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Abstract

Objectives

This study aimed to compare the diagnostic performance of deep learning algorithm trained

by single view (anterior-posterior (AP) or lateral view) with that trained by multiple views

(both views together) in diagnosis of mastoiditis on mastoid series and compare the diag-

nostic performance between the algorithm and radiologists.

Methods

Total 9,988 mastoid series (AP and lateral views) were classified as normal or abnormal

(mastoiditis) based on radiographic findings. Among them 792 image sets with temporal

bone CT were classified as the gold standard test set and remaining sets were randomly

divided into training (n = 8,276) and validation (n = 920) sets by 9:1 for developing a deep

learning algorithm. Temporal (n = 294) and geographic (n = 308) external test sets were

also collected. Diagnostic performance of deep learning algorithm trained by single view

was compared with that trained by multiple views. Diagnostic performance of the algorithm

and two radiologists was assessed. Inter-observer agreement between the algorithm and

radiologists and between two radiologists was calculated.

Results

Area under the receiver operating characteristic curves of algorithm using multiple views

(0.971, 0.978, and 0.965 for gold standard, temporal, and geographic external test sets,

respectively) showed higher values than those using single view (0.964/0.953, 0.952/0.961,

and 0.961/0.942 for AP view/lateral view of gold standard, temporal external, and geo-

graphic external test sets, respectively) in all test sets. The algorithm showed statistically

significant higher specificity compared with radiologists (p = 0.018 and 0.012). There was

substantial agreement between the algorithm and two radiologists and between two radiolo-

gists (κ = 0.79, 0.8, and 0.76).
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Conclusion

The deep learning algorithm trained by multiple views showed better performance than that

trained by single view. The diagnostic performance of the algorithm for detecting mastoiditis

on mastoid series was similar to or higher than that of radiologists.

Introduction

Otomastoiditis is the second most common complication of acute otitis media (AOM) after

tympanic membrane perforation [1]. Over the last several decades, the incidence of otomastoi-

ditis as a complication of AOM has greatly decreased [1,2]. Nevertheless, improper manage-

ment with antibiotics cannot prevent otomastoiditis and the incidence of otomastoiditis

remains at approximately 1% [1]. Furthermore, the increasing numbers of immunocompro-

mised patients who underwent organ transplantation surgery or received chemotherapy also

increases the incidence of the occurrence of otomastoiditis. Diagnosis and early adequate

treatment of otomastoiditis is very important, as the complications of otomastoiditis include

sinus thrombosis and thrombophlebitis (transverse or sigmoid sinuses), encephalitis, and

meningitis due to its proximity to intracranial structures [1,3].

High resolution temporal bone CT (TB CT) is the imaging modality of choice for the diag-

nosis of mastoiditis [4,5]. However, plain radiography of the mastoid (mastoid series) is still

effective for screening mastoiditis in populations with very low prevalence such as pre-trans-

plantation operation work up. Moreover, because the most commonly affected age group is

the pediatric group, especially patients under two years old who are very sensitive to radiation

exposure, simple radiography still has its role [2,6].

Because of the advancement in medical imaging techniques over the last century, there has

been a tremendous increase in the amount of medical images. Simple radiographies are still

the most commonly performed medical imaging until now due to both cost-effectiveness and

clinical usefulness [7,8]. Therefore, simple radiographies take a large portion of radiologists’

work-loads [7–9]. In addition, accurate interpretation of simple radiographs requires an exten-

sive amount of medical and radiologic knowledge and experience, as simple radiographies are

composed of complex three-dimensional anatomic information projected into two-dimen-

sional images [8].

Many studies have explored the application of deep learning technology to interpret simple

radiographs (i.e., chest posterior-anterior [PA], Waters view, and mammography mediolateral

oblique [MLO] view) to solve current problems in clinical practices including explosively

increased radiologists’ work-loads and the intrinsic challenges of interpreting simple radio-

graphs [10–14]. However, most studies used single-view images rather than multiple view

images, unlike daily practices which usually use multiple view images in diagnosing diseases.

In this study, we developed a deep learning algorithm with a large dataset and evaluated its

diagnostic performance in detecting mastoiditis with a mastoid series compared to the perfor-

mance by head and neck radiologists. We also compared the diagnostic performance of the

algorithm using multiple views (mastoid anterior-posterior [AP] view with lateral view) with

that using single view (AP view or lateral view only).

Materials and methods

The Institutional Review Boards of Korea University Guro Hospital approved this study and

informed consent was waived considering the retrospective design and anonymized data used

in this study.
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Dataset

Mastoid series for screening mastoiditis from 5,156 patients were collected from Korea Uni-

versity Guro Hospital (KUGH) that were taken between April 2003 and November 2018. Mas-

toid series were performed for screening mastoiditis not only in patients with suspected

mastoiditis but also in patients planning to receive operations such as organ transplantation

and cochlear implantation. In those cases, preoperative treatment of mastoiditis very impor-

tant. The mastoid series consisted of an AP view and two lateral views (i.e., left and right lateral

views). We excluded images that did not contain either the AP view or the bilateral views or

the images that were uninterpretable due to artifacts. One hundred sixty-two patients were

excluded according to these exclusion criteria. Among the remaining 4,994 patients, series of

396 patients who underwent TB CT examinations within seven days of the study date of their

mastoid series were set aside as the gold standard test set. Majority of cases in the gold standard

test set performed TB CT and mastoid series simultaneously. The mastoid series of the other

4,598 patients were used as the dataset for developing our deep learning algorithm. The train-

ing set and the validation set were generated by randomly dividing the dataset by 9:1.

We also collected temporally and geographically external test sets to further comprehen-

sively verify the performance of the deep learning algorithm. The temporally external test set

was collected from KUGH from December 2018 to April 2019 in 150 patients, and three

patients were not included according to the exclusion criteria. The geographically external test

sets were collected from Korea University Anam Hospital in 154 patients with the same time

period.

We designed the deep learning algorithm to adopt an image set for one individual ear and

to yield a classification result for the ear. An AP view was divided by the vertical bisector, and

each half was fed into the algorithm as one individual training sample. A lateral view was

directly used as an input training sample because the right and left lateral views already existed

in separate images.

Labeling

Digital Imaging and Communication in Medicine (DICOM) files of the mastoid series were

downloaded from the picture archiving and communication system (PACS) and all image

data were anonymized for further analyses.

Two head and neck neuroradiologists (I.R. and H.N.J., both with 12 years of experience in

this field) independently labeled mastoid series of the training and validation sets, temporal

external test set, and geographic external test set and the labels were determined by consensus

after the two radiologists discussed. The training and validation sets (mastoid series of 4,598

patients, total image sets of 9,196 ears) and the temporal (147 patients, 294 ears) and geo-

graphic (154 patients, 308 ears) external test sets were labeled based on the radiographic find-

ings, whereas the gold standard test sets (mastoid series of 396 patients, image sets of 792 ears)

were labeled based on the results of concurrent TB CT by one reader (I.R.).

For comparison of the diagnostic accuracy of the algorithm with head and neck neuroradi-

ologists’ accuracy, two head and neck neuroradiologists with 12 years and 11 years of experi-

ence in this field (I.R. and L.S.) labeled mastoid series of the gold standard test set (images of

792 ears from 396 patients). The labeling criteria were same as the criteria used in labeling the

training and validation sets.

Labeling TB CT and labeling mastoid series of gold standard test set were performed sepa-

rately. Furthermore, mastoid series of gold standard test set were randomly mixed with other

mastoid series in the training set and validation set when labeled.
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All the images in the dataset were labeled according to the following criteria in 5 categories:

category 0, normal, clear mastoid air cells on both views (Fig 1A and 1B); category 1, mild,

some haziness of mastoid air cells on any of AP view and lateral view (right ear in Fig 1C and

1D); category 2, severe, total haziness and sclerosis of mastoid air cells in both the AP and lat-

eral views (Fig 1E and 1F); category 3, mastoidectomy state (left ear in Fig 1C and 1D); and cat-

egory 4, unable to be labeled due to artifacts. Data sets labeled as category 3 or 4 were excluded

from the training and validation sets and external validation sets. There were too few cases of

postoperative images (category 3) to include for further analyses. However, postoperative cases

(category 3) were included in the gold standard test set to evaluate how the algorithm classified

the data. The gold standard test sets were labeled as category 0, normal; category 1, mild, soft

tissue densities in some mastoid air cells; category 2, severe, soft tissue densities in near total

air cells with sclerosis; and category 3, postoperative state according to the results of TB CT.

To simplify the interpretation of the results and to address the class imbalance issue due to

the lack of positive samples, the labels were dichotomized with 0 as normal (category 0) and 1

as abnormal (category 1 and 2). The postoperative state (category 3) in the gold standard test

set was also set as abnormal [1].

Deep learning algorithm

The AP view and the lateral views underwent the following preprocessing step before applying

the deep learning algorithm. We cropped both ears in AP views assuming that all the images

were taken at regular positions. For instance, the right ear in an AP view was cropped to have a

size of 180×120 mm centered on 0.6 and 0.25 times the coordinates of the original image

height and width and then the image was resized to 384×256 pixels. The left ear on the AP

view was cropped in a similar way centered on the symmetrical coordinates. The right and left

Fig 1. Typical images of each labeling category. (a,b) AP view (a) and lateral view (b) show bilateral, clear mastoid air cells (red circles) with honey combing pattern of

category 0. (c,d) right ear (red circles) of AP view (c) and lateral view (d) shows slightly increased haziness in mastoid air cells suggesting category 1 and left ear (white

circles) of both views shows bony defects with air cavities suggesting category 3. (e, f) AP view (e) and lateral view (f) show bilateral, total haziness and sclerosis of

mastoid air cells (red circles) suggesting category 2.

https://doi.org/10.1371/journal.pone.0241796.g001
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center points in the AP view are the points annotated in Fig 2. Outliers were excluded from the

analyses. The lateral view was cropped to have a size of 140×140 mm at the center coordinates

of the original image and was resized to 256×256 pixels. For data augmentation, horizontal

and vertical shift and horizontal flipping were applied in the training set. We used the Pydicom

library (Python Software Foundation; version 1.2.0) to process the images in the DICOM

format.

We performed the training on CUDA/cuDNN (versions 9.0 and 7.1, respectively) and Ten-

sorFlow library (version 1.12) for graphic processing unit acceleration on a Linux operating

system. OS, CPU and GPU were Ubuntu 16.04, Intel1 Xeon1 CPU E5-2698 v4 @ 2.20GHz

80 cores, and Tesla V100-SXM2-32GB, respectively.

We designed two neural networks: i.e., one for a single view (an AP view or a lateral view,

one image at a time, Fig 3A) and the other for multiple views (an AP view and two lateral

views simultaneously, Fig 3B).

The convolutional neural network (CNN) for the single view consisted of a stack of six

squeeze-and-excitation ResNet (SE-ResNet) modules [15] followed by the Log-Sum-Exp pool-

ing [16] applied to the last SE-ResNet module (Fig 3A). Mastoiditis was predicted by applying

Sigmoid function to the output of Log-Sum-Exp pooling. The weights of the network were ini-

tialized by Xavier initialization [17]. The learning rate decayed every 5,000 steps at the rate of

Fig 2. Location of center points for right and left cropping in AP view. The yellow dots represent the center points of

cropping the right/left ears.

https://doi.org/10.1371/journal.pone.0241796.g002
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0.94 with the initial value of 0.01. The Cross-Entropy loss was minimized by employing the

RMSProp optimizer [18], L2 regularization was applied to prevent overfitting, and batch size

was set to 12.

The CNN for multiple views was constructed by combining the CNN applied to each view

(Fig 3B). Each CNNs for single view were combined by concatenate and average the output of

Log-Sum-Exp pooling of each single view network without additional weight. Finally, Sigmoid

function was applied at the averaged value to predict mastoiditis. To enhance efficacy, we

started training with the weights obtained from the training of each single views for the pre-

training [19]. The learning rate decayed every 1,000 steps at the rate of 0.04 with 0.005 as the

initial value smaller than in CNN for single view to fine-tune already gained weights. Loss

function, optimizer, regularization term, and batch size were the same as for the CNN for sin-

gle view. The CNNs we implemented were uploaded to the public repository (https://github.

com/djchoi1742/Mastoid_CNN).

A class activation map was generated to identify which parts of the original image were acti-

vated when the CNN recognized mastoiditis. In the CNN both single view and multiple views,

the class activation mappings of each view were obtained by resizing to their input size using

bilinear interpolation based on the results immediately before the Log-Sum-Exp pooling step

in Fig 3A and 3B. The class activation mappings were obtained by applying rectified linear

activation function (ReLU) to these results in order to confirm the region strongly predicted to

have mastoiditis. Since the presence or absence of mastoiditis was calculated by Sigmoid

Fig 3. Network architectures for predicting mastoiditis. The CNNs (convolutional neural networks) for single view (a) show a process in which AP and lateral views

are separately trained in CNN. The CNN for multiple views (b) shows a process in which AP and lateral views are simultaneously trained. After Log-Sum-Exp pooling,

the layers were also marked with dimensions. [1] means 1×1 size vector, and [2] means 1×2 size vector.

https://doi.org/10.1371/journal.pone.0241796.g003
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function as a final output, the region predicted to have mastoiditis was detected only on the

class activation mapping for the image judged to have mastoiditis. Otherwise, no region was

detected.

Statistical analysis

We used DeLong’s test for two correlated receiver operating characteristic curves (ROC

curves) [20] to compare the diagnostic performance of the algorithm using multiple views

with that using a single view. Sensitivity, specificity, and area under the receiver operating

characteristic curve (AUC) were used as measures to evaluate the performance of the deep

learning algorithm. We applied three cut-off points calculated from the validation set to the

test datasets; i.e., the optimal cut-off point obtained by Youden’s J statistic, the cut-off point at

which sensitivity was 95%, and the cut-off point at which specificity was 95%. Clopper-Pearson

method [21] was applied to calculate 95% confidence intervals for sensitivity and specificity,

and the method of DeLong et al. [20] was used to calculate 95% confidence intervals of AUC.

McNemar’s test for sensitivity and specificity was used to compare the diagnostic perfor-

mance between the deep learning algorithm and the radiologist results. Cohen’s κ coefficient

was used to evaluate the agreement between the results diagnosed by deep learning algorithm

and the radiologist diagnosis. The level of agreement was interpreted as poor if κ was less than

0; slight, 0 to 0.20; fair, 0.21 to 0.40; moderate, 0.41 to 0.60; substantial, 0.61 to 0.80; and almost

perfect, 0.81 to 1.00 [22]. Qualitative analysis was performed by showing the CNN class activa-

tion map [23].

All statistical analyses were performed with R statistical software version 3.6.1 (The R Foun-

dation for Statistical Computing, Vienna, Austria). A p-value less than 0.05 was considered sta-

tistically significant.

Results

The baseline characteristics of training set, validation set, gold standard test set, temporal

external test set, and geographic external test set are shown in Table 1. There was no statistical

difference in label distribution between the temporal external test set and geographic external

test set (P = 0.118). The ROC curves and DeLong’s test for two correlated ROC curves compar-

ing the diagnostic performance between the algorithm using single view and the algorithm

using multiple views in each dataset are shown in Fig 4 and Table 2, respectively. In compari-

son of the diagnostic performance of deep learning algorithm using multiple views (AP view

and lateral view) with that using a single view (AP view or lateral view only), AUCs from the

multiple views showed statistically significant higher values than AUCs using a single view

(AP view or lateral view only) in the validation set and all test sets (gold standard test set, tem-

porally external test set, and geographically external test set), except for AUC using a single AP

view in the geographic external test set. Even the AUC using AP view in the geographic exter-

nal test set also showed a lower value than AUC using multiple views; however, statistical sig-

nificance was not shown (P = 0.246).

The sensitivity and specificity calculated based on the optimal cut-off point determined by

Youden’s J statistic, the cut-off point for an expected sensitivity of 95%, and the cut-off point

for an expected specificity of 95% described above to evaluate the diagnostic accuracy of the

deep learning algorithm and radiologist results are summarized in Table 3. Usually, cut-off

point is derived from the validation set assuming that we do not know the exact distribution of

the test set [24]. This data was based on labels diagnosed with TB CT. With the optimal cut-off

point, the sensitivity and specificity of the gold standard test set diagnosed by the deep learning

algorithm were 96.4% (423/439, 95% confidence interval, 94.1% - 97.9%) and 74.5% (263/353,
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95% confidence interval, 69.6% - 79.0%), respectively. The sensitivity of the deep learning algo-

rithm was not significantly different from those of the radiologists (p-value = 0.752 and 1.000).

However, the specificity diagnosed by the deep learning algorithm was significantly higher

than those of the radiologists (p-value = 0.018 and 0.012, respectively). In addition, confusion

matrices between the prediction of the deep learning algorithm and radiologists’ predictions

based on the reference standard are shown in Fig 5. Gold standard labels were divided into cat-

egories 1, 2, and 3 to check how the deep learning algorithm and radiologists predicted normal

or abnormal and to see the detailed results of each label. The postoperative category (category

3) was not included in training; however, this was considered abnormal in the gold standard

test set. Severe (category 2) labels were predicted as abnormal except for two cases, and mild

(category 1) labels were predicted as abnormal at about 90%; all postoperative data were pre-

dicted as abnormal.

There was substantial agreement between the radiologists and deep learning algorithm (κ
coefficient between radiologist 1 and deep learning algorithm: 0.79, κ coefficient between radi-

ologist 2 and deep learning algorithm, 0.8) in the gold standard test set. In addition, the κ coef-

ficient between radiologist 1 and radiologist 2 was 0.76 in the same test set.

Table 1. Baseline characteristics of all data sets.

Characteristic Training set (n = 8278) Validation set (n = 918) Test sets

Gold standard

test set (n = 792)

Temporal external

test set (n = 294)

Geographic external

test set (n = 308)

Number of patients 4139 459 396 147 154

Age

<20 years 322 35 40 4 4

20~29 years 262 32 16 4 7

30~39 years 444 68 47 10 15

40~49 years 912 97 85 21 28

50~59 years 1131 114 119 60 59

60~69 years 774 80 55 37 26

70~79 years 258 30 27 8 14

�80 years 36 3 7 3 1

Sex

Female 2353 247 225 70 69

Male 1786 212 171 77 85

Label (based on

conventional radiography)

0, Normal 3155 349 261 159 175

1, Abnormal 5123 569 531 135 133

Mild 1806 200 129 56 44

Severe 3317 369 402 76 89

Postop - - - 3 -

Label (based on CT)

0, Normal - - 353 - -

1, Abnormal - - 439 - -

Mild - - 157 - -

Severe - - 258 - -

Postop - - 24 - -

κ coefficient between two

reviewers

0.78 0.77 0.76 0.79 0.79

https://doi.org/10.1371/journal.pone.0241796.t001
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The AUC, sensitivity, and specificity of the test sets were calculated based on the labels diag-

nosed based on both AP view and lateral view. The AUC of the deep learning algorithm for

gold standard test set, temporal external test set, and geographic external test set was 0.97 (95%

confidence interval, 0.96–0.98), 0.98 (95% confidence interval, 0.97–0.99), and 0.97 (95% con-

fidence interval, 0.95–0.98), respectively. The sensitivity and specificity of the deep learning

Fig 4. The receiver operating characteristic curves (ROC curves) for validation set and three test sets. The area under the ROC curves (AUCs) using the

multiple views show statistically significant higher values than AUCs using a single view (AP view or lateral view only) in the validation set and all test sets.

https://doi.org/10.1371/journal.pone.0241796.g004
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algorithm of the three test sets are shown in Table 4. The sensitivity and specificity of the gold

standard test set were 91.3% (95% confidence interval, 88.6–93.6%) and 89.3% (95% confi-

dence interval, 84.9–92.8%), respectively. The sensitivity and specificity of the temporal exter-

nal test set were 91.1% (95% confidence interval, 85.0–95.3%) and 90.6% (95% confidence

interval, 84.9–94.6%), respectively, and those of the geographic external test set were 85.7%

(95% confidence interval, 78.6–91.2%) and 90.3% (95% confidence interval, 84.9–94.2%),

respectively. Under the optimal cut-off of the validation set, the sensitivity of the geographic

test set was somewhat lower than that of the other two test sets. Confusion matrices between

the conventional radiography-based label and predictions of the deep learning algorithm are

shown in Fig 6. In all three test sets, the proportion of cases incorrectly diagnosed as normal in

the mild labeled group was larger than that in the severe labeled group.

Class activation mappings of the sample images are shown in Fig 7 (true positive (a), true

negative (b), false positive (c), false negative (d), and postoperative state (e) examples). These

class activation mappings are obtained from the CNN for multiple view. If deep learning algo-

rithm determined a case to be normal, neither AP view nor lateral view detected a specific

region of the image (Fig 7B and 7D). In contrast, a case was determined as mastoiditis, lesion-

related regions were detected in at least one of AP and lateral views (Fig 7A, 7C and 7E).

Table 2. Comparison of the diagnostic performance between the algorithm using single view and the algorithm using multiple views in each data set based on labels

by conventional radiography.

Dataset Comparison AUC (single view) AUC (multiple views) P�

Validation set Single view (AP) vs Multiple views 0.955 (0.943–0.968) 0.968 (0.959–0.977) <0.001�

Single view (Lateral) vs Multiple views 0.946 (0.932–0.959) <0.001�

Gold standard test set Single view (AP) vs Multiple views 0.964 (0.953–0.975) 0.971 (0.962–0.981) 0.017�

Single view (Lateral) vs Multiple views 0.953 (0.940–0.966) <0.001�

Temporal external test set Single view (AP) vs Multiple views 0.952 (0.931–0.974) 0.978 (0.965–0.990) 0.002�

Single view (Lateral) vs Multiple views 0.961 (0.942–0.980) 0.004�

Geographic external test set Single view (AP) vs Multiple views 0.961 (0.942–0.980) 0.965 (0.948–0.981) 0.246

Single view (Lateral) vs Multiple views 0.942 (0.918–0.966) 0.003�

Data is shown to three decimal places, with the 95% confidence interval in parentheses.

AUC: Area under the receiver operating characteristic (ROC) curves.

P�: P-value of one-side DeLong’s test for two correlated ROC curves (Alternative hypothesis: AUC of multiple views was greater than AUC of single view).

�:<0.05 was significant.

https://doi.org/10.1371/journal.pone.0241796.t002

Table 3. Comparison of diagnostic performance for gold standard test set between the deep learning algorithm (using multiple views) and radiologists based on the

labels by standard reference (temporal bone CT).

Reader Sensitivity Pse Specificity Psp

Deep learning algorithm Optimal cutoff 96.4% (423/439, 94.1–97.9%) 74.5% (263/353, 69.6–79.0%)

Cutoff for 95% sensitivity 98.6% (433/439, 97.0–99.5%) 58.9% (208/353, 53.6–64.1%)

Cutoff for 95% specificity 95.7% (420/439, 93.3–97.4%) 79.3% (280/353, 74.7–83.4%)

Radiologist Radiologist 1 95.9% (421/439, 93.6–97.6%) 0.752 68.8% (243/353, 63.7–73.6%) 0.018�

Radiologist 2 96.1% (422/439, 93.9–97.7%) 1.000 68.6% (242/353, 63.4–73.4%) 0.012�

Data are percentages and nominator/denominator, and 95% confidence interval in the parentheses.

Pse,Psp: P values for comparing sensitivities/specificities between the deep learning algorithm based on optimal cutoff and the radiologists were determined by using

McNemar’s test.

�:<0.05 was significant.

https://doi.org/10.1371/journal.pone.0241796.t003
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Although not considered in training, how the deep leaning algorithm determines both

views that were labeled as postoperative state based on reference standard was also analyzed

and the algorithm determined all the postoperative cases as abnormal (Fig 7E). In both views,

abnormal regions in images were at the mastoid air cells.

Discussion

Over the last couple of years, great advancement and progression of deep learning technologies

have become integrated into not only medical fields but also all other industrial fields [25–28].

Radiology is one of the most promising fields with respect to applications for new deep learn-

ing technologies, and many previous studies have suggested vast possibilities for new direc-

tions in this field [29–33].

The amount of medical images continues to increase explosively, and the average radiolo-

gist reads more than 100 simple radiograph examinations per day in the United States [7,8].

Application of deep learning technologies to radiology can be clinically very beneficial to radi-

ologists and can be a new academic field in radiology.

In the present study, the deep learning algorithm trained by multiple views (mastoid AP

view with lateral view) of the lesion showed better performance than that trained by single

view (mastoid AP view or lateral view). This is very meaningful in the interpretation of medical

images, since radiologists usually use multiple images rather than a single image in clinical

practice for diagnosing diseases. For example, radiologists frequently use chest PA with a lat-

eral view for evaluation of lung diseases, Waters view with Caldwell view and lateral view for

evaluation of paranasal sinusitis, and MLO view with craniocaudal (CC) view for breast cancer

screening using mammography. This is not limited to simple radiographs. For advanced imag-

ing modalities, multiphase images of a lesion are used in CT scans and even multiphase with

multiple sequences of a lesion are used in MR imaging.

In this study, the deep learning algorithm could diagnose mastoiditis with accuracy similar

to or higher than that of head and neck radiologists. The sensitivity (96.4%) and specificity

(74.5%) of the deep learning algorithm were higher than those of head and neck neuroradiolo-

gists (sensitivities, 95.9% and 96.1%; specificities, 68.8% and 68.6%) in diagnosing mastoiditis

using TB CT as the standard reference. In terms of specificity, there was a statistically signifi-

cant difference.

Fig 5. Confusion matrices between predicted labels and temporal bone CT based gold-standard labels. Predicted labels

are normal (label 0) or abnormal (label 1) since the deep learning algorithm was trained based on the dichotomized data (e.g.,

normal or abnormal).

https://doi.org/10.1371/journal.pone.0241796.g005

Table 4. Diagnostic performance of deep learning algorithm in all test sets based on labels by conventional radiography.

Diagnostic performance Gold standard test set Temporal external test set Geographic external test set

AUC 0.971 (0.962–0.981) 0.978 (0.965–0.990) 0.965 (0.948–0.981)

Optimal cutoff Sensitivity 91.3% (485/531, 88.6–93.6%) 91.1% (123/135, 85.0–95.3%) 85.7% (114/133, 78.6–91.2%)

Specificity 89.3% (233/261, 84.9–92.8%) 90.6% (144/159, 84.9–94.6%) 90.3% (158/175, 84.9–94.2%)

Cutoff for 95% sensitivity Sensitivity 96.8% (514/531, 94.9–98.1%) 97.8% (132/135, 93.6–99.5%) 97.0% (129/133, 92.5–99.2%)

Specificity 75.5% (197/261, 69.8–80.6%) 79.2% (126/159, 72.1–85.3%) 80.6% (141/175, 73.9–86.2%)

Cutoff for 95% specificity Sensitivity 89.3% (474/531, 86.3–91.8%) 90.4% (122/135, 84.1–94.8%) 85.0% (113/133, 77.7–90.6%)

Specificity 92.7% (242/261, 88.9–95.6%) 93.7% (149/159, 88.7–96.9%) 91.4% (160/175, 86.3–95.1%)

Data are percentages and nominator/denominator and/or 95% confidence interval in the parentheses.

AUC: Area under the receiver operating characteristic curve.

https://doi.org/10.1371/journal.pone.0241796.t004
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Even though the deep learning algorithm cannot directly replace radiologists in diagnosing

diseases with images, radiologists’ work-loads can be reduced by the development of deep

learning algorithms with very high sensitivity. In this case, algorithms would interpret a large

portion of images and radiologists would check only positive or equivocal cases. This workflow

would be especially helpful for areas with few radiologists or locations where access to

radiologists is cost prohibitive [8,12]. Since the simple radiographs still take major part of

Fig 6. Confusion matrices between the predicted labels of a deep learning algorithm and labels based on conventional

radiography. In all test sets, the proportion of the incorrectly diagnosed cases was larger in mild labeled group (category 1)

than in severe labeled group (category 2).

https://doi.org/10.1371/journal.pone.0241796.g006

Fig 7. Class activation mappings of true positive (a), true negative (b), false positive (c), false negative (d), and postoperative state (e) examples. (a) Lesion related

regions in mastoid air cells are detected on both AP view and lateral view. (b) No specific region is detected in either AP view or lateral view. (c) A false lesion related

region is detected on lateral view. (d) Equivocal haziness is suspected on both views. The algorithm diagnosed this case as normal. An AP view with bilateral sides (right

upper) shows marked asymmetry suggesting abnormality in right side. (e) Both views show lesion related regions.

https://doi.org/10.1371/journal.pone.0241796.g007
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radiologists’ work-loads these days, deep learnings using simple radiographs are especially

meaningful.

In this study, we did not simply want to evaluate the ability of the deep learning algorithm

to diagnose mastoiditis with mastoid series. Unlike anatomic locations that have been studied

during the last several years, including breast, paranasal sinuses, and even lung, mastoid air

cells show considerable variations in terms of pneumatization between individuals and they

change greatly during age [34–37]. The mastoid lateral view is also a summation of multiple

complex anatomic structures such as mastoid air cells, temporo-mandibular joints, complex

skull base, and even auricles. Even though there were a great deal of variations in mastoid air

cells and complex anatomic structures around mastoid air cells, in this study, the class activa-

tion maps consistently showed the exact location of diseased mastoid air cells. This showed the

possibility of deep learning algorithms for use in the interpretation of medical images that usu-

ally have huge anatomic diversities and variations, as long as the algorithms are trained with

large enough datasets.

This study has several limitations. First, the training set and validation set had no reference

standards (TB CT), and only the gold standard test set had TB CT data as a reference standard.

However, the diagnostic performance of the deep learning algorithm using the gold standard

test set showed better results than that using the validation set. The diagnostic performance

using the external test sets also showed similar results. Second, if the deep learning algorithm

found regions related to mastoiditis in only one of the two views, the algorithm often misdiag-

nosed a normal case as having mastoiditis and vice versa. This was similar to the actual image

interpretation processes in which both views were read at the same time by head and neck

radiologists. Third, radiologists used mastoid AP views with both sides of mastoid air cells

simultaneously in interpreting images as used in clinical practices. In contrast, the deep learn-

ing algorithm used cropped images of the unilateral mastoid. However, this means that the

deep learning algorithm was at a marked disadvantage compared with radiologists. Because

there is no significant anatomic variation between bilateral mastoid air cells in one person,

while there are huge variations between individuals [35], assessing symmetry of bilateral mas-

toid air cells in one person is very useful in the diagnosis of mastoiditis. Despite this issue, the

diagnostic performance of the deep learning algorithm was similar to or higher than that of

radiologists. In addition, the assessment of symmetry in human bodies on radiologic studies is

a frequently used method in imaging diagnosis of diseases. Therefore, we are now developing

deep learning algorithms to evaluate the symmetry of anatomies in radiologic images.

Conclusion

This study showed that deep learning algorithm trained by multiple views of the lesion showed

better performance than that trained by single view. Despite considerable anatomic variations

of mastoid air cells between individuals and summation of complex anatomic structures in

mastoid series, deep learning algorithm depicted the exact location of diseased mastoid air

cells and showed a similar or higher performance, as compared with head and neck radiolo-

gists. Based on this result, deep learning algorithms might be applied to the interpretation of

medical images that usually have huge anatomic diversities and variations, as long as trained

by large enough datasets.
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