non-Markovian, and observations are often right censored

or left truncated. We therefore developed a multistate model that

can account for all these properties.

Outcomes
The primary outcome was prediction of total and critical care bed

occupancy on a calendar scale, where future occupancy is due to

currently hospitalized patients staying in the hospital, and due to

newly arriving patients. We predict occupancy by predicting for

each patient their day-by-day clinical state, including days in which

the patient is in a critical state, discharged, or possibly died. We fur-

ther use the day-by-day clinical state predictions for predicting the

risk for a single patient of entering a critical state at some point

throughout hospitalization, risk of in-hospital mortality, expected

hospital length of stay (LOS) and expected LOS in critical state.

Statistical analysis methods
We modeled the way patients move between different clinical states

over time by a multistate Cox regression–based survival analysis

with right censoring, competing events, recurrent events, left trunca-

tion, and time-dependent covariates.7–10 The multistate model has 4

Table 1. Demographics and clinical characteristics of patients in the Israeli COVID-19 registry who were hospitalized between March 1 and

May 2

Characteristic Total Critical by May 2 In-Hospital Mortality by

May 2

Hospitalized on May 2

Patients 2675 (100)a 437 (16.34) 200 (7.48) 311 (11.63)

Female 1171 (43.78) 146 (33.41) 89 (44.5) 130 (42)

Age, y 55.3 6 21.7 71 6 16.35 80.66 6 12.78 65.5 6 20.01

Age

<20 y 106 (3.96) 3 (0.69) 0 (0) 8 (2.57)

20-29 y 316 (11.81) 4 (0.92) 0 (0) 15 (4.82)

30-39 y 272 (10.17) 14 (3.2) 2 (1) 20 (6.43)

40-49 y 330 (12.34) 19 (4.35) 3 (1.5) 15 (4.82)

50-59 y 401 (15) 57 (13.04) 6 (3) 36 (11.58)

60-69 y 458 (17.12) 79 (18.08) 20 (10) 56 (18)

70-79 y 412 (15.4) 118 (27) 50 (25) 80 (25.72)

80þ y 380 (14.21) 143 (32.72) 119 (59.5) 81 (26.05)

Initial state

Moderate 2048 (76.56) 113 (25.8) 50 (25) 164 (52.73)

Severe 432 (16.14) 129 (29.5) 66 (33) 83 (26.69)

Critical 195 (7.29) 195 (44.6) 84 (42) 64 (20.58)

Values are n (%) or mean 6 SD.

COVID-19: coronavirus disease 2019.
aPatients who were hospitalized at least 1 day. Excluded 28 patients with missing age or sex information.
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states, following the clinical states defined by the Israeli MOH de-

tailed subsequently in the Model Validation section: (1) moderate or

severe, (2) critical, (3) discharged, and (4) deceased. We merged the

moderate and severe clinical states into a single model state due to

sample size considerations. This multistate model consists of 6 Cox

regression models, 1 for each possible state-to-state transition,

shown in Figure 1; some transitions were excluded as either clini-

cally implausible or due to few observed transitions. Details can be

found in Supplementary Appendix S1.1.

The 6 semiparametric models each include a set of covariates,

possibly with time-dependent covariates and different covariates for

each model. In our data analysis with the Israeli cohort, we took in

age, sex, and state at hospitalization as baseline covariates; for the

latter, we kept a distinction between moderate and severe clinical

states. We also added time-dependent covariates encoding the hospi-

talization history of the patient: cumulative days in hospital, and

whether the patient had been in critical state before (see Supplemen-

tary Appendix S1.1).

Estimation of the 6 models involves several major issues, beyond

right censoring: (1) multistate process, in which each patient may

visit the states moderate or severe, critical, and discharged multiple

times; (2) left truncation, in which a patient entering a new state af-

ter m days since hospitalization is left truncated by m; (3) competing

risks, in which in case of multiple possible transitions from a certain

state, the occurrence of one type of transition at a certain point in

time prevents the occurrence of other transitions at that time point;

and (4) recurrent events, in which patients may visit states moderate

or severe, critical, and discharged multiple times. We overcome all

the previous challenges and provide consistent estimators of the 6

models (see Supplementary Appendix S1.2 for details).

Making predictions based on our proposed multistate model

requires estimating the absolute risks, also known as the cumulative

incidence functions. The absolute risks involve estimating the proba-

bilities of moving between states, the time to be spent at each state

and integrating over all possible combinations between any possible

triplet of entry state, exit state and LOS. Because hospitalization

consists of potentially multiple transitions between transient states,

the absolute risks have no tractable analytic form. Thus, we per-

formed Monte Carlo (MC) sampling from the multistate model, in

order to obtain consistent predictions for individual patient and for

cohorts of current and future patients. Each MC sample for a given

patient consists of sampling a disease course, in terms of clinical

states over time and how much time is spent in each one, condi-

tioned on the patient’s history and covariates. MC sampling is the

Table 2. Summary of the observed hospitalization course (ob-

served paths):

Path Frequency

1 M/S 148

2 M/S Di 1977

3 M/S Di M/S 19

4 M/S Di M/S Di 68

5 M/S Di M/S Di M/S 1

6 M/S Di M/S Di M/S Di 5

7 M/S Di M/S Di M/S Di M/S Di M/S Di 1

8 M/S Di M/S C 2

9 M/S Di M/S De 2

10 M/S Di C 1

11 M/S Di C M/S Di 1

12 M/S C 49

13 M/S C Di 4

14 M/S C M/S 25

15 M/S C M/S Di 61

16 M/S C M/S Di M/S Di 1

17 M/S C M/S C 8

18 M/S C M/S C M/S 4

19 M/S C M/S C M/S Di 13

20 M/S C M/S C M/S Di M/S 1

21 M/S C M/S C M/S C 1

22 M/S C M/S C M/S C M/S 1

23 M/S C M/S C M/S C M/S C 1

24 M/S C M/S C M/S C De 1

25 M/S C M/S C De 3

26 M/S C M/S De 2

27 M/S C De 64

28 M/S De 44

29 C 42

30 C Di 6

31 C M/S 12

32 C M/S Di 33

33 C M/S Di M/S 1

34 C M/S C 3

35 C M/S C M/S 2

36 C M/S C M/S Di 6

37 C M/S C M/S C 1

38 C M/S C M/S C M/S 2

39 C M/S C M/S C M/S Di 2

40 C M/S C M/S C M/S C 1

41 C M/S C M/S C De 2

42 C M/S C M/S De 1

43 C M/S C De 3

44 C M/S De 4

45 C De 74

A patient enters the hospital at a moderate, severe, or critical clinical state

and can move among the transient clinical states during the course of hospi-

talization. The longest observed path consists of 9 transitions.

C: critical; De: deceased; Di: discharged; M/S: moderate/severe.

Figure 1. We model a COVID-19 (coronavirus disease 2019) patient’s disease

course as moving between 4 possible states: (1) moderate or severe, (2) criti-

cal, (3) discharged, and (4) deceased. We combined the 2 clinical states mod-

erate and severe into a single model state due to statistical considerations;

however, we emphasize that we keep a distinction between the 2 by a covari-

ate indicating whether the patient first entered at mild/moderate clinical state

or at a severe clinical state. Numbers next to arrows indicate number of ob-

served transitions; each patient can make several state transitions, and may

visit a transient state more than once.
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keystone of our prediction tools (see Supplementary Appendix S1.3

to S1.5 for details including a description of path sampling).

Using this model, patient-level prediction is based on taking sum-

mary statistics of 20 000 MC paths for the patient based on the

patient’s covariates. Summary statistics include mean, median, and

other quantiles of LOS and of LOS at critical state for a given pa-

tient.

A somewhat modified approach is required for predicting hospi-

tal load. The predictions on the cohort level are given for a set of

patients consisting of (1) currently hospitalized patients and (2)

patients coming in according to an arrival process of patients

expected to be hospitalized in the next days. In short, 1 MC path is

sampled for each patient based on a calendar time scale. Summary

statistics are calculated over the paths of all patients during a prespe-

cified period. Finally, these 2 steps are repeated 10 000 times and

the final predictions are based on summaries of these repeats (see

Supplementary Appendix S1.6 and S1.8 for technical details). Stan-

dard errors were obtained by weighted bootstrap (see Supplemen-

tary Appendix Section S1.7).

Model validation: Hospital resource utilization and

individual patient disease course prediction
Dataset

We validate our model using the Israeli Ministry of Health COVID-

19 hospitalized patient registry. The registry includes the patients’

age and sex, dates and results of their SARS-CoV-2 (severe acute re-

spiratory syndrome coronavirus 2) polymerase chain reaction tests,

dates of hospital admissions and discharge, daily clinical status dur-

ing admission (moderate, severe, or critical, as detailed subse-

quently), and the death registry. COVID-19 confirmed diagnosis

was defined as patients who had a positive SARS-CoV-2 polymerase

chain reaction test.11

We included in the analyses all patients who were admitted be-

tween March 1 and May 2, 2020, and were hospitalized for at least

1 day. We excluded patients missing age or sex documentation. No

data imputation was performed.

The first patient with COVID-19 In Israel was diagnosed on Feb-

ruary 27, 2020. As of May 2, 2020, 16 137 patients had confirmed

positive diagnosis. The median age of confirmed patients was 33

(interquartile range, 21-54) years; 44.5% were women. Of these

16 137 confirmed COVID-19 patients, 2703 (17%) were hospital-

ized by May 2 for at least 1 full day. Of these 2703 hospitalized

patients, 28 had no documented age or sex covariates. For the

remaining 2675 patients, median age was 58 (interquartile range,

39-73) years and 44.19% were female. The demographics and clini-

cal status of hospitalized patients are shown in Table 1.

Patients’ clinical state during admission (moderate, severe, and

critical) was defined by the Israeli MOH guidelines, which are re-

lated to National Institute for Health treatment guidelines.12 A mild

or moderate clinical state was defined as a patient with symptoms

such as fever, cough, sore throat, malaise, headache, or muscle pain,

without shortness of breath, dyspnea on exertion, or abnormal im-

aging; or as patients with clinical or imaging evidence for lower re-

spiratory disease and oxygen saturation (SpO2) >90% on room air.

For brevity, we refer to this state as moderate throughout this work.

A severe clinical state was defined as a patient with respiratory rate

higher than 30 breaths/min, SpO2 <90% on room air, or ratio of

the arterial partial pressure of oxygen to fraction of inspired oxygen

(PaO2/FiO2) <300 mm Hg. A critical clinical state was defined as a

state in which the patient suffers from respiratory failure, which

requires invasive or noninvasive mechanical ventilation, septic

shock, or multiorgan dysfunction. In addition, we denote patients

discharged from the hospital to their home or to out-of-hospital

quarantine as discharged. We note that discharged patients might be

readmitted upon deterioration, as can be seen in Table 2.

In our dataset the patients’ state was categorized by the Israeli

MOH clinical progression scale which was in place in the first half

of 2020. In June 2020 the World Health Organization published the

WHO Clinical Progression Scale, which has 10 different stages,

among them 6 for hospitalized patients.13 The correspondence be-

tween the 2 scales is roughly as follows: the Israeli MOH mild and

moderate clinical states correspond to WHO score 4, a severe clini-

cal state corresponds to WHO score 5, and a critical clinical state

corresponds to WHO scores 6 to 9.

Evaluation method

We employed 8-fold cross-validation—fitting the model on seven-

eighths of the data and evaluating performance on the remaining

held-out one-eighth, repeated 8 times. Each held-out set consisted of

329 to 331 patients.

We validated predictions of hospital utilization by 2 methods:

snapshot, in which we define a start date and predict future resource

utilization for the set of all patients who were hospitalized on that

date, without taking into account future incoming patients; and ar-

rival process, in which we use the known hospitalization dates and

characteristics of incoming patients between March 1 and May 2,

2020, to estimate utilization for the entire course of the “first wave”

of COVID-19 in Israel (see Supplementary Appendix S1.3 for de-

scription of both). For both validation methods, we estimate the

mean absolute error (MAE) between the model’s per-day utilization

predictions and the actual number of hospitalized (or critical)

patients on that day; the mean is over the number of days in the pre-

diction window (see Supplementary Appendix S1.3).

We further validated the model’s performance by testing its pre-

dictions for individual patients: we used data from the first day of a

patient’s admission to predict their probability of becoming criti-

cally ill (ie, in critical state) and probability of in-hospital mortality.

For both, we report area under the receiver-operating characteristic

curve (AUROC) with inverse weighting correction for censoring (see

Supplementary Appendix S1.3). Finally, we validated the calibration

of our predictions by tracking expected number of deaths vs actual

number of deaths over time in an arrivalþsnapshot scenario.

Using the model for prediction of hospital utilization

under hypothetical scenarios
In order to illustrate how our model may be employed for utilization

prediction, we focus on a single held-out cohort of 330 patients cho-

sen at random. For this cohort, we predict total future hospital bed

and critical hospital bed utilization up to 49 days ahead, starting

from March 15, 2020. Utilization for this cohort is composed of

patients among the 330 who were hospitalized at the starting date

and remain at the hospital, as well as utilization by patients arriving

after March 15.

We present the expected hospital utilization and number of

deaths under 3 putative patient arrival scenarios: (1) younger—rate

and state of incoming patients are the same as in Israel during the

weeks from March 15 to May 2, but all patients ages 60þ are

replaced with patients in their 40s and 50s; (2) milder—rate and age

of incoming patients are the same as in Israel during the weeks from

March 15 to May 2, but all incoming patients are in moderate or se-
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vere clinical state upon hospitalization, none at critical; and (3) eld-

ercare nursing home outbreak, in which we assume that in addition

to the arrival of patients as happened in Israel from March 15 to

May 2 that there is a single week during which there are 4 times as

many incoming patients 70þ years of age, arriving in various clinical

states. Details of the scenarios are given in Supplementary Appendix

S2.4.

RESULTS

Hospitalized patient characteristics
We use the model to estimate the median, 10% and 90% quantiles

of LOS for hospitalized patients, stratified by clinical state at time of

admission. Results are shown in Figure 2 and Supplementary Table

S7; in Supplementary Table S8, we report expected LOS in critical

state results.

Table 3 presents the probability, estimated by the model, of

patients entering a critical state and probability of in-hospital mor-

tality, both stratified by age, sex, and clinical state at time of hospi-

tal admission. Both probabilities sharply increase with age; males of

all ages tend to have a greater probability of becoming critically ill

compared with females entering the hospital at the same clinical

state, but hospitalized females over 75 years of age tend to have

higher risk of mortality compared with hospitalized males entering

at comparable age and clinical state. Results for younger ages are

given in Supplementary Tables S5 to S8, and the cumulative distri-

bution function of LOS is in Supplementary Figure S2.

Cox models
The results for all 6 Cox models are given in Supplementary Tables

S2 to S4.

Model validation
The results are all averaged over the 8 held-out validation cohorts,

each including between 329 and 331 patients. Using snapshot evalu-

ation with April 1 as start date, MAE for predicting the per-day

number of hospitalized patients is 3:15 6 1:20 for total hospital

bed utilization and 1:47 6 0:56 for critical care bed utilization. Us-

ing snapshot evaluation with April 15 start data, MAE predicting

the per-day number of hospitalized patients is 3:13 6 1:07 for total

hospital bed utilization and 1:98 6 0:93 for critical hospital bed

utilization. Using arrival evaluation, MAE for predicting the per-day

number of hospitalized patients is 4:72 6 1:07 for total hospital

bed utilization and 1:68 6 0:40 for critical hospital bed utilization.

See Supplementary Table S9 and Supplementary Figures S3 and S4

for further results.

Using only information from the first day of a patient’s hospitali-

zation, the AUROC for predicting in-hospital mortality and for pre-

dicting becoming critically ill (among patients who were not

critically ill on their first day of admission) were 0.96 6 0.04 and

0.88 6 0.04, respectively (see Supplementary Table S10). Figure 3

(bottom) presents the number of deaths predicted by our model un-

der the true patient influx process (Expected column), which

matches very closely the observed number of deaths, showing the

model is well calibrated.

Predicting hospital bed utilization
In Figure 3 (top), we show an example of utilization and mortality

projections generated by the model under hypothetical scenarios.

For example, our model can help planners assess when a new

COVID-19 ward will need to open: Assuming that each COVID-19

regular and critical care wards can care for 30 and 15 patients, re-

spectively, we show that the error our model makes in predicting the

exact timing when total hospital bed utilization will hit such capac-

ity thresholds is at most 1 day for total utilization, and 3 days for

critical care bed utilization (see Supplementary Figure S3).

DISCUSSION

One of the distinctive characteristics of COVID-19 is the way health

systems are overwhelmed by a large number of patients.2–4,14 Here,

we report the development and validation of a flexible multistate

survival analysis model of patient clinical course throughout admis-

sion, discharge, and possibly death. We applied our model to the

complete set of COVID-19 patients in Israel, tracked day by day

from March to May 2020.

Figure 2. Model estimates of quantiles of length of stay in days based on 20 000 Monte Carlo samples for each patient type. Error bars calculated by weighted

bootstrap.
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We show that using simple and easily available patient character-

istics, the multistate model we developed accurately predicts health-

care utilization for a given patient arrival process and can be used to

simulate utilization under different patient influx scenarios. This

can, in turn, be used to accurately plan resource allocation and the

opening or closing of COVID-19 wards. We further provide an ano-

nymized version of the dataset used to develop the model, a Web ap-

plication for patient-level predictions, and an R software package to

help planners fit a multistate model to their own data, or use the

model we fit to the Israeli data.

Interestingly, on the one hand, we find that scenarios such as the

arriving patients being much younger or in milder clinical state do

not greatly affect total hospital utilization, possibly because some of

these populations have longer hospitalization times; on the other

hand, both scenarios affect critical care bed utilization. We further

observe that an eldercare nursing home outbreak scenario leads to

substantially higher total utilization and critical care utilization,

underscoring the need to protect these communities not only in

terms of preventing mortality, but also from the point of view of

lowering the strain on hospital resources.

Many models exist for predicting the dynamics of COVID-19

case numbers and numbers of hospitalized patients. These models

are usually based on extensions of the susceptible-infected-recovered

model,15,16 in which the number of hospitalized or critical patients

are included as a component in the dynamic model.

Our model differs from these models in several aspects. First, set-

tings in which the chance of experiencing one event is altered by the

occurrence of other events are known as competing and semi-

competing risks, and caution is needed in analyzing such data.10,17

In this work, we use a multistate model as an excellent fit for the

competing and semi-competing risks data of COVID-19 patient’s

hospitalization course. Second, heterogeneity within and between

patients matters, as overall bed utilization is partially determined by

a long tail of some patients who require significantly longer stays

than others. We model patients on an individual basis, taking into

account how long each patient has already been in the hospital.

Thus, we account for the case mix and heterogeneous histories of

the patients currently hospitalized when making predictions about

future utilization. Third, our model is different in scope: we do not

aim to model the spread of the disease and the number of future

infections. We focus on estimating hospital utilization under differ-

ent patient arrival processes, while taking into account the load

caused by currently hospitalized patients.

Recently, both Hazard et al18 and Schmidt et al19 proposed using

a multistate model similar in spirit to ours, focusing only on patients

admitted to the intensive care unit in the most severe of clinical

states, requiring extracorporeal membrane oxygenation (ECMO);

the cohorts in these studies are small (77 and 83 patients, respec-

tively), and they are relevant only to the subset of COVID-19

patients requiring ECMO treatment. Moreover, these works did not

include covariates, while our results demonstrate the importance of

baseline and time-dependent covariates in the multistate models (see

Supplementary Tables S2 to S4). To the best of our knowledge, there

are no existing works that provide hospital load prediction on a

daily basis while taking into account baseline patients’ characteris-

tics, clinical state, and time in hospital.

Other methods exist that might be used to model the patient

transition process. For example, a Bayesian network, a hidden Mar-

kov model, or even a recurrent neural network; however, each of

these has its drawbacks. None of them can deal in a straightforward

manner with the issues of (semi)-competing risks that are prevalent

in our data, leading to potentially substantial biases. Further, recur-

Table 3. Probability of death and probability of becoming critical stratified by age and gender

Incoming State, Age Probability of In-Hospital Mortality (%) Probability of Becoming Critical (%)

Men Women Men Women

Moderate, 55 y 0.65a 1.2 5.4 4.1

(0.55-0.75) (1-1.4) (5.2-5.7) (3.9-4.4)

Moderate, 65 y 2.1 2.4 8.6 6.4

(1.9-2.3) (2.2-2.7) (8.2-9) (6.1-6.8)

Moderate, 75 y 5.6 4.7 12.5 9.6

(5.3-5.8) (4.5-4.9) (12.1-13) (9-10.2)

Moderate, 85 y 14.7 11.7 17.8 13.5

(14.3-15.1) (10.6-12.7) (17.3-18.3) (12.7-14.4)

Severe, 55 y 3.8 6.9 23.7 18.5

(3.5-4.1) (6.5-7.2) (22.9-24.5) (18.1-19)

Severe, 65 y 9.7 11.6 32.1 25.3

(9.4-10) (11.1-12) (31.5-32.8) (24.3-26.2)

Severe, 75 y 20.7 20.1 40.4 31.9

(20.2-21.3) (19.5-20.7) (39.5-41.2) (30.2-33.5)

Severe, 85 y 43.2 37.6 47.3 39.3

(42.1-44.4) (36.3-38.8) (45.9-48.7) (36.9-41.7)

Critical, 55 y 13.9 28.2 100 100

(12-15.8) (27.6-28.8)

Critical, 65 y 30.3 40.5 100 100

(27.2-33.4) (39-42)

Critical, 75 y 55.1 54.7 100 100

(51.4-58.7) (51.3-58.2)

Critical, 85 y 82.6 74.6 100 100

(80.5-84.6) (70.1-79)

Probabilities are based on Monte Carlo results, with weighted bootstrap 95% confidence interval.
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rent neural networks are not adapted to right-censoring, and left-

truncation. Hidden Markov models are based on a Markovian as-

sumption which might not agree with the nature of the disease tra-

jectory. More advanced methods such as the method by Alaa and

van der Schaar20 do acknowledge censoring but their parametric ap-

proach is applicable when the transient states are unobservable; we

are in an easier setting where the transient states are in fact ob-

served. Very recent work adapting neural ordinary differential equa-

tions (ODEs) to multistate problems might be an interesting avenue

in the future,21 but currently this approach is limited to Markovian

models. We adopted a semiparametric Cox model that covers non-

Markovian models, at the price of the well-known proportional haz-

ards assumption. However, under a short-term follow-up, as in

COVID-19 hospitalization data, we believe that this assumption is

reasonable, as evidenced in the model’s predictive performance. We

have also experimented with using random survival forest for com-

peting risks,22 which is a fully nonparametric method; we found its

performance to be similar or inferior to Cox models. Because our

main goal is prediction based on sampling complete hospitalization

trajectories, the semiparametric structure of Cox-based approach

has a major computational advantage, which led us to focus on this

method.

Another line of work related to ours are models for predicting in-

dividual patient outcomes.23 Viewed through this lens, our model is

distinctive in 2 ways: it provides time-to-event (discharge, deteriora-

tion, death) predictions and it is based on a very small number of

covariates (age, sex, and 1 of 3 patient clinical states). In contrast,

Liang et al.24 reported an AUROC of 0.88 for predicting critical ill-

ness or death using 10 covariates selected from 72 potential predic-

tors. Bello-Chavolla et al.25 reported a concordance of 0.83 using 7

covariates based mostly on comorbidities. We conjecture that the ac-

curacy achieved by our model while using minimal, easily obtain-

able data as input might be explained by the fact that reported

patient clinical states function as expert indicator variables summa-

rizing more granular clinical measures and comorbidities. The fact

that our model achieves high accuracy using only such basic covari-

ates is encouraging: it implies that routinely available patient data

could suffice for making accurate predictions, making adoption of

our model easier in diverse settings across the world.

Our model has several limitations. First, its load predictions rely

on estimation of the frequency and characteristics of future incom-

ing patients. If arriving patient populations deviate significantly

from the scenarios taken into account, the model’s predictions will

be wrong. We thus recommend planners evaluate multiple hypothet-

icals for incoming patients, testing scenarios such as those presented

in the Results, as well as predictions based on different scenarios for

the rate of infection in weeks ahead of prediction time. Indeed, one

could build a separate model predicting the future hospitalized pop-

ulation based on factors such as which nonpharmaceutical interven-

tions are or will be in place.

A limitation of our validation strategy is that it uses only Israeli

data from the first wave, in which we have no account of patients’

comorbidities.26–28 We stress, however, that researchers can fit a

similar model to their own data, and researchers with access to

Figure 3. Observed and predicted total hospitalized (top left) and critical (top right) patients, and in-hospital mortality (bottom) under the following scenarios: (1)

younger: rate and state of incoming patients are the same as in Israel during the weeks from March 15 to May 2, but with patients in their 50s and 60s instead of

60þ years of age; (2) milder: rate and age of incoming patients are the same as in Israel during the weeks from March 15 to May 2, but all patients incoming only

in moderate and severe state, none at critical; and (3) nursing home (NH) outbreak, in which we assume that in addition to the arrival of patients as happened in

Israel from March 15 to May 2, there is a single week during which there are 4 times as many incoming patients 70þ years of age, arriving in various clinical

states. For in-hospital mortality, Expected is the model prediction assuming the patient arrival process in Israel during the weeks from March 15 to May 2, with no

changes. For top left and top right figures, gray vertical lines are pointwise 10%-90% confidence predictions.
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patient-level comorbidity data can incorporate it into a multistate

model using the software we provide. Furthermore, even within the

same health system there might be considerable heterogeneity (see

Supplementary Appendix S2.3) and in addition, changes might oc-

cur in the underlying distributions we estimate. The change can be

due to changes in treatment strategies, seasonal changes, hospitaliza-

tion policy changes, and more. We recommend continuously testing

the model’s prediction against reality using the methods we outlined

previously, in order to detect such distribution shifts. A significant

increase in error metrics compared with the errors on the original

validation set might indicate a need to refit the model using only the

more recent data available. Recently, a more advanced method has

been proposed for correcting model drift in prediction models29; the

method focuses on dichotomous outcomes and thus could be applied

to those aspects of our model—predicting critical illness or death.

Extending the previous method to the full spectrum of predictions

given our multistate models is an interesting area for future work.

A further limitation is that in the data we used, the patients’ clin-

ical state was reported by the attending physician at the point of

care, and individual physicians and medical centers have not ad-

hered exactly to the Israeli MOH guidelines. Despite this possible

ambiguity, empirically we find that the clinical state as reported is

indeed highly predictive for individual patients.

We note that multistate models can be applied to data with more

or less clinical states; for example, the states might be ventilated vs

nonventilated, or alternately a more fine-grained spectrum of clini-

cal states. Our model can also be used with any set of baseline or

time-varying covariates, such as comorbidities or being on an

ECMO machine. Finally, while we developed the model with

COVID-19 patients as our main focus, multistate models such as the

one we developed can be relevant for other diseases that are charac-

terized by state transitions, especially if right censoring, left trunca-

tion, and state recurrence are in play.

CONCLUSION

We developed and validated a multistate model aimed at modeling

the trajectory of hospitalized COVID-19 patients. We found that fo-

cusing on the day-by-day tracking of patients’ clinical state can yield

accurate predictions of mortality, length-of-hospitalization, and crit-

ical illness even with a very basic set of measured covariates (age,

sex, and patient being in 1 of 3 clinical states). We further show

how these accurate predictions enable us to build a tool that lets

healthcare managers accurately plan resource allocation for

COVID-19 patient care in the face of potentially large patient

surges. We believe that our model can be fruitfully adopted in

healthcare systems struggling with the challenges of COVID-19

around the world.
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