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Pathogenesis of AKI is complex and involves both local events in the kidney as well as systemic effects in the body that are
interconnected and interdependent. Despite intensive investigations there is still no pharmacological agent that could provide
complete protection against cisplatin nephrotoxicity. In the last decade mesenchymal stem cells (MSCs) have been proposed as a
potentially useful therapeutic strategy in various diseases, including acute kidney injury. Although MSCs have potent
immunosuppressive properties, animal studies also suggest that transplanted MSCs may elicit immune response. Interestingly,
tumorigenicity of transplanted MSCs in animal studies has been rarely studied. Since the risk of tumorigenicity of particular
therapy as well as the immune response to solid or cell grafts is a major issue in clinical trials, the aim of the present paper is to
critically summarize the results of MSC transplantation on animal models of AKI, particularly cisplatin-induced animal models,
and to expose results and main concerns about immunogenicity and tumorigenicity of transplanted MSCs, two important issues

that need to be addressed in future studies.

1. Introduction

Today, mesenchymal stem cell (MSC) therapy is recognized
as a potentially useful innovative therapeutic strategy in var-
ious diseases [1]. Increasing number of experimental studies
demonstrated beneficial effects of MSCs also in acute kidney
injury (AKI) [2]. The pathophysiology of AKI is very com-
plex and involves tubular and vascular cell damage and an
intense inflammatory reaction. Current therapies of AKI
mainly include supportive care, including renal replacement
therapy. Despite these therapies, the five-year mortality rate
for patients with AKI remains >50%. Hence, new therapeutic
interventions and strategies for improving survival outcome
for patients with AKI are needed. Stem cell-based therapy
has gained great interest in AKI treatment over the years
[2]. Recent studies have focused on the clinical efficacy of
MSC transplantation [3]. However, in clinical trials, the

immune response to allogeneic solid or cell grafts has always
been a major issue [4, 5]. Although allogeneic MSCs have
potent immunosuppressive properties, animal studies also
suggest that they may elicit a weak allogeneic immune
response [6].

Thus, the aim of the present paper is to critically sum-
marize the results of MSC transplantation in animal models
of AKI, particularly in cisplatin-induced animal models,
and to expose important issues that need to be addressed
in future studies. We have restricted our investigation on
a cisplatin animal model, because it has specific character-
istics that might have significant effect on short/long-term
MSC studies.

To get insight into the reported side effects or risk fac-
tors of stem cell-based therapy in a cisplatin animal
model, we conducted a PubMed search using keywords
“cisplatin kidney and stem cells” and got 111 publications
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(July, 2017). Among them, 40 publications investigated the
effects of stem cells on a cisplatin animal model and are
shown in Tables 1 and 2.

Tables 1 and 2 show the source and type of stem cells
used, immune state of the animals, duration of the studies,
and potential short/long-term risk effects of stem cell trans-
plantation, delivery route, and so on.

1.1. Important Factors to Consider before Conclusion Can
Be Made. Although most of the studies using the cisplatin
animal model reported that MSC transplantation amelio-
rates AKI, conclusions about the effectiveness and safety
of MSCs must not be made before below stated factors are
taken into consideration:

(1) Characteristics of cisplatin animal models
(2) Reliability of tracking the injected cells
(3) MSCs and risk of immune rejection

(4) MSCs and risk of tumorigenicity (duration of the
study: most studies ended within a week, only
few were performed to investigate potential side
effects (8 weeks), but on very small number of
animals (n =3))

2. Characteristics of Cisplatin Animal Models

The cisplatin model has its own characteristics. It is impor-
tant to take into consideration the dose used as well as its
immunosuppressive and carcinogenic effects. When nepro-
toxic dose of cisplatin is used, kidney dysfunction develops
in 2-5 days, reaching peak at 4-7 days and then progressively
recovers (blood urea nitrogen/serum creatinine (BUN/Cr)
reach the baseline levels). When lethal dose of cisplatin is
used (Table 3), self-recovery is less likely. However, with
the higher doses of cisplatin, survival time of animals mark-
edly decreases [54]. Importantly, high-nephrotoxic doses of
cisplatin in rodents lead to systemic side effects, such as body
weight loss and mortality. Cisplatin usually causes diarrhea
in all animals, a significant decrease in both the lymphocytes
(65% decrease) and granulocytes (45% decrease) in the bone
marrow, decrease in circulating peripheral white blood count
(WBC) [49], massive necrotic changes in the kidney, injuries
in the gastrointestinal tract, testis, bone marrow [44], and the
lymph tissue [55]. Cisplatin is also carcinogenic and can
cause lung tumors in rodents [56].

3. Reliability of Tracking the Injected Cells

Most of the studies used labeling to check or confirm the
presence of injected cells in kidneys and/or other organs
(see Tables 1 and 2). It was reported that labeled cells
(PKH26, GFP, and DIO) were mostly detected in the lungs,
much less in the liver and in the kidneys [8, 10, 14, 18, 20,
22, 23, 25]. Cheng et al. studied biodistribution and found
that one hour after iv injection of syngeneic MSCs most of
the radiolabeled (or GFP labeled) cells were trapped in the
lungs (62%), followed by liver (12.5%), spleen (11.4%), and
kidneys (5.4%), but 7 days after injection no signs of MSCs
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in any organ was found [36]. Studies using GFP labeling
reported disappearance of GFP" cells in the kidney 4
days after injection [22, 31], while studies that used
PKH26 [12, 33] or CM-Dil [13] labeling reported pres-
ence of positive cells in the kidney until the end of their
study, that is, 2-4 wks. Nevertheless, the fact that injected
MSCs are mostly trapped in the lungs and cleared with-
out any engraftment in kidney raise questions regarding
their pathophysiologic mechanisms, as well as possibility
of their potential rejection by the host’s immune system.

4. MSCs and Risk of Immune Rejection

4.1. Can Xenogenic or Allogeneic MSCs Survive in
Immunocompetent Environment? Human MSCs express
specific membrane antigens (CD73, CD90, and CD105) and
intermediate levels of major histocompatibility complex
(MHC) class I molecules, while, in a naive state, they do
not express MHC class II and the costimulatory molecules
CD80 (B7-1), CD86 (B7-2), CD40, or CD40L [57]. They
should therefore be recognized by alloreactive T cells, but
numerous in vitro studies have shown that undifferentiated
and differentiated human MSCs escape recognition by
alloreactive T cells, escape lysis by cytotoxic T cells and
natural killer (NK) cells, and inhibit mixed lymphocyte
cultures (MLC), [57-59], suggesting that MSCs may thereby
circumvent rejection and can thus be transplantable between
MCH-incompatible individuals without the need for host
immunosuppression. Furthermore, the observation that
MSCs are immunoprivileged and display immunosuppres-
sive characteristics [60] suggest their therapeutic value in
allogeneic transplantation to prevent graft rejection and to
prevent/treat graft versus host disease.

Numerous experimental studies have reported that trans-
plantation of allogeneic or even xenogeneic MSCs into
immunocompetent animals without the use of immunosup-
pressants resulted in an improvement (reviewed in Lin
et al. [61]) of a wide range of diseases, including cisplatin-
induced AKI, suggesting that hMSCs are immunotolerant.
However, although MSCs seem to be transplantable across
allogeneic or even xenogenic barriers, some animal studies
have clearly shown that the cellular and humoral responses
against the xenogenic MSCs in an immunocompetent
recipient can develop (some example are shown in Table 4).
Results also show that allogeneic MSCs are not intrinsically
immunoprivileged but under appropriate conditions induce
T cell response resulting in rejection of an allogeneic stem cell
graft [65].

4.2. MSCs Mechanism and Risk of Immune Rejection. Despite
evidence for the therapeutic potential of MSCs, the mecha-
nisms underlying the improvement in kidney function and
structure remain unclear. In the past, studies have reported
that injected exogenous MSCs can home into injured
tubules. Consequently, it has been proposed that the ability
of MSCs to transdifferentiate explains their protective effects
[25]. However, if the cells act by engrafting the tubules, then
either they will need to be autollogous (host-derived to
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TaBLE 3: The acute lethal single dose of cisplatin varies among various strains of mice and rats.

Strain (origin), sex, age Cisplatin dose Mortality Time Ref.

Wistar rats female 10.8 mg/kg (9.1-12.8 mg/kg) 50% D10 [43]

Fischer 344 rats female, 8 wks 11 mg/kg 50% D6 (44, 45]

BALB/c (Harlan) o

female 14.5 mg/kg 100% D7 [46, 47]

C57BL/6 (Japan) o

Male, 11-15 wks 15mg/kg 100% D10 [48]
. 16.0+0.8 50%

Swiss Webster male 195.40.8 100% D10 [49]

10 mg/kg 0%
C57BL/6 x DBA/2 (F1) male 14 mg/kg 90% D8 [49]
. 10.7 mg/kg 50% D10

DBA2 mice female 16 mg/kg 90% D30 [43]

1295V .

Male, 8-12 wks 14 mg/kg 70% D7 [50]

CBA (UK) 10 mg/kg 0%

Male, 6 wks 15 mg/kg 67% D15 (511

CBA mice o

Pernale, 4.8 wks 16 mg/kg 40% D8 [52]

CBA mice

Female, 24 months 16 mg/kg 100% b7 (53]

NMRI mice female 17.0 mg/kg (14.9-19.7 mg/kg) 50% D10 [43]

D: days after cisplatin injection.

prevent rejection) or the recipient will need proper immuno-
suppressive therapy.

Short duration of studies (usually less than a week) and
rare distribution of MSCs in the kidney sections (very small
in number) suggest that the beneficial effect of MSCs cannot
be attributed to their engraftment or transdifferentiation.
Thus, recent studies have suggested that MSCs protect
against acute tubular injury through a differentiation-
independent process (i.e., paracrine or endocrine process).
Consequently, it was suggested that if the cells merely transit
through the kidney and act in a paracrine manner to protect
or stimulate the endogenous renal cells, then they might only
need to survive for a few days and immune environment may
not be important [16]. However, recent studies show that the
situation is not so simple as it was suggested.

First, acute rejection of injected cells in cisplatin model
was not evaluated nor reported. It was only reported that cells
disappeared within 24 h after injection [18, 22, 31], which
could suggest acute rejection. However, sensitization reaction
(mixed-lymphocyte reaction—MLR test) that could confirm
or omit immune reaction was not done in any of AKI studies.
Since most of the studies using a cisplatin animal model
investigated effects of MSC transplantation ended within 4
days, the time period may be too short for the immune reac-
tion evaluation. Nevertheless, until now, no MLR test or
immune reaction in long-term studies on AKI was reported.
However, we observed the immune reaction in immunocom-
petent mice 3 months after MSC treatment, although mice
were immunosuppressed with polyclonal antithymocyte glo-
buline (ATG) before MSC therapy (unpublished data). MSC
treatment resulted in complete restitution of cisplatin-

injured organs/tissue such as the thymus, spleen, and kidney,
as well as white and red blood cells (Table 5).

However, histology revealed that the mouse had moder-
ate chronic jejunitis (Figure 1(d)) and rare small lymphobhis-
tiocytic infiltrates in the kidneys located periglomerularly
and perivascularly (Figure 1(b)) and a subpleural tumor
0.5mm in diameter (Figure 1(a)). It is important to take into
consideration that athymia is associated with profound
immunodeficiency, but restitution of thymus leads to the
improvement of the immune system [67]. Restitution of
thymus integrity and function (which was in our case
diminished following ATG and cisplatin treatment) was
already described after MSC therapy [68]. Moderate
chronic jejunitis and focal infiltration of mononuclear cells
in lungs and kidneys found in the mouse after MSC therapy
may suggest that immunoregulatory properties of trans-
planted MSCs together with timely vanishing effect of
ATG-enabled immune system awakening and resulted in
the occurrence of dispersed inflammatory changes. Thus,
our case demonstrates that studying long-term MSC thera-
peutic effect in immunocompetent mice is challenging and
may raise additional questions.

Furthermore, studies have shown that extracellular mem-
brane vesicles (MVs) by themselves are capable of modulat-
ing T cell functions and repairing injured tissue. It was
found that cytokine stimulus affects molecular mechanisms
of MSCs and may have significant effects of the MV produc-
tion. Kilpinen et al. [69] investigated the production of extra-
cellular MVs from human umbilical cord blood- (UCB-)
derived MSCs in the presence (MV ) or absence (MV_,..)
of inflammatory stimulus (IFN-y) and demonstrated that
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TaBLE 4: Examples of immune reaction after xenogenic or allogeneic MSC transplantation.
MSC origin Recipient, route of transplantation Adverse immune reaction Ref.
Allogeneic Healthy horses; intravenous injection, Day 35: T circulating CD8" T cells after (6]
Ad or BM 3 times DO, D14, D28 multiple iv injections of BM MSCs
Sprague-Dawley rats: T macrophages in myocardium of
Intracardiac injection immunocompetent rats from day 2 to day 7;
Xenogeneic hBM (i) Immunocompetent MLR test (peripheral blood of rats mixed with [62]
(ii) Immunosuppressed (tacrolimus) 1% or 10% of MSCs) showed T lymphocyte
(iii) RNU athymic rats proliferation in SD rats previously exposed to MSCs
Xenogeneic Infiltrates of T cells and macrophages around
hES C% Healthy mice, immunocompetent injected MSCs; MSCs disappeared 3 days after [58]
transplantation (acute rejection)
Rats Cells were present 6 weeks after transplantation
Xenogeneic Intracardiac injection in RNU rats with additional immunosuppression,
hBMg RNU athymic rats in RNU rats without additional immunosuppression [63]

RNU + tacrolimus
Fisher + tacrolimus

(tacrolimus) or in Fisher rats with immunosuppression
no surviving hMSCs were found

. . Wistar and Lewis rats;
Allogeneic or syngeneic

Allogeneic MSCs caused T cell and B cell activation and
stimulated the humoral immune system to produce

BM MSCs iﬁgﬁiﬁiﬁfnméfgion antibodies against the allogeneic cells—function [64]
P was lost after 5 months
The addition of host (syngeneic) MSCs enhanced
Allogeneic, syngeneic, BALB/c or B6 mice; engraftment, whlle'the 1nf'1151(')n of donor .(allf)genelc)
. o . MSCs was associated with increased rejection of
and third party Sublethally irradiated mice . ) [65]
BM MSCs intravenous injection allogeneic donor BM cells and induce a memory
) T cell response. Third-party MSCs had a neutral
effect on engraftment.
Allogenic Rats: Lewis (donor), ACI (recipients); Allogeneic MSCs did not prolong allograft survival.

heart transplantation with or without

donor/recipient MSCs immunosuppression (CsA)

Treatment with low-dose CsA and MSCs accelerate [66]
allograft rejection in a rat heart transplant model

BM: bone marrow; Ad: adipose tissue; hESC: human embryonic stem cells; CsA: cyclosporine A; Third party: commercially available; MLR: mixed-lymphocyte

reaction; RNU: Rowett nude rats (athymic with the genotype rnu/rnu).

TaBLE 5: Body weight, relative weight of organs, and blood
parameters in BALB/cOlaHsd mice 3 months after hMSC
transplantation.

Parameter CIS hMSCs Healthy
WBC (10°/mm”) 8.1 10.9 10.1
RBC (10°/mm”) 7.46 10.35 9.46
PLT (10°/mm®) 1303 773 789
Body weight (g) 23.7 314 31.6
RW of the spleen 0.877 0.42 0.35
RW of the liver 6.9 5.0 4.7
RW of the kidney 1.5 1.36 1.82
RW of the lungs 1.14 1.14 1.25
RW of the heart 0.96 0.67 0.59

CIS: mice treated with ATG and cisplatin (ip, 17 mg/kg); hMSCs: mice
treated with ATG, cisplatin (ip, 17 mg/kg), and hMSCs (iv, 0.5 x 10° cells
in 0.2 ml PBS); healthy: mice received PBS instead; WBC: white blood cells;
RBC: red blood cells; PLT: platelets; RW: relative weight (weight of organ
divided by body weight *100).

MSC paracrine regulation is complex. Although both MV, |
and MV, showed similar T cell modulation activity
in vitro, only MV_ .. were able to protect rat kidney
in vivo. Detailed analysis of MV proteomes revealed

significant differences in protein composition of MVs in
dependence of the microenvironment of MSCs. MV __ .. con-
tained complement factors (C3, C4A, and C5) and lipid bind-
ing proteins (i.e., apolipoproteins), whereas the MV,
contained tetraspanins (CD9, CD63, and CD81) and more
complete proteasome complex accompanied with MHCI.
IFN-y stimulation of MSCs for 24 h resulted in secretion of
MV that contained the HLA-A (MHCI) molecule and both
o and f units of the proteasome complex required for the
antigen presentation and activation of T cells. When
hUCB-MSCs were stimulated with IFNy for 48 hours, MVs
contained also HLA-II proteins. Thus, inflammatory signals
in the microenvironment can significantly influence not only
MSCs but also the protein content and functional properties
of secreted MVs [69]. These results represent additional
challenge or consideration for future studies.

5. What Are the Signs of Acute
Cellular Rejection?

Although numerous studies have demonstrated that MSCs
show low level of immunogenicity and can have an immu-
nomodulatory role [60], animal studies have demonstrated
that xenogenic or allogeneic MSCs can trigger either acute cel-
lular or humoral immune response or both. Differentiation of
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F1GURE 1: hMSC treatment in ATG immunosuppressed and cisplatin-treated BALB/cOlaHsd male mice 3 months after transplantation
revealed unexpected pathology. (a) Subpleuraly, a homogeneous solid tumor (diameter 0.5 mm) with rare mitosis and uniform nuclei was
sharply demarcated from the surrounding tissue in the lung of hMSC treated mouse (HE, magnification 100x). (b) Inflammatory cells
(lymphocytes, plasma cells, and histiocytes) surrounding the arteriola and vein in the kidney of the hMSC-treated mouse (PAS,
magnification 200). (c¢) Thrombus in the small artery of the right ventricle wall of ATG + cisplatin-treated mouse (HE, magnification
400x). (d) Moderate chronic jejunitis in hMSC-treated mouse—note atrophy of crypts and loss of architecture of villi (Kreyberg,
magnification 400x). (e) Jejunum in the healthy untreated mouse (Kreyberg, magnification 400x). (f) Jejunum of the cisplatin-treated
mouse. Restitution of the mucosa is seen; however, the height of villi is decreased compared to healthy mice (Kreyberg, magnification 400x).

MSCs (to acquire myogenic, endothelial, or smooth muscle
characteristics) is associated with increased MHC-Ia and
MHC-II (immunogenic) expression and reduced MCH-Ib
(immunosuppressive) expression [70], which result in
increased cytotoxicity in coculture with allogeneic leukocytes
(acute rejection). Cells expressing MHC-Ia are usually elimi-
nated by cytolysis, while the loss of MHC-Ib (which has been
reported to suppress CD4" T cell response) may result in
reduced immunosuppressive effects. In animal studies, it is
difficult to evaluate the signs of acute cellular rejection; thus,
we stated some points that can help researchers to assess the
immune reaction.

5.1. Beneficial or Absent Effect. The microenvironment of the
damaged kidney tissue is not favorable for survival of MSCs.
Cells are exposed to a hypoxic nutritionally poor environ-
ment, oxidative stress, and masses of cytotoxic factors leading
to an inflammatory cytokine storm affecting the efficacy
of MSC therapy. Various approaches have been investigated
to help MSCs to cope/resist with the harmful microenviron-
ment into which cells are transplanted [19, 23]. Thus, the
absence of the effect of MSCs could indicate damaging

microenvironment [31], MSC inactivity due to cryopreserva-
tion [71], and finally cell rejection.

On the other hand, amelioration of kidney dysfunction
after MSC injection does not indicate that MSCs are not
immunogenic, because along with T cell and B cell activation
differentiated MSCs can stimulate the humoral immune sys-
tem to produce antibodies against the allogeneic/xenogeneic
cells. A good example of late rejection is the study where
allogeneic or syngeneic MSCs were implanted into the
infarcted rat myocardium. MSCs (versus media) significantly
improved ventricular function for at least 3 months after
implantation. Allogeneic MSCs differentiated by about 2
weeks after implantation, but at 5 weeks, antibodies against
differentiated allogeneic MSCs (but not syngeneic) were
detected in the circulation of recipient animals, and alloge-
neic MSCs were eliminated from the heart. Interestingly,
their functional benefits were lost within 5 months [64].

5.2. PresencelAbsence of Injected Cells—Different Method of
Identification. There are various methods and markers for
tracking the injected cell. They all have advantages and limi-
tations and no single method is 100% reliable. It has been
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already reported that PKH26 is not a reliable tracking agent.
Also, Santeramo et al. have shown that human cells (labeled
with PKH26 or GFP) injected in athymic rats can give differ-
ent results [18]. PKH26" cells were found in the kidney close
to the tubular or interstitial cells and lungs even 14 days after
iv injection, while GFP" cells were exclusively located in the
lungs and had disappeared within 24 h after injection [18].
Obtained results confirmed that PKH26 is not a reliable
tracking agent and explained the observed discrepancy
among studies regarding the duration of homing of
injected-labeled cells (as mentioned above in Section 3). It
is important to be aware that when a labeled cell is phagocy-
tosed by macrophages, the stain is usually not immediately
degraded. Thus, the macrophage with phagocytosed frag-
ments of labeled cells can give false positive results.

5.3. Presence of T Cells and/or Macrophages around
Cells—Acute Rejection. Infiltration of T cells and macro-
phages around transplanted cells is usually a sign of acute cel-
lular rejection. It can be observed soon after transplantation
and result in the disappearance of transplanted cells within
a few days. In a cisplatin animal model, immune rejection
of injected cells was not studied nor reported. Therefore, con-
clusions about immunogenic tolerance of MSCs cannot be
made. Interestingly, although the authors of one study found
that injected cells became entrapped in the lungs and cells
and their fragments were then phagocytosed by resident
macrophages (CD68") and dendritic cells within 24h of
administration, they observed the beneficial effect of injected
cells on AKI [18] but did not report or mention possibility of
potential acute rejection.

6. Risk of Tumorigenicity

Current knowledge about the risk of tumorigenicity in MSC
therapy has been recently reviewed [72, 73]. It was realized
that currently there is not enough data/studies to make any
conclusions. “In current animal models, in which either
human or animal cells (homologous models) are used, no
evidence of tumor formation has been observed to date.
However, the frequency of transformation of human MSCs
is too low to detect overt tumor formation in established
rodent model” [72]. It was also stated that “it should be
emphasized that tumor formation in human patients after
MSC administration has not been reported to date” [72, 73].

However, several researchers have so far described
the role of MSCs in tumor formation [74, 75] and some
succeeding observations of malignant lesions in the fields
of transplanted MSCs [76, 77] published after the review
of Barkholt et al. [72] place a serious question on the
former statements.

In our case, the tumor in the lungs of the mouse was
observed 3 months after MSC therapy. Cisplatin-associated
lung adenomas are among already observed late onset sec-
ondary tumors in experimental rodents treated with cisplatin
[56, 78]. In spite of large interspecies differences in the rates
of metabolism of cisplatin, in the case of secondary solid
tumors in humans (tumors that arise after treatment of pri-
mary malignancy as a consequence of cytostatic therapy),
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there is an average 20-40 year expected interval from the
time of exposure of an individual to a chemical carcinogen
until the clinical detection of a tumor [79] that raises addi-
tional questions regarding possible tumor-promoting influ-
ence of stem cell therapy.

Another important issue to consider in the context of
tumorigenicity is the convenience of systemic, that is, intra-
venous route of MSC infusion. It was reported that only a
minority of intravenously infused MSCs reaches the target
tissue and then disappears after few days (see Tables 1 and
2 and Section 3 and Section 5.2) [72]. Our results showed that
intravenously infused human MSCs were mostly stuck in the
liver and lungs of ATG immunosuppressed mice, only few of
them reached other tissues including the kidneys and intes-
tine after MSC infusion [80]. Although MSCs mediate their
effects mostly through paracrine action, massive trapping of
dead and/or dying MSCs in pulmonary or liver circulation
after intravenous infusion may represent some burden for
ill organism. It is also not known whether all MSCs that are
trapped in the lungs either die or some of them are able to
survive or even transform (under special circumstances).

Probably, the most important issue associated with
tumorigenicity of transplanted MSCs in this experimental
model is uremic and immunocompromised status of the
host. While there is not much disagreement regarding the
influence of manufacturing practice and in vitro culture con-
ditions, especially the duration of cell propagation on chro-
mosomal stability of the MSCs [72] and there is also no
disagreement that the immunocompromised state is predis-
posed to malignancies [81, 82], it is still hypothetical whether
the physiological stress associated with the in vivo diseased
environment, that is, uremic could also promote tumorige-
nicity in MSCs. Transplanted MSCs are believed to be
confronted with cell death within a few days after trans-
plantation due to a combination of harsh environmental
conditions, anoikis, and inflammation [83, 84]. However,
if not all MSCs die after transplantation but few of them
were able to successfully engraft, then the survivors’ expo-
sure time to uremic environment is markedly prolonged. In
the in vitro conditions, uremic toxins impaired human bone
marrow-derived mesenchymal stem cell functionality. The
harm was surprisingly not proceeded via induction of apo-
ptosis but by promoting damage to cell membranes and alter-
ing the MSCs paracrine activity [85]. A negative influence of
uremic toxins on functional characteristics of MSCs raises
concern on their possible role in promoting malignant trans-
differentiation of MSCs, which should be further explored.

7. Conclusion

Although numerous studies have shown that MSC treat-
ment ameliorated AKI, it is important to be aware that
there are many factors to consider before any conclusion
about the effectiveness or safety of MSC therapy can be
made. One important factor is the cisplatin model itself,
because cisplatin have short-term immunosuppressive
and long-term carcinogenic effects. Another important
factor is stem cell quality. We have found that only few
researchers used hMSC that met the proposed criteria
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[26]. Third factor is immune microenvironment. Many
researchers used immunodeficient animals. However, not
all nude mice or rats are the same or have the same immu-
nological state. Since only few stated the exact code of ani-
mals (according to Nomenclature http://www.informatics.
jax.org/nomen/strains.shtml), obtained results cannot be
properly interpreted and can be misleading. Since both
MSC research and cisplatin models are very complex and
their underlying mechanism possess many open questions,
it is of great importance to design experiments properly
and state all necessary data (in accordance with ARRIVE
guidelines [86] and the gold standard publication checklist
[87]) to contribute to responsible conduct of animal
research and to validate the results. Otherwise, it can hap-
pen that this strategy, while seems to work experimentally,
will fail when applied to patients.
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