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ABSTRACT: Recapitulating radioresistant cell features in perti-
nent cell line models is essential for deciphering fundamental
cellular mechanisms. The limited understanding of passage and cell
cycle phases on radioresistant cells revived post-cryopreservation
led us to investigate the effect of sub-culturing in parental and
radioresistant MCF-7 cells. In this study, the radioresistant cells
showed high-intensity nucleic acid and cytochrome bands, which
are potentially a radiation-induced spectral marker. Raman
spectroscopy data showed dynamic biochemical alterations in
revived radioresistant G2/M synchronized cells at early cell
passages 1 and 3 with stabilization at a latter cell passage, 5. The
study highlights the importance of cell passaging and cell cycle
phases in potentially changing the biochemical parameters during
in vitro experiments after the revival of radioresistant cells post-cryopreservation.

■ INTRODUCTION
Radiotherapy as a standalone treatment or in combination with
surgery, chemotherapy, or hormone therapy is recommended
for breast cancer patients, in neo-adjuvant and adjuvant
settings.1 Although a well-defined treatment plan is tailored
for an individual patient, the outcome of radiotherapy is often
hindered by resistance to radiation, leading to recurrence. Cell
line representatives of molecular subtypes of breast cancer such
as estrogen receptor (ER+/−), progesterone receptor (PR
+/−), and Herceptin 2 amplification (Her2+/−) have
inherently different radio sensitivities; nevertheless, in vitro
models are developed for acquired radioresistance for studying
the molecular mechanism that contributes to resistance.2

Several in vitro studies are ongoing to understand the
mechanisms underlying acquired radioresistance and develop
newer strategies to circumvent clinical problems.1b,2d,3 These
established radioresistant cell lines are cryopreserved for long-
term storage and revived as and when needed. However, these
freeze−thaw cycles induce different kinds of stress on the
reviving cells, such as osmosis by the cryoprotectant, cold shock
by alterations in temperature, and oxidative stress due to reactive
oxygen species, which eventually damage the cells.4 Most of
these processes lead to increased cell death due to apoptosis (as
opposed to necrosis). Previous studies have shown that multiple
factors are implicated in the development of radioresistance, like
deregulated signaling pathways (e.g., PI3K/AKT, NF-κB) and
alterations in cancer metabolism.5 Thus, exposure to extra- or
intracellular stress post-cryopreservation and revival will disrupt

cellular homeostasis and cause the engagement of signaling
pathways that serve to rebalance biochemical processes within
the cell. As is known, these changes are dynamic and might alter
with time. Considering that the reviving cells are under stress in
the early passages, determining the appropriate passage number
for performing experiments is crucial for obtaining reliable and
reproducible results. Earlier studies have shown that the Raman
spectrometer, a vibrational spectroscopic tool, has shown
immense potential in cancer diagnosis, surgical margin assess-
ment, recurrence prediction, and quality assessment of tumor
biospecimens and to assess fractionated radiation dose response
in ex vivo tissues and in vitro cells.6 The parental cell line
characteristics, such as morphology, growth rate, tumorigenicity,
gene and protein expression patterns, and cellular signaling
pathways, alter with increasing cell passage numbers.7 Even after
establishing the acquired radioresistance in cell lines, performing
experiments at appropriate cell passages is often overlooked
during in vitro studies.
Therefore, understanding the response to radiation with

differing cell passage and the importance of cell cycle phases
would provide crucial information about the biochemical
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changes in cells. In this study, we report an analysis of the
morphological and biochemical alterations that occur in
acquired radioresistant cells as they are cultured in vitro through
different passages post-cryopreservation. These analyses are
performed on different cell cycle phases of cells and varying
passage numbers that occur upon the maintenance of acquired
radioresistant cells. Unique Raman spectral features were
observed in radioresistantMCF-7 cells compared to the parental
MCF-7 cells. Further, multivariate analysis shows distinct
stratification of the highly radiosensitive G2/M and moderately
sensitive G0/G1 phases across different cell passages. Our
findings demonstrate that the earlier cell passages 1 and 3 show
dynamic biochemical alterations on cell revival, whereas in cell
passage 5, these alterations stabilize. Based on the findings, we
propose performing in vitro studies on revived radioresistant cell
lines at a later passage to understand varying radiation-
associated changes better.

■ MATERIALS AND METHODS
Cell Lines and Reagents.MCF-7 and MCF7-RR cell lines

were cultured in DMEMmedia (Invitrogen) supplemented with
an antimycotic antibiotic solution (Himedia), 10% fetal bovine
serum (FBS; Gibco), and 2 mM glutamine (Sigma). Cell lines
were maintained at 37 °C and in a 5% CO2 atmosphere.
Development of Radioresistant Cell Line and Cell

Synchronization. The radioresistant MCF-7 cell line (MCF7-
RR) was prepared by giving fractionated irradiation with a
cumulative dose of 20 Gy in 10 fractions of 2 Gy each. A Co-60

radioactive source machine Bhabhatron-II (Panacea Medical
Technologies Ltd. and Bhabha Atomic Research Centre,
Mumbai, India) installed at the Department of Radiation
Oncology was used to deliver radiation to the cells. Cells were
synchronized in the G0/G1 phase by serum starvation using
0.02% serum for 72 h, followed by 6 h of serum release in the
mitotic phase and incubation with 200 ng/mL nocodazole for 18
h.
Clonogenic Assay. Cells (∼500) were seeded in a 6-well

plate, irradiated at 0, 2, 4, 6, and 8 Gy, and cultured for 14 days at
37 °C and 5% CO2. Colonies were washed with phosphate-
buffered saline and fixed in 4% paraformaldehyde (Sigma) for 20
min. The colonies were stained using 0.5% crystal violet, and
clones containing >50 cells were considered for analysis. The
plating efficiency was calculated as described,7 and the surviving
fraction was calculated for MCF-7 and MCF7-RR cell lines.
Cellular Morphology and Immunofluorescence Mi-

croscopy. Morphological analysis was done using phase-
contrast microscopy (Zeiss Axiovert 200 M) at cell passages 1,
3, and 5. Further, immunofluorescence was performed as
previously described.8 MCF-7 and MCF7-RR cells were
incubated with the β-tubulin primary antibody (Cell Signaling,
2128S), followed by 1 h secondary antibody incubation
(ThermoFisher, A11029). Imaging was performed using a
Zeiss 510 Meta confocal microscope.
Transmission Electron Microscopy. MCF-7 and MCF-7

RR cells were fixed at passages 1, 3, and 5 using 3%
glutaraldehyde, followed by fixation with 1% osmium tetraoxide.

Figure 1. Development and characterization of the MCF7-RR cell line. (a−c) Representative images for Clonogenic assay performed in parental
MCF7 and MCF7-RR cell lines at passages 1, 3, and 5. Cells were irradiated with a single fraction of 2, 4, 6, and 8 Gy radiation doses. The number of
colonies was counted and data were analyzed. (d−f) Graph depicting enhanced surviving fraction of MCF7 andMCF7-RR cell lines at passage 1 (P1),
passage 3 (P3), and passage 5 (P5) after irradiation with a single fraction of 2, 4, 6, and 8 Gy radiation dose. Student’s t-test was used for statistical
analysis, *P < 0.05, **P < 0.01, ***P < 0.001. n = 3 for all experiments. Error bars represent the mean ± SD of three experiments.
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Grid contrasting was performed using alcoholic uranyl acetate

and lead citrate for 60 and 30 s, respectively. The grids were

observed and images were taken under a JEM 1400 Plus

transmission electronmicroscope, JEOL (Japan), at 120 kV, and

the analysis was done on iTEM software.

Western Blotting. Total cell lysates were resolved on 12%

SDS−polyacrylamide gel electrophoresis, transferred onto a

PVDF membrane, and western blot analysis was performed.

Antibodies and their dilutions were used as previously

described.6u

Figure 2. Distinct cytoskeletal and morphological features of radioresistant cells are retained irrespective of the cell passage. Representative phase-
contrast microscopy image depictingmorphological alterations in (a)MCF7 and (b−d)MCF7-RR cells at passage 1 (P1), passage 3 (P3), and passage
5 (P5), respectively. Scale bar-50 μm. Representative z-stack projection images of immunofluorescence analysis showing changes in the cytoskeletal
organization of β-tubulin in (e)MCF7 and (f−h)MCF7-RR cells across different cell passages, P1, P3, and P5. Magnification�40×, Scale bar-10 μm.
Data were analyzed using ImageJ software. n = 3 for all experiments. Representative transmission electron microscopy images depicting ultrastructural
changes in (i−k) MCF7 and (l−n) MCF7-RR cells at passage 1 (P1), passage 3 (P3), and passage 5 (P5), respectively. Images were taken at
magnification × 1500, and the scale bar depicts 5 μm for electron microscopy images.
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Cell Cycle Analysis. The cell cycle analysis was performed
using propidium iodide staining as described earlier8 The
acquisition of cells synchronized at the G0/G1 phase and the G2/
M phase was carried out using a fluorescence-activated cell
sorting (FACS) Calibur flow cytometer (Becton Dickinson),
and the analysis was performed using the fluorescence-activated
cell sorting (MODFIT) software by Verity house.
Raman Microscopy and Spectral Analysis. Cells (1 ×

106) were seeded in a 6-well plate and incubated at 37 °C and 5%
CO2 for 24 h. The parentalMCF-7 andMCF7-RR irradiated cell
pellets were processed for Raman analysis as described earlier.6t

In brief, cell pellets were fixed using 1% paraformaldehyde for 10
mins at 4 °C, centrifuged at 1000 rpm for 3mins followed by two
washes of saline. The cell pellets were placed on a CaF2 window,
and Raman spectra were acquired using a confocal Raman
spectroscopy system (WITec alpha 300R, Germany) equipped
with a 532 nm diode laser and a 100× objective. Samples were

recorded at 30 mW laser power over 10 accumulations of 10 s.
Multiple spectra (n = 10) were recorded from different sample
areas to examine intra-sample variability. Average spectra (n =
30) per group were taken ahead for further analysis.
The spectra were interpolated in the fingerprint region 600−

1800 cm−1, smoothened (Savitzky−Golay method and window
size 3), and baseline corrected by fitting and subtracting
polynomial order 5 using Labspec software. The vector-
normalized spectra were subjected to multivariate unsupervised
principal component analysis (PCA) and supervised principal
component based linear discriminant analysis (PC-LDA). PCA
identifies the maximum variance between the data, while PC-
LDA provides distinct classification between groups. Unscram-
bler X software (v.10.4.1, CAMO Software AS) was employed
for data analysis.
Statistical Analysis. All experiments were performed in

triplicate. The data are presented as the mean± S.D. Student’s t-

Figure 3. Synchronization of parental and radioresistant cells in the G0/G1 and G2/M phases. Flow cytometry-based cell cycle profile image of parental
MCF7 and MCF7-RR synchronized in (a,c) G0/G1 and (b,d) G2/M phases at passage P1, passage P3, and passage P5, respectively. Cells were
synchronized in the G0/G1 phase by serum starvation, followed by 6 h of serum release in the mitotic phase and incubation with nocodazole for 18 h.
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test was used for statistical analysis, and the significant
differences were considered as per the following criteria: *P <
0.05, **P < 0.01, ***P < 0.001.

■ RESULTS
Characterization of Radioresistant MCF7-RR Cell Line.

MCF-7 and MCF7-RR cells at passages 1, 3, and 5 post-revival
were exposed to a single fraction of 2, 4, 6, and 8 Gy radiation
dose to assess whether the radioresistant properties of MCF7-
RR cells were maintained throughout the cell passaging. In
concordance with the earlier results, we observed different
radiation responses in parental MCF-7 and MCF7-RR cells
(Figure 1). The radioresistant MCF7-RR cells showed an
increased survival potential compared to the parental MCF-7
cells (Figure 1d−f). The data suggest that no significant
difference was observed in the increased survival potential across
varying cell passages in the MCF7-RR cells. The radioresistant
cells retained the enhanced survival potential with the increasing
passage number.
Distinct Cytoskeletal and Morphological Features of

Radioresistant Cells are Maintained with Increasing
Passage Number. Morphological features of parental MCF-
7 and MCF7-RR cells were studied through phase-contrast,
electron, and confocal microscopy to affirm the alteration across
different cell passages. Parental MCF-7 cells exhibited a typical
epithelial-like morphology, with adhered cells showing cobble-
stone-like monolayers (Figure 2a). Also, a discernible alteration
in cellular morphology was observed with radioresistance
development (Figure 2b−d). The radioresistant MCF7-RR
cells phenotypically showed an increase in spindle-shaped
morphology wherein they contacted each other through focal
points rather than the entire cellular area. Interestingly, the
morphology of radioresistant cells was maintained with differing
cell passages, like cell survival potential. Confocal microscopy-
based cytoskeletal analysis revealed that parental MCF-7 cells
have typical cytoskeletal organization. In contrast, distorted
arrangement and aberrant organization of the cytoskeletal
protein β-tubulin in radioresistant MCF7-RR cells across
different cell passages (Figure 2e−h) were observed. To further
understand the cell-passage-dependent ultrastructural changes,
electron microscopic analysis was performed. Parental and
radiation-resistant MCF-7 cells displayed enhanced vacuolation,
autophagy, and a lower mitochondrial number at cell passage
number P1. As the passage number increased to P3, autophagic
bodies and vacuolation decreased in MCF-RR compared to that
in MCF-7 cells. Moreover, P5 cells attained a well-defined
mitochondrial morphology with decreased vacuolation in both
parental and resistant cells (Figure 2i−n). Additionally, electron
microscopy-based cell size analysis was performed to study
passage-dependent cell size alterations. The data showed no
significant change in the cell size as the passage number
increased from P1 to P5 in MCF-7 and MCF-7 RR cells
(Supporting Information, Figure S3). Alteration in mitochon-
drial dynamics, vacuolation, and activation of autophagy in
response to cellular stress has been previously reported.9 The
observed changes from P1 to P5 suggest a decrease in cellular
stress after the revival of cryopreserved cells.
Raman Spectra of Parental and Radioresistant Cell

Populations Reveal Unique Cell Cycle-dependent Spec-
tral Features. To understand the alterations occurring across
the moderately sensitive G0/G1 and the highly radiosensitive
G2/M phases across different cell passages, we carried out a cell
cycle-based analysis of parental and radioresistant MCF7 cells.

The parental and radioresistant cells, post-synchronization in
the G0/G1 and G2/M phases of the cell cycle, showed no
significant difference in the percentage of cells in relation to the
passage numbers. The cell percentages in the G0/G1 phase with
increasing passage (P1, P3, and P5) were 70, 68, 73 and 71, 74,
and 76% and in the G2/M phase, the cell percentages were 93,
93, 92 and 96, 95, and 88%, in parental and radioresistant cells,
respectively (Figure 3c,d).
Mean Raman spectra of parental MCF7 and MCF7-RR

populations were assessed to identify biochemical alterations at
different cell cycle phases (Figure 4). The comparison of
parental MCF-7 with MCF7-RR cells synchronized in the G0/
G1 phase at P1, P3, and P5 showed an overall increased intensity
of Raman bands contributing to DNA bases�T, C (788 cm−1),
T, A, G (1376 cm−1), A, and G (1491 cm−1), phenylalanine
(1009 cm−1), the combined contribution from protein and lipid
at C−N stretching, and chain C−C stretch (1125 cm−1),
respectively, and resonance Raman bands of cytochrome (750,
1585 cm−1). The low-intensity bands contributed to proteins�
amide III β-sheet (1240 cm−1), the combined contribution from
protein and lipid at amide III α-helix (1268 cm−1) and CH2
deformation (1450 cm−1), and amide I (1665 cm−1). In the case
of MCF7-RR cells synchronized in the G2/M phase at P1, P3,
and P5, overall increased intensity of Raman bands contributing
to nucleic acid features�T, C (788 cm−1), T, A, G (1376 cm−1),
protein and lipid overlap region at C−N stretching, and chain
C−C stretch (1125 cm−1), respectively, and resonance Raman
bands of cytochrome (750, 1585 cm−1) were seen, while
decreased intensity bands contributed to a protein and lipid
overlap region at amide III α-helix (1268 cm−1), CH2
deformation (1450 cm−1), and amide I (1665 cm−1). The cell
cycle phase-dependent differences in the biochemical compo-
nents of parental and radioresistant MCF7 cells indicate the
distinct alterations occurring in the cells on acquiring radio-
resistance. The increased intensity of Raman bands contributing
to vibrational modes of nucleic acids 788, 1376, and 1491 cm−1

in MCF7-RR cells indicates increased DNA damage repair post-
irradiation and thereby an enhanced radioresistant population
(Figure 4). Several proteins involved in DNA repair protect the
radiation-treated cells from cell death and increase radio-
resistance. In contrast, proteins involved in apoptosis induce cell
death and enhance radio sensitivity. In addition, similar proteins
such as TP53 are involved in cell cycle arrest and apoptosis,
compensating for the cell death induced at either of the stages,
thereby enhancing radioresistance.10 The variation in intensities
of Raman bands at amide III and amide I across different cell
passage numbers and cell cycle phases depicts the alterations in
proteins in parental MCF7 and MCF7-RR cells (Figure 4). The
spectral variations are distinct from those in cell passage 3,
indicating that the modifications in a revived radioresistant cell
line are seen as early as passage 3. Around passage 5, the cells
demonstrate stabilized features (Figure 4). We further examined
the Raman spectral features across different cell passages to
ascertain whether these biochemical changes in MCF7-RR cells
are persistent. The spectral features are assigned tentatively
based on the existing literature.11

Raman Spectral Features Alter in Parental and
Radioresistant Cell Populations with Differing Cell
Passages. In the context of cell passage, MCF7-RR cells
synchronized in the G0/G1 phase showed the increased intensity
of Raman bands at 750, 1125, 1585, 788, and 1376 cm−1 until
cell passage 5 (Figure 4). The alterations in Raman bands at
1009, 1240, 1268, and 1665 cm−1 were persistent with the
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increasing cell passages. On the other hand, MCF7-RR cells
synchronized in the G2/M phase showed subtle differences in
the intensity of Raman bands at 750,1125, and 1376 cm−1, while
distinct alterations were observed at 1009, 1585, 1240, 1268,
1450, and 1665 cm−1, with the increasing cell passage. To further

understand the distinct Raman spectral features, we analyzed the
differences between the G0/G1 and G2/M phase synchronized
cells at passage 5. Compared to the G2/M phase, the G0/G1
phase MCF7-RR cells at passage 5 showed a higher intensity of
resonance Raman bands at 750, 1585, and 1450 cm−1.
To demarcate the spectral differences between the groups,

difference Raman spectra were computed by subtractingMCF-7
spectra fromMCF-7 RR spectra in the G0/G1 and G2/M phases
at Passages 1, 3, and 5. Positive bands were from MCF-7 RR,
while negative bands were from MCF-7 cells. In the case of the
G0/G1 phase at Passage 1, prominent positive bands were
observed at 788, 750, and 1585 cm−1, suggesting an overall
increase in DNA and cytochromes in these cells. Strong negative
peaks were observed at 1268, 1450, and 1665 cm−1, suggesting a
reduced protein content in radioresistant cells at an early passage
1 (Figure 5). In passages 3 and 5, strong positive bands were
consistently observed at 750 and 1585 cm−1 (cytochromes)
which might be a distinct spectral feature of radioresistant cells
(Figure 5). Negative bands were seen at 1240, 1665, and 1268
cm−1. These changes suggest a decreased protein content in the
radioresistant cells compared to that in parental cells.
While during passage 1 in the G2/M phase, the positive bands

were seen at 1125, 750, and 1585 cm−1. Unaltered intensities
were observed at 788, 1240, 1268, and 1376 cm−1, while a
negative band was observed at 1009 cm−1 (phenylalanine),
contributing toward an overall varied biochemical profile at an
early passage 1. At P3, positive bands were seen at 750, 1125, and
1585 cm−1, while negative bands were seen at 1665, 1268, and
788 cm−1, and in passage 5, strong positive bands appeared at
1585 cm−1 and negative bands were observed at 1009, 1450, and
1665 cm−1 (Figure 5).We observed an overall increase in
cytochrome features (750 and 1585 cm−1) at the G0/G1 and G2/
M phases with an increase in passage number which hints at it
being a radioresistance-induced biochemical feature (Support-
ing Information, Figure S4). Moreover, metabolic reprogram-
ming is a key feature of radioresistant cells to meet the energy
requirements compared to the tumor cells.12 Therefore, the
increase in cytochromes is in coherence with the observed
mitochondrial alteration with the increasing passage number. A
decrease in 1665 cm−1 (amide I) with the increasing passage
number indicates at it being a stabilizing biochemical
stratification. The altered balance of protein and DNA spectral
features means varied cellular mechanisms at different cell cycle
passages in parental and resistant cells. To ascertain the effect of
cell cycle and passage-dependent biochemical alterations, we
assessed the levels of some key cell growth molecules in MCF-7
and MCF-7 RR cells at P1, P3, and P5.
Level ofMAPKinases in Parental and Resistant Cells at

Various Passages. Activation of the MAPK (mitogen-
activated protein kinase) pathway in response to cell growth
and stress responses is well-known.13 The levels of MAPK
pathway effector molecules with cell passages 1, 3, and 5 in the
G1 and M phases of MCF-7 and MCF-7 RR cells were studied.
The pp38 levels were significantly higher at passage 1 after
revival, followed by a decreasing pattern till passage 5 in MCF-7
cells; however, the inverse pattern of pp38 levels was observed in
MCF-7 RR cells. On the other hand, pERK levels were increased
with the passage number in parental cells, whereas in the
resistant cells, pERK levels plateaued at passages 3 and 5 in the
G1 phase of the cell cycle (Figure 6a). During the M phase, the
level of pp38 and pERK protein increased with the passage
number in MCF-7 as well as MCF-7 RR cells (Figure 6b).
Parental and radioresistant cells respond differently under

Figure 4. Raman spectra of parental MCF-7 and MCF7-RR cells reveal
unique cell cycle-dependent spectral features. The spectra were
interpolated in the fingerprint region 600−1800 cm−1. 10 spectra (n
= 10) were recorded from different areas of the sample for
consideration of intra-sample variability. Mean spectra of parental
MCF7 and MCF7-RR cells at different cell passages, P1, P3, and P5,
synchronized at the G0/G1 and G2/M phases. Experiments were
performed in triplicate (n = 3).
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varying cell passage numbers and cell cycle phases, corroborat-
ing our earlier observation of altered Raman protein features
(Figure 5). The alteration in the levels of MAPK proteins
suggests that cells experience cellular stress after immediate
revival. Therefore, the optimum passage number of a cell line
with stabilized protein expression should be used for further
studies.
Multivariate Data Analyses Identify Cell Cycle and Cell

Passage-Dependent Distinct Clusters of Parental and
Radioresistant Cells. The parental and radioresistant cells

were classified using the multivariate data analysis tools, PCA,
and PC-LDA. The unsupervised PCA was performed for both
parental MCF-7 and MCF7-RR synchronized at different cell
cycle phases�G0/G1 and G2/M, which showed unique clusters
of parental MCF-7 and MCF7-RR at different cell cycle phases
(Figure 7a−f). Cells in the G0/G1 phase showed unique clusters
throughout the cell passaging. However, overlapping clusters
were seen in cell passage 1 of the G2/M phase (Figure 7d), while
distinguished clusters were seen from passage 3 onward (Figure
7e,f). Further, supervised PC-LDA was performed to stratify
parental MCF-7 and MCF7-RR cells.
PC-LDA, using scores of the first two PCs, of the G0/G1 and

G2/M phase synchronized parental MCF-7 and MCF7-RR cells
showed non-overlapping clusters with increasing cell passage.
The G0/G1 and G2/M phase parental and MCF7-RR cells were
classified with 71.67, 80, 81.67, and 49.15, 71.67, and 70%,
respectively. As shown in the data, the classification efficiency in
PC-LDA increased in the G0/G1 phase from 71.67% in passage 1
to 81.67% in passage 5, while that in the G2/M phase increased
from 49.15% in passage 1 to 70% in passage 5. The PCA loadings
of the respective groups are provided in the Supporting
Information, Figure S1.
The unique clusters seen in the G0/G1 phase at different cell

passages imply that the biochemical profile of the radioresistant
cells in the G0/G1 phase is altered from cell passage 1 (Figure
7a−c). A previous study byMatthews et al. on irradiated DU145
cells showed cell arrest in the G2/M phase and decreased DNA
content in the G0/G1 phase.

6n Additionally, the G0/G1 peak
observed at 120 h implied that a fraction of G2/M arrested cells
successfully repaired radiation-induced DNA damage to
complete a mitotic division. Similarly, our findings of distinct
clusters of the MCF7-RR G0/G1 phase across different cell
passages validate that the radioresistant cells had undergone
DNA damage repair and subsequent mitotic divisions and
acquired distinct radioresistance characteristics as compared to
parental MCF-7. On the other hand, the decrease in overlapping
clusters in the G2/M phase with the increasing passage implies
that biochemical alterations are achieved at a latter cell passage,
where the features of radioresistant cells are distinct from the
parental cells (Figure 7d−f). Similar findings were seen in the
spectral characteristics of the G0/G1 and G2/M phases at the
higher cell passage, 5 (Figure 4). Moreover, the increasing
nucleic acid features and alterations in protein features indicate
the proliferating population of the radioresistant cells�MCF7-
RR, with increasing cell passages. The confusion matrix
identified true classifiers as diagonal elements and misclassifiers
as ex-diagonal elements. The variations in the group are
represented by true classifiers, while misclassifications denote
the similarities between them. The confusion matrix correctly
classified 77 to 87% of the G0/G1 phase parental MCF-7 cells
and 67 to 83% of the MCF7-RR cells across different cell
passages (Figure 8a−c). Similarly, 60 to 66% of parental MCF-7
cells in the G2/M phase and 40 to 83% of the MCF7-RR cells
were correctly classified with differing cell passages (Figure 8d−f
and Supporting Information, Figure S2). Misclassification of
parental MCF-7 and MCF7-RR cells decreased with the
increasing cell passage. Cells in the G0/G1 phase showed 23 to
13 and 33 to 17% misclassification, while the G2/M phase cells
showed 40 to 43 and 60 to 16% misclassification of parental
MCF-7 and MCF7-RR cells across different cell passages,
respectively. PC-LDA showed a lower classification�49.15%, at
the earlier passage in theG2/Mphase. In contrast, the higher and
similar classifications at cell passage 3 (71.67%) and cell passage

Figure 5. Difference spectra of parental MCF-7 and MCF7-RR cells
delineate cell passage-dependent spectral features. Difference Raman
spectra were computed by subtracting MCF7 spectra from MCF7-RR
spectra in the G0/G1 and G2/M phases at Passages 1, 3, and 5. Positive
peaks represent MCF7-RR cells and negative peaks represent MCF7
parental cells.
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5 (70%) (Figure 8d−f) are indicative of stabilized characteristics
of radioresistant cells at a higher passage.

■ DISCUSSION AND CONCLUSIONS
Radiation treatment induces DNA damage through direct and
indirect mechanisms, eventually causing cell death. Although
fractionated radiotherapy is effective in cell killing, some tumor
cells evade cell death due to defects in cell cycle checkpoints,
leading to resistance where the radioresistant cells have a better
survival advantage over the parental cells.2d,10,14 The in vitro
generated acquired radioresistance cells are often cryopreserved,
and cells are revived as and when required for experiments. The

present study highlights the biochemical alterations at varying
cell passages based on Raman spectroscopy. The data of MAP
kinases showed that the parental and RR cells are susceptible to
changes in the level of active phosphoproteins during the
passaging from P1 to P5 after revival in both the phases of the
cells. However, there is no significant difference in the
percentage of synchronized cells in either the G0/G1 or G2/M
phase between parental and resistant MCF-7 cells (Figure 3). A
recent study by Abramczyk et al. showed a correlation between
the intensity of cytochrome Raman bands (750 and 1585 cm−1)
and the different grades of breast and brain cancer tissue and cell
lines.15 Our earlier studies have shown increased intensity of
cytochrome bands in short-term radiation-exposed MCF-7 and

Figure 6.Western blot ofMAP kinases inMCF-7 andMCF7-RR cells at passage 1 (P1), passage 3 (P3), and passage 5 (P5). (a) pp38 and pERK levels
at P1, P3, and P5 in the G0/G1 phase. (b) pP38 and pERK levels at P1, P3, and P5 in the G2/M phase. Protein quantification was done using ImageJ
software. β-actin was used as a loading control. Phospho-protein levels were estimated from total protein levels.

Figure 7. PCA classifies parental MCF-7 and MCF7-RR cells across different cell passages. Scatter plot for unsupervised PCA of parental MCF7 and
MCF7-RR cells synchronized at (a−c) G0/G1 and (d−f) G2/M phases across varying cell passages. PCA identifies the maximum variance between the
data.
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gingivobuccal carcinoma-derived ITOC-03 cells.6t,16 Corrobo-
rating our earlier findings, here we report a similar increase in
cytochrome Raman bands at 1585 and 750 cm−1 in radio-
resistant MCF-7 cells compared to that in parental MCF-7 cells.
Studies have shown that radiation-induced ROS levels cause
DNAdamage, mitochondrial outermembrane permeabilization,
the release of mitochondrial cytochrome C into the cytoplasm,
activation of caspases, and eventually apoptosis.17 However, the
observed increased level of cytochromes in radioresistant cells is
not associated with cell death and morphological alterations
compared to parental MCF-7. Therefore, our findings of
induced cytochromes in radiation-treated and radioresistant
MCF-7 cell lines might suggest modifications of the
cytochromes’ redox state, which could be indicative of a
“radiation-induced marker”.6t,16b However, further biological
assays are warranted to ascertain the role of cytochromes in
radiation-treated and radioresistant cells. Also, the spectral
features, PCA, and PC-LDA findings highlight the differential
effect of radiotherapy on the radiosensitive G2/M phase
compared to that on the G0/G1 phase and imply that the
acquired radioresistance characteristics stabilize in the G2/M
phase synchronized cells at latter passages on cell revival.
Our findings demonstrate enhanced survival potential and

stabilization of ultrastructural alterations with distinct spectral
features during an increase in the cell passage number in parental
and radioresistant MCF-7 cells. To the best of our knowledge,
this is the first report suggesting that cell passaging helps
decrease cellular stress and is an essential determinant for
performing in vitro experiments to get consistent results.
Moreover, identifying cytochrome as a “radiation-induced
marker” paves the way for exploring the possible role of
radiotherapy-induced cytochromes in patients.
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