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Abstract: Designing emotional intelligence training programs requires first testing the effectiveness
of techniques targeting its main dimensions. The aim of this study was to investigate the effects
of a brief slow-paced breathing (SPB) exercise on psychophysiological variables linked to emotion
regulation, namely cardiac vagal activity (CVA), as well as perceived stress intensity, emotional
arousal, and emotional valence. A total of 61 participants completed a 5-min SPB exercise and a
control condition of a 5-min rest measurement. CVA was indexed with the root mean square of
successive differences (RMSSD). Participants were also asked to rate their perceived stress intensity,
emotional arousal, and emotional valence. Results showed that CVA was higher during SPB in
comparison to the control condition. Contrary to our hypothesis, perceived stress intensity and
emotional arousal increased after SPB, and perceived emotional valence was less positive after SPB.
This could be explained by experiencing dyspnea (i.e., breathing discomfort), and the need to get
acclimatized to SPB. Consequently, we may conclude that although physiological benefits of SPB on
CVA are immediate, training may be required in order to perceive psychological benefits.

Keywords: heart rate variability; parasympathetic nervous system; vagus nerve; diaphragmatic
breathing; abdominal breathing

1. Introduction

Athletes experience a large range of emotions during competition [1]. Emotions can be
considered as short-lived psychological states, but some more stable emotional dispositions
can also be identified [2,3]. One of them is emotional intelligence (EI), which reflects the way
individuals deal with their own and others’ emotions [4,5]. Emotional intelligence plays an
important role in sport performance [6,7], and hence its training is of high relevance for
athletes. The aim of this paper is to investigate whether a brief slow-paced breathing (SPB)
exercise without biofeedback could be integrated into EI training, based on its effects on
psychophysiological variables linked to emotion regulation.

The theoretical foundations of EI have evolved to include its different aspects via
the tripartite model [8], including the knowledge, ability, and trait levels. The knowledge
level reflects what people know about emotions (e.g., knowing that SPB may help them
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to regulate their emotions), the ability level reflects what they can do about emotions
(e.g., they can perform SPB when instructed to do so), and the trait level, reflecting the
person’s usual emotional repertoire (e.g., using SPB when facing emotionally challenging
situations in their daily life). In recent years, the conceptualization of EI has evolved to
emotional competences, as, unlike intelligence, competences can be trained [5]. Five main
competences have emerged from this conceptualization, namely emotion identification, ex-
pression, regulation, understanding, and use. The current study focuses on the competence
of emotion regulation.

To date, EI has been related to sport performance, as evidenced in previous system-
atic [6] and meta-analytic [7] reviews. In particular, EI was found to be related to athletes’
coping strategies at the subjective [9–14] as well as at the objective physiological and
hormonal levels, via cardiac vagal activity [15,16] and cortisol [17] measurements. Fur-
thermore, EI has been associated with adaptive psychological states [18] and enhanced
executive functions, such as working memory [19] and decision making [20]. Finally, some
direct positive associations with sport performance have been found [21,22]. Nonetheless,
despite these positive associations between EI and sport performance, one has to keep in
mind that EI is one of many factors that influence sport performance [23].

Given the role of EI in sport performance, EI training [24–27] has started to receive
some attention in relation to athletes [28–32]. Despite the positive effects of a global
EI training approach combining a diversity of techniques to increase athletes’ EI, the
effectiveness of individual techniques on specific emotional competences remains difficult
to determine. Consequently, we argue that the development and fine-tuning of EI training
programs requires testing the specific effects of separate techniques in order to enhance
our understanding of their influence on emotional competences. In this paper, we focus on
the influence of slow-paced breathing (SPB) on the competence of emotion regulation.

SPB is a relaxation technique in which breathing frequency is voluntarily reduced from
the spontaneous rate, comprised between 12 and 20 cycles per minute (cpm) [33,34], to
6 cpm. SPB has been found to positively influence emotion regulation [35,36]. SPB without
biofeedback will be considered in this study, to enable a simpler implementation in the
applied field where time and resources are restricted. This refers to the performance of SPB
without an external device displaying live biological signals to the participant [37]. SPB
is suggested to target central and peripheral mechanisms involved in emotion regulation,
via its action on the functioning of the baroreflex and pulmonary afferents, as well as by
triggering oscillations in brain networks involved in emotion regulation [36,38–42]. The
mechanism underlying these effects is suggested to be the action of SPB on the vagus
nerve [39], the main nerve of the parasympathetic nervous system [43].

The activity of the vagus nerve regulating cardiac functioning, termed cardiac vagal
activity (CVA), has been found to be positively related to emotion regulation [44]. These
effects are explained theoretically by the neurovisceral integration model [45–47], which
is based on the central autonomic network [48]. This model describes how similar brain
structures are responsible for emotional, cognitive, and cardiac regulation, all of which
in turn influence CVA. Importantly, CVA can be indexed non-invasively via heart rate
variability (HRV), the variation in the time interval between adjacent heartbeats [49–51].
Among the different HRV parameters that can be calculated, the root mean square of
successive differences (RMSSD) has been found to index CVA most precisely and being
relatively free of respiratory influences [52].

Among the methods that can be used to enhance CVA [53,54], SPB has been shown
to influence CVA in athletes [55–59]. Regarding its acute effects, although CVA appears
to robustly increase during SPB, these effects seem to cease simultaneously with the
termination of SPB exercises [41,55,57–59]. However, chronic increases in CVA can be
found after long-term interventions [56]. So far, acute SPB effects have been investigated
with 15-min SPB sessions. This study aimed to investigate whether a shorter SPB exercise
of 5-min would also trigger an increase in CVA.
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The way individuals perceive their stress and emotions is highly relevant for emotion
regulation [2,60–62]. However, a research gap exists regarding the potential influence of
SPB on subjective psychological states related to emotion regulation in athletes. Hence,
addressing subjective psychological states such as perceived stress intensity, emotional
arousal, and emotional valence is of high relevance for athletes, given their influence
in sport [1,11,63,64] as well as in other life domains, such as the academic [65] or the
professional [66] domains. The subjective effects of SPB have received little attention so
far [67–70]. On the one hand, previous research [68,69] focusing on using SPB for the
treatment of panic attacks implemented clinically focused self-report instruments. On the
other hand, Van Diest, Verstappen, Aubert, Widjaja, Vansteenwegen and Vlemincx [67]
showed that healthy participants reported higher pleasantness and lower arousal after a
5-min SPB exercise. Nonetheless, Allen and Friedman [70] noted that SPB can provoke
dyspnea (i.e., the perception of uncomfortable breathing), and showed that presenting
positive pictures during SPB reduced dyspnea [71]. Given these mixed findings, our study
aimed to clarify the influence of SPB on self-report variables linked to emotion regulation.

To sum up, the current study aims to address research gaps found in previous liter-
ature, by investigating the effects of a brief (5-min) SPB exercise on CVA and subjective
psychological variables linked to emotion regulation, namely perceived stress, emotional
arousal, and emotional valence. Based on the literature reviewed, we hypothesize that,
in comparison to the control condition, the brief SPB exercise would trigger an increase
in CVA. However, due to the mixed findings reported so far regarding subjective states
linked to SPB, we investigated this aspect in an exploratory manner.

2. Materials and Methods
2.1. The Participants

This study was part of a larger research project investigating the effects of SPB without
biofeedback in athletes. The analyses presented here have not been used or published
elsewhere. Sample size determination followed recommendations for HRV research [51,72].
A total of 66 athletes were recruited as participants. Exclusion criteria were self-reported
cardiovascular diseases, and other chronic diseases that might influence breathing or
HRV patterns, such as asthma, diabetes, psychiatric, and neurological diseases [51]. Due
to technical issues, the data of 5 participants had to be excluded, and the final sample
comprised 61 athletes (MAge = 22.1, age range = 18–30 years old; 25 female; BMI: M = 23.21,
SD = 2.17; Waist-to-hips ratio: M = 0.81, SD = 0.08; number of sport hours per week:
M = 7.5 h; SD = 3.3). The experimental protocol was approved by the Ethics Committee of
a German University (Project Identification Code 06/11/2014).

2.2. Material and Measures
2.2.1. Cardiac Vagal Activity

HRV was measured with an ECG device (Faros 180◦, Bittium, Kuopio, Finland), at
a sampling rate of 500 Hz. Two disposable ECG pre-gelled electrodes (Ambu L-00-S/25,
Ambu GmbH, Bad Nauheim, Germany) were used. The negative electrode was placed in
the right infraclavicular fossa (just below the right clavicle) while the positive electrode
was placed on the left side of the chest, below the pectoral muscle in the left anterior
axillary line. From ECG recordings, RMSSD was extracted using Kubios (University of
Eastern Finland, Kuopio, Finland). The ECG signal was visually inspected for artefacts
and these were corrected manually when deemed necessary (<0.001% of the heartbeats), as
recommended [51]. To provide an overview of the different HRV parameters [51], we also
extracted the heart frequency and the standard deviation of the NN interval (SDNN) for
the time-domain. For the frequency-domain (Fast Fourier Transform) low-frequency (LF;
0.04 to 0.15 Hz), high-frequency (HF: 0.15 to 0.40 Hz), and the LF/HF ratio were calculated
for descriptive purposes only.
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2.2.2. Slow-Paced Breathing

Similar to previous research (e.g., [58,73]), SPB was conducted with a video showing
a ball moving up and down at the rate of 6 cpm, based on the EZ-Air software (Thought
Technology Ltd., Montreal, Canada). Participants were instructed to inhale continuously
through the nose while the ball was going up, and exhale continuously through the mouth
with pursed lips when the ball was going down. The video displayed a 5-min SPB exercise,
with inhalation lasting 4 s and exhalation 6 s, given a longer exhalation is suggested to
trigger higher increases in CVA [67,74].

2.2.3. Visual Analogue Scale—Perceived stress

A visual analogue scale (VAS), consisting of a 100 mm vertical line, was used to
assess perceived stress intensity. The line was anchored by the words “not stressed at
all” at the extreme left of the line, and “extremely stressed” at the extreme right of the
line. Participants were required to indicate their perceived stress intensity by crossing a
corresponding point somewhere on the line. The value of the perceived stress intensity
was represented by the distance in mm from the extreme left of the line. Previous research
has implemented this scale to assess perceived stress intensity [16,75,76].

2.2.4. Self-Assessment Manikin—Perceived Emotional Arousal and Perceived Emotional
Valence

The self-assessment manikin [77] assesses the emotional state of an individual along
two dimensions, valence and arousal (we did not include the third dimension, control,
given it did not fit the aim of our study). The self-assessment manikin is a picture-oriented
instrument containing five images for each of the two affective dimensions that the par-
ticipant rates on a 9-point scale. Valence is depicted from negative (a frowning figure), to
neutral, to positive (a smiling figure). Higher scores reflect consequently a more positive
valence. Arousal is depicted ranging from low arousal (eyes closed) to high arousal (eyes
wide open), with higher scores representing higher arousal.

2.3. Procedure

Participants were recruited through flyers on the campus of the local university as
well as via posts on social network groups linked to the local university. In line with
recommendations for psychophysiological experiments involving HRV measurements [51],
participants were instructed to follow their usual sleep routine the night prior to the
experiment, not to consume alcohol or engage in strenuous physical activity in the previous
24 h, nor to drink or eat 2 h before taking part in the experiment. All participants gave
written informed consent before participation, and were informed that they could withdraw
from the study at any time without any explanation or consequence. The participants
had to come to the lab once, for a within-subject design. After being welcomed to the lab,
they were asked to fill out an informed consent form and a demographic questionnaire
regarding variables potentially influencing HRV [51,53,78]. The ECG device was attached,
and participants went through a 15-min familiarization video to get acquainted with
SPB. Participants had then to go through two conditions in a counterbalanced order:
(1) SPB condition: 5-min baseline, 5-min SPB, 5-min recovery; (2) control condition: 5-min
baseline, 5-min rest, 5-min recovery. HRV was measured continuously throughout, and all
measurements were performed with eyes opened. Participants filled out the self-report
items at the end of each 5-min period. At the end of the session, the ECG device was
detached, and participants were thanked and debriefed.
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2.4. Data Analysis

HRV variables were exported from the Kubios output. Data were checked for normal-
ity and outliers. Regarding outliers, 0.01% of the cases were found to be univariate outliers
(>2 SD). Their exclusion from the analyses did not change the pattern of results, therefore
they were retained in the final analysis. As the RMSSD data was not normally distributed,
a log-transformation was applied, as recommended for HRV research [51].

We conducted a series of repeated-measures ANOVAs, with time (baseline, inter-
vention/rest, recovery) and condition (SPB vs. control) as independent variables, and
respectively RMSSD, perceived stress intensity, perceived emotional arousal, and per-
ceived emotional valence as dependent variables. Based on our hypotheses, we focused
specifically on the time x condition interactions.

3. Results

Descriptive statistics are presented in Table 1 for all study variables. For RMSSD
(see Figure 1), a repeated-measures ANOVA with Greenhouse-Geisser correction was
conducted and showed a significant main effect of time F(1.456, 97.385) = 51.370, p < 0.001,
partial η2 = 0.46; a significant main effect of condition F(1, 60) = 36.825, p < 0.001, partial
η2 = 0.38, and a significant time x condition interaction effect F(1.709, 102.567) = 60.478,
p < 0.001, partial η2 = 0.50. Nine follow-up post hoc t-tests were conducted, adjusting
alpha level with Bonferroni correction to 0.006 (0.05/9). RMSSD was higher for in the SPB
condition when participants performed SPB in comparison to the rest control measurement,
t(60) = 12.553, Cohen’s d = 1.61, p < 0.001. In the SPB condition, RMSSD was higher during
the SPB exercise, in comparison to before t(60) = 13.158, Cohen’s d = 1.69, p < 0.001; or after
the SPB exercise, with t(60) = 12.722, Cohen’s d = 1.63, p < 0.001. No differences were found
between the different measurement times of the control condition, nor across conditions
between the measurements before and after SPB/rest control.

Table 1. Descriptive statistics for heart rate variability.

HR SDNN RMSSD LF HF LF/HF

M SD M SD M SD M SD M SD M SD

Control
condition

Baseline 67.18 7.97 92.22 37.37 57.14 33.17 3735.74 6586.00 1266.25 1450.35 4.09 3.91
Rest 67.66 7.81 91.53 34.09 55.52 30.96 3227.03 4809.28 1171.95 1315.19 4.05 3.74

Recovery 66.71 7.76 97.36 39.60 58.08 30.77 3894.99 5905.07 1374.02 1739.26 4.65 5.22

Slow-paced
breathing
condition

Baseline 67.65 8.43 85.67 37.61 54.08 31.23 3185.95 4969.31 1247.59 1529.23 4.15 4.82
Slow-paced
breathing 68.59 6.86 161.10 239.21 89.93 41.39 14580.16 11277.36 1602.47 1403.40 16.13 13.15

Recovery 67.52 8.25 88.59 35.45 53.95 30.04 2927.52 3638.94 1263.93 1869.90 4.48 5.41

Note: SDNN = standard deviation of all RR intervals, RMSSD: root mean square of the successive differences, LF = low-frequency,
HF = high-frequency.

For perceived stress (see Figure 2), a repeated-measures ANOVA with Greenhouse-
Geisser correction was conducted and showed a significant main effect of time F(1.676,
100.589) = 8.535, p < 0.001, partial η2 = 0.13; a significant main effect of condition F(1, 60)
= 18.385, p < 0.001, partial η2 = 0.24, and a significant time x condition interaction effect
F(1.506, 90.363) = 16.656, p < 0.001, partial η2 = 0.22. Nine follow-up post hoc t-tests were
conducted, adjusting alpha level with Bonferroni correction to 0.006 (0.05/9). Perceived
stress was higher in the SPB condition after SPB in comparison to after the rest control
measurement, t(60) = 7.160, Cohen’s d = 0.92, p < 0.001. In the SPB condition, perceived
stress was higher after the SPB exercise, in comparison to after pre-rest t(60) = 5.343,
Cohen’s d = 0.69, p < 0.001; or post-rest, with t(60) = 6.172, Cohen’s d = 0.79, p < 0.001. No
differences were found between the different measurement times of the control condition,
nor across conditions between the measurements before and after SPB/rest control.
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For perceived emotional arousal (see Figure 3), a repeated-measures ANOVA with
Greenhouse-Geisser correction was conducted and showed a significant main effect of
time F(1.818, 109.065) = 7.735, p < 0.001, partial η2 = 0.11; a significant main effect of
condition F(1, 60) = 9.421, p = 0.004, partial η2 = 0.13, and a significant time x condition
interaction effect F(1.559, 93.519) = 19.604, p < 0.001, partial η2 = 0.25. Nine follow-up post
hoc t-tests were conducted, adjusting alpha level with Bonferroni correction to 0.006 (.05/9).
Perceived emotional arousal was higher in the SPB condition after SPB in comparison to
the control condition after the rest control measurement, t(60) = 6.798, Cohen’s d = 0.87,
p < 0.001. In the SPB condition, perceived emotional arousal was higher after the SPB
exercise, in comparison to after pre-rest t(60) = 5.557, Cohen’s d = 0.71, p < 0.001; or post-rest,
with t(60) = 5.233, Cohen’s d = 0.67, p < 0.001. No differences were found between the
different measurement times of the control condition, nor across conditions between the
measurements before and after SPB/rest control.
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Greenhouse-Geisser correction was conducted and showed a significant main effect of time
F(1.456, 87.379) = 3.669, p = 0.043, partial η2 = 0.06; no significant main effect of condition
F(1, 60) = 0.973, p = 0.328, partial η2 = 0.02, and a significant time x condition interaction
effect F(1.957, 117.439) = 13.953, p < 0.001, partial η2 = 0.19. Nine follow-up post hoc
t-tests were conducted, adjusting alpha level with Bonferroni correction to 0.006 (0.05/9).
Perceived emotional valence was lower in the SPB condition after SPB in comparison to
the control condition after the rest control measurement, t(60) = 4.333, Cohen’s d = 0.56,
p < 0.001. In the SPB condition, perceived emotional valence was lower after the SPB
exercise, in comparison to after pre-rest t(60) = 4.670, Cohen’s d = 0.60, p < 0.001; or post-
rest, with t(60) = 3.816, Cohen’s d = 0.49, p = 0.003. No differences were found between the
different measurement times of the control condition, nor across conditions between the
measurements before and after SPB/rest control.
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4. Discussion

The aim of this study was to investigate the effects of a brief SPB exercise on CVA and
subjective psychophysiological variables, to understand its potential role within EI training
programs. Our hypothesis regarding CVA was confirmed, given an increase was found in
comparison to the control condition. Regarding the subjective variables, findings showed
that the 5-min SPB was perceived as more stressful, with higher emotional arousal, and
with more negative valence than the resting control condition. These findings are explained
below in accordance with current literature in the field.

Regarding CVA, our findings are in line with previous literature, given so far a robust
increase in CVA has been systematically demonstrated during SPB, while returning to levels
close to baseline when ceasing the SPB exercise [55,57–59]. This acute increase may occur due
to the action of SPB on the baroreflex [41] and on pulmonary afferents [38], thus stimulating
the vagus nerve [39,42]. The novelty of the current findings resides in the fact that previously
the increase in CVA during SPB had been mostly documented with longer SPB practice times
of 15-min [55,57–59], while a 5-min SPB exercise was used in the current study. The fact that
CVA returns to baseline after SPB would reflect the cessation of vagus nerve stimulation.
However, increases in CVA found at rest after long-term SPB interventions (30 days, 15-min
per day) would suggest that the regular stimulation of the vagus nerve via SPB leads to
chronic increases in CVA. The underlying mechanisms still need to be uncovered, but we can
speculate at this stage that those announced earlier, involving the functioning of the baroreflex,
of pulmonary afferents, and the effects on brain networks involved in emotion regulation
may certainly play a role in these chronic adaptations [36,38–42]

Our results regarding the subjective experience revealed that the 5-min SPB exercise
was perceived as more stressful, with higher emotional arousal, and with more negative
valence than the resting control condition. These results appear contradictory to those of
Van Diest, Verstappen, Aubert, Widjaja, Vansteenwegen and Vlemincx [67], who found
that a similar 5-min SPB exercise, with an approaching inhalation/exhalation ratio (3 s
inhalation and 7 s exhalation, in comparison to 4 s inhalation and 6 s exhalation in our
study), decreased perceived emotional arousal and increased perceived emotional valence
in comparison to a baseline condition with spontaneous breathing, while they did not
report any change in perceived stress intensity. These results are quite surprising, given
the same instrument, the self-assessment manikin [77], was used to assess perceived
emotional valence and perceived emotional arousal. We may speculate that in our study
participants might have been experiencing dyspnea and found the breathing uncomfortable,
potentially due to hyperventilation or unusual additional strain on the respiratory muscles.
Previous research has documented dyspnea in individuals performing SPB [70,79], and
have suggested the use of positive emotion induction (e.g., pictures linked to positive
emotions) to counteract the potential discomfort triggered by SPB. Specifically, Allen
and Friedman [70] instructed participants to inhale when a black screen appeared, and
exhale when the positive pictures appeared, consequently linking positive pictures to
the activation of the parasympathetic nervous system. The control condition did not
include the positive pictures, but only displayed HRV-biofeedback. The authors found that
dyspnea was rated as less unpleasant and less intense with positive pictures compared to
the condition with HRV-biofeedback. Consequently, future research may consider using
this strategy to decrease potential dyspnea, and control more strictly that participants adopt
a shallow breathing technique, to avoid hyperventilating and decrease the solicitation on
the respiratory muscles. Finally, future research designs may consider testing the effects
of multi-sessions interventions, given the repeated realization of slow-paced breathing
appears to improve participants’ experience [80]. The use of relaxing music or sounds may
also help to improve participants’ experience.

Our study had some strengths, but also some limitations. Future studies should
investigate whether participants are hyperventilating by using a capnometer to measure
end-tidal carbon dioxide (e.g., [81]). Increased tidal volume may also have triggered more
strain on respiratory muscles, and this should be controlled in further research. Addi-
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tionally, given different sports contribute differently to CVA [82], future research should
consider the type of sport practiced by athletes when interpreting the results of slow-paced
breathing. Finally, it should be noted that we focused here on SPB without using a biofeed-
back device. The use of SPB has so far mostly been realized with biofeedback, showing
associations with a large range of positive physical and mental health outcomes [83]. In
sports, SPB with biofeedback has been associated with improved performance [84,85].
However, given biofeedback requires the use of additional devices to display the live
biological signal, it is less accessible to people from lower socioeconomic backgrounds and
in developing countries. Importantly, so far there is no evidence that SPB performed with
biofeedback induces different physiological (CVA) or subjective (state anxiety) changes
than when realized without [86]. Our results show that positive physiological benefits can
be achieved using SPB without biofeedback, as indicated by increases in CVA. However
further research should investigate whether the subjective experience of the participant
differs between both modalities.

5. Conclusions

To conclude, the aim of this study was to investigate the use of SPB without biofeed-
back on CVA and self-report parameters linked to emotion regulation, to understand
its unique added value within EI training programs. Findings showed that while CVA
increased in the SPB condition, self-report measures displayed a more contrasted effect
for emotion regulation, with increased perceived stress and emotional arousal, and more
negative emotional valence. Altogether, these findings suggest that SPB had a positive
influence at the physiological level; however, participants may have experienced some
discomfort implementing this breathing technique. Consequently, future research and
applied implementation of SPB should consider these findings by instructing participants
not to hyperventilate, and potentially adding positive pictures to the SPB exercise [70,79].

Despite contrasting findings related to the subjective experience, findings regarding
CVA are particularly relevant to consider, due to its role in emotion regulation and overall
self-regulation [46,51,87–91]. CVA appears consequently as a relevant physiological marker
to index the effectiveness of techniques used in EI training programs. In athletes, higher
CVA was found to be associated with better executive functioning and coping under pres-
sure [16,92–97]. Given SPB has been shown to improve both CVA and executive functioning
in athletes [55,57,59], it appears to be a promising technique for the applied field. Despite
the existence of other techniques which stimulate the vagus nerve without requiring the
active attention of the individual, such as transcutaneous vagus nerve stimulation [98–100],
the advantage of SPB is that it does not require any device, representing a suitable low-cost,
low-technology, and non-pharmacological way to stimulate the vagus nerve.

Among the techniques already integrated into EI training that target the activity
of the autonomic nervous system, SPB appears consequently to be a suitable candidate
for emotion regulation, even if the instructions have to guarantee that the subjective
experience aligns with the physiological benefits. Consequently, based on our findings,
and taking into account several aspects that may increase the subjective experience, we
may recommend implementing SPB within EI training programs. Future research should
investigate whether the long-term use of SPB as a performance habit [101], as previously
implemented in athletes [56], could also lead to stable changes in EI, as measured with EI
questionnaires [102], such as the Trait Emotional Intelligence Questionnaire [4,103] or the
Profile of Emotional Competences [5].
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