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Newcastle disease (ND) is a serious disease of poultry that causes significant economic losses. Despite rampant ND outbreaks that
occur annually in Kenya, the information about the NDV circulating in Kenya is still scarce. We report the first countrywide study
of NDV in Kenya. Our study is aimed at evaluating the genetic characteristics of Newcastle disease viruses obtained from backyard
poultry in farms and live birdmarkets in different regions of Kenya.We sequenced and analyzed fusion (F) protein gene, including
the cleavage site, of the obtained viruses. We aligned and compared study sequences with representative NDV of different
genotypes from GenBank. ,e fusion protein cleavage site of all the study sequences had the motif 112RRQKRFV118 indicating
their velogenic nature. Phylogenetic analysis revealed that the NDV from various sites in Kenya was highly similar genetically and
that it clustered together with NDV of genotype V.,e study samples were 96% similar to previous Ugandan and Kenyan viruses
grouped in subgenotype Vd,is study points to possible circulation of NDV of similar genetic characteristics between backyard
poultry farms and live bird markets in Kenya. ,e study also suggests the possible spread of velogenic NDV between Kenya and
Uganda possibly through cross-border live bird trade. Our study provides baseline information on the genetic characteristics of
NDV circulating in the Kenyan poultry population. ,is highlights the need for the ND control programmes to place more
stringent measures on cross-border trade of live bird markets and poultry products to prevent the introduction of new strains of
NDV that would otherwise be more difficult to control.

1. Introduction

Newcastle disease (ND) is a highly contagious and fatal
disease of poultry which is notifiable to the World Orga-
nization for Animal Health (OIE) [1]. ,e disease is present
worldwide and affects many domesticated and wild bird
species [2]. It is caused by Newcastle disease virus (NDV)
which is classified under the genus Avulavirus within the
family Paramyxoviridae [3]. NDV is an enveloped, single-
stranded negative-sense RNA virus whose genome is ap-
proximately 15 kb. Its genome has six open reading frames

(ORFs) which encode for six major structural proteins,
namely, nucleoprotein (NP), phosphoprotein (P), matrix
protein (M), fusion protein (F), hemagglutinin-neuraminidase
(HN), and the RNA-dependent RNA polymerase (L) [4].
NDV also has two nonstructural proteins, W and V, from
differential initiation or transcriptional editing of the P gene
mRNA [5].

NDV strains produce a range of pathogenic outcomes in
poultry. Viruses of low pathogenicity or lentogenic result in
subclinical disease, whereas those of moderate pathogenicity
or mesogenic generally causes clinical signs of disease, but
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typically result in nonlethal outcomes in chickens. Viruses
with high pathogenicity or velogenic cause serious disease
and mortality among affected birds [2]. ,e cleavability of
the fusion protein precursor (F0) and the presence of
a number of basic residues in the fusion protein cleavage site
are major determinants for NDV pathogenicity [6]. Velo-
genic NDV has a multiple basic amino acid sequence:
112R/K-R-Q-K/R-R116 at C terminus of the F2 protein and F
(phenylalanine) on residue 117, whereas lentogenic and
mesogenic viruses have a monobasic amino acid sequence:
112G/E-K/R-Q-G/E116 and L (leucine) on residue 117 [7].

,e fusion protein gene displays greater antigenic var-
iation than the internal genes and is important in studying
closely related virus populations to allow deduction of the
evolutionary hypothesis. Genome size analysis, as well as
sequences of F and L genes, has revealed two distinct cat-
egories of NDV: Class I or Class II. Class I viruses are mostly
lentogenic and have been recovered primarily from water-
fowl, shorebirds, and domestic poultry [8]. Class II consists
mainly of velogenic viruses isolated from domestic poultry
and wild birds that have been grouped into eighteen ge-
notypes [9–11].,e latter clade of the virus is responsible for
most of the ND outbreaks that cause huge economic losses to
the poultry industry globally [12]. ,e NDV genome is
highly diverse and continues to evolve [5]. In Africa, genetic
studies have isolated velogenic NDVs from sick and healthy
poultry [13, 14]. In the recent years, there has been an
emergence of novel genotypes of NDV, the bulk of which
have been isolated from African countries [15].

In Kenya, like other African countries, ND causes
devastating losses to the poultry industry [16]. In backyard
poultry, the disease is endemic but recurs as frequent
epidemic outbreaks with high mortality and thus affects the
livelihoods of poor rural households who depend on
poultry for food and income [17]. In Kenya, backyard
poultry has been implicated in the introduction and spread
of velogenic NDV strains [18]. Backyard poultry man-
agement favors the existence and spread of diverse NDV
strains by allowing free interaction of different poultry
species and wild birds as well as the frequent introduction
of birds from markets [19]. Despite the potential threat
posed by backyard poultry in the evolution of NDV, there is
limited information about the genetic profile of NDVs
circulating in backyard poultry in Kenya. ,e present study
analyzed the fusion gene of NDV obtained from poultry in
live bird markets (LBMs) and backyard poultry farms
(BPFs) in Kenya. ,e fusion protein gene sequence from
the study samples was compared with NDV of known
genotypes present in GenBank.

2. Materials and Methods

2.1. Study Area. A cross-sectional study was conducted
between November 2015 and March 2016 in backyard flocks
and live bird markets (LBMs) in Kenya. ,e study was
undertaken in rural backyard poultry farms (BPFs) in
Western Highlands, Lake Victoria Basin, and Coastal regions
of Kenya. ,ese three regions were chosen purposively due
to their high population density of backyard poultry [20].

Five wards were randomly selected from each of the three
regions as follows: Western Highlands (Chwele, Cheptais,
Kimilili, Kabuchai, and Malaba), Lake Victoria Basin
(Bunyala, Ageng’a, Ugenya, Chakol, and Amukura), and
Coastal regions (Kakoneni, Likoni, Mtepeni, Dabaso, and
Mkomani). In addition, twenty live bird markets were
sampled from five regions, namely, Western Highlands, Lake
Victoria Basin, Coast, Nairobi, and Eastern regions. ,e
sampled markets included the following: Western Highlands
(Chwele, Bungoma, Kitale, Kericho, Kakamega, and Bomet),
Lake Victoria Basin (Bumala, Kisumu, Homa Bay, and
Migori), Coast (Majengo, Marikiti, and Kilifi), Eastern (Meru
and Makueni), and Nairobi metropolitan (Burma, Kibra,
Kawangware, Machakos, and Kitengela).

2.2. Sample Size and Selection of Study Birds. A total of 1,224
birds were sampled from 225 BPFs. ,e minimum sample
size from backyard farms for each of the three zones was
calculated based on the following formula [21]:

n �
Z2P(1−P)

d2 , (1)

where n � sample size, Z � Z-statistic for a level of confi-
dence, P � expected prevalence, and d � precision prevalence
of ND, estimated to be 20% from a previous study [22];
a confidence level of 95% and a precision of 5% were used.
From each of the selected wards, fifteen poultry keepers who
had a history of not vaccinating their flock were randomly
selected. From each farm, 4 adult birds were sampled. From
farms with different species of poultry, 2 birds of each species
were sampled.

During sampling, each selected bird was physically ex-
amined for any signs suggestive of ND infection (diarrhoea,
ocular and nasal discharge, respiratory distress, nervous
signs, or sudden death). During sampling, freshly dead birds
(not more than 12 hours) were collected for a postmortem
examination at the nearest Veterinary Investigative Labo-
ratories (VILs). For such birds, tissues were collected. Tissue
samples from an individual bird were pooled. In total, we
collected samples from 922 chickens (including tissues from
96 chickens, each from a different farm), 136 ducks, and 74
turkeys from BPFs. Table 1 shows the number and species of
birds sampled per region.

In live bird markets, a total of 482 birds were sampled
from 124 traders. ,e number of birds sampled in each
market was calculated assuming an average market size of 30
birds, a minimum expected prevalence of 5%, and a confi-
dence interval of 95%. Twenty LBMs were selected from the
five zones. In the LBMs, five sellers were selected randomly,
and four birds were randomly selected per seller for sam-
pling. However, in 7 live bird markets that had high bird
turnover, we sampled 7 traders each. ,is included Kisumu,
Kericho, Majengo, Burma, Meru, and Chwele markets. In
selection of birds to be sampled in LBMs, information on the
source of the birds and the type of management was sought.
When it was established that the birds had been vaccinated,
they were excluded from the study. In total, we sampled 454
chickens (including tissues from 33 chickens) and 28 ducks.
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,e number and species of birds sampled in LBMs are
shown in Table 1.

2.3. Sampling of Birds. Tracheal and cloacal swabs were
collected from each individual bird that was selected for
sampling in BPFs and LBMs except for freshly dead birds
(not more than 12 hours). From the latter, tissue samples
were collected after a thorough postmortem examination
following laid out procedures [23]. Tissue samples collected
included the lungs, trachea, liver, spleen, proventriculus,
gastrointestinal tract, and brain tissue. Different tissues were
pooled per individual bird.

Each sample was collected in 1000 μl of RNAlater®
(,ermo Fisher Scientific, Waltham, Massachusetts, USA).
,e collected samples were transported in a cool box and
stored at −20°C, and RNA extraction was carried out within
72 hours of sample collection.

2.4. Viral RNA Extraction. In the laboratory, tracheal and
cloacal swab samples from each backyard farm were pooled
separately by poultry species to generate a total of 1128 pairs
of swab samples. On the contrary, swab samples from in-
dividual birds sampled inmarkets were processed separately,
resulting in 449 pairs of swab samples from markets. One
hundred twenty-nine (129) pools of tissue samples from 129
chickens (96 from farms and 33 from LBMs) were also
processed separately.

We extracted viral RNA using the Trizol LS reagent
(Invitrogen, Carlsbad, CA, USA). ,e cryotubes with swabs
were vortexed vigorously for 2 minutes and then centrifuged
at 300×g for 10 minutes in a prechilled centrifuge at 4°C, and
the supernatant was aliquoted in 500 µl volumes and
transferred into sterile 2000 µl cryotubes. To one aliquot,
1000 µl of the Trizol reagent was added. RNA was extracted
using the Trizol LS reagent according to the manufacturer’s
instructions.

Tissue samples were crushed using a sterile mortar and
a pestle and placed in a sterile 2000 µl cryotube into which
1000 µl of the Trizol reagent was added, and RNA was
extracted using the Trizol LS reagent according to the
manufacturer’s instructions. We resuspended the RNA in
DEPC-treated water. ,e quantity of the extracted RNA was
determined using a NanoDrop® ND-1000 spectrophotometer
(,ermo Fisher Scientific, Waltham, Massachusetts, USA),
and the integrity of RNA was visualized by electrophoresis in

a 1.2% formaldehyde-agarose gel stained with GelRed. ,e
RNA was stored at −80°C in aliquots of 10 µl until use.

2.5. Fusion Gene Amplification and Sequencing. Comple-
mentary DNAwas synthesized using 5 µl of eluted RNAwith
random hexanucleotides and the SuperScript® III (M-MLV)
reverse transcriptase of the First-Strand cDNA Synthesis Kit
(Invitrogen, Carlsbad, CA, USA).

,e samples were tested by conventional PCR amplifi-
cation of the fusion gene using degenerate primers pre-
viously published by Liu et al. which target the cleavage site
of the fusion protein gene [24]. ,e two degenerate primers,
5′-ATGGGC (C/T) CC AGAC (C/T)CT TCTAC-3′ (sense,
from nt 47–66 of the F gene) and 5′-CTG CCA CTG CTA
GTT GTG ATA ATC C-3′ (antisense, from nt 557–581 of
the F gene), amplified a 535 bp fragment of the fusion
protein gene. Primer blast analysis [25] of the primers
established that the primers could detect a broad range of
ND viruses. ,e fusion gene region amplified by the primers
has been used previously to detect a wide range of NDVs
[26]. ,e PCR was performed using Taq DNA polymerase
and 5 µl of cDNA with the cycling parameters starting with
a denaturation step at 95°C for 3min and subsequent pa-
rameters as described by Liu et al.

Amplification of the full fusion gene (1780 bp in-
cluding the fusion gene start) was carried out successfully
for one positive sample. To achieve this, a seminested PCR
was done using Platinum Taq DNA polymerase (Plati-
num® Taq DNA polymerase High Fidelity) and previously
published primers: F1 for 5′-ACGGGTAGAAGATTCTG-
3′, F2 for 5′GTTGACTAAGTTAGGTG 3′, and F3 5′-
CTCTCCGAATTGACAGAC-3′ [27]. Primers F1 and F2
were used in the first PCR and primers F2 and F3 were
used in the second PCR to amplify the full fusion gene.,e
conditions for the two PCRs were similar and included an
initial denaturation at 95°C for 2min and then 35 cycles at
95°C for 30 s, 55°C for 1min, and 72°C for 1min and
a further extension at 72°C for 10min.

,e PCR products were purified using the QIAquick
PCR Purification Kit (Qiagen) and were sent to Macrogen®
Inc (South Korea) for sequencing on an Applied Biosystems
3100 automated DNA sequencer using dye terminator cycle
sequencing chemistry (Applied Biosystems, Foster City, CA,
USA). Sequencing was done in both directions using the
same primers used for PCRs. Identical sequences were not

Table 1: Number of birds sampled in live bird markets (LBMs) and backyard poultry farms (BPFs) in different regions of Kenya between
2014 and 2016.

Region
Number and species of poultry sampled in BPFs and in LBMs

BPFs LBMs
Chickens Ducks Turkeys Pigeons Total Chickens Ducks Total

Lake Victoria Basin 288 27 24 21 360 95 4 99
Western Highlands 324 52 30 27 433 122 15 137
Coast 310 57 20 44 431 71 9 80
Eastern — — — — — 64 0 64
Nairobi metropolitan — — — — — 102 0 102
Total 922 136 74 92 1224 454 28 482
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deposited in GenBank, instead they were represented by one
sequence. Partial F gene sequences were deposited in
GenBank with accession numbers KY007043 to KY007063.
,e full coding nucleotide sequence of the fusion gene
generated was deposited in GenBank under accession
number MG988405.

2.6. Phylogenetic Analysis. We assembled sequences and
removed those of low quality using Chromas Lite version
2.6. Unique sequences were identified using DNA sequence
polymorphism (DnaSP v5.10) [28]. ,ese unique sequences
were compared with reference sequences from other parts of
the world, selected to represent the NDV genotypes reported
to date. At least three sequences representing each genotype
were used in the analysis. Other sequences similar to the
study sequences in GenBank obtained using the BlastN
algorithm [29] were also included in the analysis (the ref-
erence sequences from GenBank used in this study and their
accession numbers are in Supplementary Table S1). Multiple
alignment and comparison of the study sequences and
GenBank references were performed using MUSCLE v3.8.31
[30]. Phylogenetic and molecular evolutionary analyses were
conducted using MEGA (Molecular Evolutionary Genetics
Analysis) version 6.0 [31]. We constructed phylogenetic
trees using the maximum likelihood (ML) method and
estimated the tree using the best-fit general time-reversible
(GTR) model of nucleotide substitution with gamma-
distributed rate variation among sites. We employed
a bootstrap resampling process (1000 replications) to assess
the robustness of individual nodes of phylogeny.

,e study also estimated the percent (%) similarity and
the mean evolutionary distance between the complete fusion
gene of the study sample and representative viruses of ge-
notypes V and II.

3. Results

Overall, 1,224 poultry samples (1128 swabs and 96 tissue
samples) from poultry flocks and 482 samples (449 swabs and
33 tissue samples) from live bird markets were tested. Using
the partial F gene assay, 2.7% (33/1224) and 10.8% (52/482) of
samples from BPFs and LBMs, respectively, tested to be
positive. Figure 1 shows the location of NDV-positive samples
obtained from BPFs and LBMs across different regions of
Kenya. ,e positive samples were concentrated along the
Kenya-Uganda border but were also found in different other
regions of Kenya. All positive samples were obtained from
chicken except one duck sample from a poultry farm in
Western Highlands that tested to be positive. From this farm,
the sample from chicken also tested to be positive for NDV. A
higher proportion of tissue samples tested to be positive:
15.8% (15/96) and 48.5% (16/33), compared to 1.6% (18/1128)
and 8% (36/449) of swab samples from farms and LBMs,
respectively.

Table 2 shows the bird-level detection of NDV in BPFs
and LBMs in different regions. Regional differences were
observed in the detection of NDV. Nairobi LBMs and Lake
Victoria Basin BPFs had significantly higher NDV detection.

In both farms and LBMs, NDV detection was higher in birds
that exhibited clinical symptoms; NDV was detected in 7.4%
(23/312) and 39% (23/59) of clinically sick birds in farms and
LBMs, respectively, compared to 1.1% (10/912) and 6.9%
(29/423) of NDV detection in healthy birds from farms and
LBMs, respectively.

3.1. Proteolytic Cleavage Site of the Fusion Protein. A total of
57 partial fusion gene sequences were successfully obtained;
this included 31 and 26 sequences from LBMs and BPFs,
respectively. Of these, 22 nonidentical sequences were
identified and used for analysis. Five of the unique sequences
were found commonly in samples obtained from both LBMs
and BPFs, seven of the sequences were obtained from BPFs,
while ten were obtained from LBMs. ,e 57 sequences were
obtained from chicken samples and one duck sample. ,e
sequence obtained from the duck sample was identical to the
sequence from a chicken sample (sample KE0697/2015
(accession number KY007050) obtained from the same
farm). ,e complete fusion gene coding sequence was se-
quenced from one sample among 22 which had a unique
partial fusion gene sequence (sample KE1007/2016:
MG988405).

Analysis of the amino acid sequence of the fusion protein
gene of the obtained NDV exhibited similar properties. We
compared the deduced amino acid sequences with other
strains of NDV. ,e sequence analysis of the amino acid of
the protease cleavage site revealed that the F1 protein of all
the study sequences contains a phenylalanine (F) on residue
117 on the N-terminus and four basic amino acids in the
motif 112GRRQKR116 ∗ F117, while one sequence KY007062
harbours the motif 112GRRQRR116 ∗ F117.,is indicates that
the study samples are velogenic.

3.2. Diversity and Phylogenetic Relationship of NDV from
Kenya. We illustrate the relationship between positive
samples obtained in the study and other NDVs available in
GenBank, using a phylogenetic tree of the partial F gene
sequence of the 22 unique sequences obtained in the study
and the other GenBank sequences of NDV (Figure 2). From
the tree, all the 22 study sequences were grouped together
with representative strains of genotype V. Within genotype
V, the study samples were genetically more closely identical
(Figure 2) to previous Kenyan (JQ217418, JQ217419, and
JQ217420) and Ugandan (HG937573) sequences. ,e study
sequences together with previous Ugandan and Kenyan
strains formed a distinct clade branching with 100% boot-
strap value at the defining node from other subgenotypes of
genotype V (Figure 2) including genotype V viruses from
Europe (Supplementary Figure S2).

To confirm the phylogenetic classification of the study
sequences, we constructed a phylogenetic tree of one complete
fusion gene coding sequence obtained in the study sample and
other NDV sequences present in GenBank (Figure 3).,e tree
grouped NDVs of Class II into two groups: one consisting of
the older genotypes I–IV and related newer genotypes IX and
XI and another group consisting of the newer genotypes
V–XVIII. Similar to the partial F gene sequences, the complete

4 International Journal of Microbiology



Waterbodies
Location and number of NDV-positive samples

>2

>5
3–5

Sampled poultry farms and markets

(b)

(c)
0 100 200 300 400

(km)

(a)

Bunyala

Ukwala
Funyula

Chakol
Amukura

Malaba

Cheptais
Chwele Kimilili

Waterbodies
Location and number of NDV-positive samples

>2

>5
3–5

Sampled poultry farms and markets

(b)

Shella

Mkomani

Dabaso

Malindi

Matsangoni

LikoniKwale

Waterbodies
Location and number of NDV-positive samples

>2

>5
3–5

Sampled poultry farms and markets

(c)

Figure 1: Geographical location of NDV-positive backyard poultry farms and live bird markets in Kenya, from November 2014 to March
2016: (a) a map of Kenya showing the location of sampled and NDV-positive live bird markets; (b) a map of the study region in Western
Kenya showing the location of sampled and NDV-positive backyard poultry farms; (c) a map of Coastal region showing the location of
sampled and NDV-positive backyard poultry farms.
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F gene sequence obtained in the study (sample KE1007/2016)
was grouped with other sequences of genotype V but more
closely to previous Kenyan and Ugandan strains. We de-
termined the percentage identity of the obtained complete
fusion gene nucleotide sequence compared to NDV of
genotype V representing the various subgenotypes Vd
(HG937573), Vb (AY288993), Vc (KC808510), and Va
(GQ288382) and the vaccine strain LaSota (AF077761)
(Table 3). ,e results showed that the study virus was more
identical to Ugandan strain (HG937573) of subgenotype
Vd (97%) than to other viruses of subgenotype V, which
were 91% (Vc strain KC808510), 90% (Vb strain AY288993),
and 89% (Va GQ288382) similar to the study sample. ,e
study sequence was 83% similar to the LaSota vaccine strain
(AF077761) commonly used in Kenya.We also determined the
mean evolutionary distance between the complete fusion gene
nucleotide sequence obtained in the study and reference se-
quences of subgenotypes of genotype V (Table 3). ,e mean
evolutionary distances between the study sequences and
subgenotype Vd, Vb, Vc, and Va sequences were 3.1%, 12.6%,
10.7%, and 14.2%, respectively. ,e evolutionary distance
between the study fusion gene sequence and the genotype II
sequences was 23.5%. ,e mean nucleotide distance between
subgenotypeVd and other subgenotypes of genotypeV ranged
from 9.5% to 13%. An analysis of the amino acid sequence of
the fusion gene of our study sample revealed six unique amino
acid substitutions: methionine at position 28, glutamic acid at
position 104, lysine at position 146, valine at position 299,
threonine at position 517, and alanine at position 550.

4. Discussion

,e present study represents the first countrywide genetic
study of prevailing Newcastle disease viruses in Kenyan
backyard poultry. Analysis of the NDV-positive samples
showed the existence of genetically closely related NDVs in
the sampled live bird markets (LBMs) and backyard poultry
farms (BPFs). ,is is an indication of the continuous
movement and exchange of viruses between BPFs and LBMs
in different parts of the country. LBMs in Kenya consist of
poor biosecurity practices where birds from different sources

interact [33], and this could be responsible for the higher
number of positives detected in LBMs compared to BPFs.,e
proportion of positive samples in BPFs was much lower than
that found previously by Chaka et al. [34] in Ethiopia who
used an L gene real-time reverse transcription PCR (rtRT-
PCR). In our study, we used the partial fusion gene assay to
detect NDV. ,e partial F gene has been used in the previous
study to detect a wide range of NDVs [26]. In addition to the
partial F gene assay, the study also utilized a partial L gene
NDV reverse transcription PCR (RT-PCR) assay to test all the
samples and obtain L gene sequences. ,e L gene assay could
detect both Class I and II viruses. ,e results of both the L
gene and F gene assays were well correlated. ,ese findings
can be made available upon request.

Analysis of the sequence of the positive samples in-
dicated their similarity to the viruses in GenBank classified
under genotype V. Genotype V alongside genotypes VI, VII,
and VIII as well as novel genotypes VI–XVIII of NDV has
been responsible for recent outbreaks worldwide [12]. In
particular, genotype V viruses have been associated with ND
outbreaks that occurred in various parts of the world from
the 1970s to the 1980s. Genotype V emerged in South
America and Central America in the 1970s [35] and was
linked to outbreaks in Europe in that same period [36].
,ese viruses also caused outbreaks in North America and
other parts of the world between the 1970s and 1980s [37,
38]. It is possible that genotype V NDV could have been
introduced in Kenya during this period and continues to
survive in the backyard poultry. However, the study findings
indicate that the NDV in Kenyan backyard poultry seems to
form a separate cluster that is genetically unique from other
viruses of genotype V. ,is points to a possibility of in-
dependent evolution of NDV in the local bird population in
Kenya. Genotype V is classified into three subgenotypes: Va,
Vb, and Vc [34, 38]. Subgenotype Va includes viruses iso-
lated from cormorant species in North America [38] and Vb
includes viruses isolated mainly from poultry in Mexico and
Central America [39, 40]. In Europe, both subgenotypes Va
[41] and Vb [42] have been detected. Subgenotype Vc
composed of viruses isolated in Mexico from 2004 to 2010 is
thought to have evolved from subgenotype Vb [35].

Table 2: Newcastle disease virus detection by the molecular assay in backyard poultry farms (BPFs) and live bird markets (LBMs) in
different regions of Kenya.

Factor/variable

Poultry farms Markets

Number of
samples (N)

Number of NDV-
positive samples

(n)

Proportion of
positive samples

(%)

p

value
Number of
samples (N)

Number of NDV-
positive samples

(n)

Proportion of
positive samples

(%)

p

value

Region
L. Victoria
Basin 360 21 5.8 (2.0–10.4) 0.01 99 6 6.1 (2.4–14.3) 0.003

Western
Highlands 433 8 1.9 (1.1–8.2) 0.257 137 16 11.7 (6.1–19.1) 0.04

Coast 431 4 0.9 (0.4–2.5) Ref. 80 4 5.0 (1.7–15.8) 0.004
Eastern — — — — 64 4 6.3 (2.1–16.9) 0.01
Nairobi
metropolitan — — — — 102 22 21.6 (14.7–30.6) Ref.

Total 1224 33 2.7 (1.9–3.8) 0.001 482 52 10.8 (8.2–13.9) —
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,e study found particular concentration of positive NDV
samples in BPFs and LBMs at the Kenya-Uganda borders.
,rough analysis of both the partial and complete fusion gene

sequences, the study established that the NDV-positive
samples along the border and those from different regions
of Kenya were velogenic, exhibiting a higher similarity to

 KY007050/chicken/Kenya(Bungoma)/KE0697/2015
 KY007052/chicken/Kenya(Homabay)/KE0687/2015
 KY007051/chicken/Kenya(Homabay)/KE0695/2015
 KY007049/chicken/Kenya(Makueni)/KE0678/2015
 KY007053/chicken/Kenya(Makueni)/KE0676/2015
 MG98805/chicken/Kenya(Busia)/KE1007/2016
 KY007055/chicken/Kenya(Busia)/KE2054/2016
 KY007054/chicken/Kenya(Busia)/KE2055/2016
 KY007056/chicken/Kenya(Migori)/KE0715/2015

 JQ217419/chicken/Kenya(Kiambu)/A48/2010
 JQ217418/chicken/Kenya/A89/2010
 JQ217420/chicken/Kenya(Baringo)/A148/2010

 KY007059/chicken/Kenya(Kilifi)/KE0410/2015
 KY007060/chicken/Kenya(Machakos)/KE0647/2015
 KY007058/chicken/Kenya(Nairobi)/KE0525/2015
 KY007057/chicken/Kenya(Bungoma)/KE1004/2016
 KY007062/chicken/Kenya(Malaba)/KE0660/2015

 KY007061/chicken/Kenya(Nairobi)/KE0638/2015
 KY007063/chicken/Kenya(Nairobi)/KE0523/2015

 KY007048/chicken/Kenya(Bungoma)/KE1002/2016
 KY007046/chicken/Kenya(Bomet)/KE0673/2015
 KY007047/chicken/Kenya(Kitui)/KE0601/2015
 KY007044/chicken/Kenya(Nairobi)/KE0733/2015
 KY007043/chicken/Kenya(Nairobi)/KE0576/2010
 KY007045/chicken/Kenya(Makueni)/KE0679/2015

 HG937573/chicken/Uganda/MU024/2010

Vd

 GQ288382/cormorant/Canada/98CNN3-V1125/1998
 FJ705461/cormorant/Canada/95DC2345/1995 

 GQ288383/cormorant/Canada/95DC02150/1995 
 GQ288388/cormorant/Canada/92-23071/1992
 GQ288381/cormorant/Canada/US(CA)/D9704285/1997
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Figure 2: Phylogenetic tree of partial fusion (F) gene nucleotide sequences of the Newcastle disease virus- (NDV-) positive study samples ()
and GenBank references. ,e percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000
replicates) is shown next to the branches (only >50% is shown). ,e evolutionary history was inferred by using the maximum likelihood
method based on the Kimura 2-parameter model. ,e gamma correction for rate heterogeneity was 0.4292. ,e analysis involved 111
nucleotide sequences.,e tree is rooted using the NDV sequence belonging to Class I.,ere were a total of 521 positions in the final dataset.
Evolutionary analyses were conducted in MEGA 6 [31].
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Figure 3: Phylogenetic tree of nucleotide sequence of the complete fusion (F) gene of Newcastle disease virus (NDV) obtained in this study
(marked ) and reference sequences from GenBank. ,e percentage of replicate trees in which the associated taxa clustered together in the
bootstrap test (1000 replicates) is shown next to the branches (only >50% is shown). ,e evolutionary history was inferred by using the
maximum likelihood method based on the Tamura Nei model [31]. ,e gamma correction for rate heterogeneity was 0.4141. ,e analysis
involved 109 nucleotide sequences. ,e tree is rooted using the NDV sequence belonging to Class I. ,ere were a total of 1662 positions in
the final dataset. ,e analyses were conducted in MEGA 6.
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previous viruses from Uganda. Together with Ugandan and
previous Kenyan viruses, our study samples formed a distinct
clade from other subgenotypes of genotype V. To date, this
strain of viruses unique to Kenya and Uganda has not been
found in any other country. ,is suggests exchange of NDVs
across the Kenya-Uganda border possibly through un-
controlled cross-border live bird trade. A previous study
suggested that Ugandan and Kenyan viruses of NDV could fall
into a new subgenotype Vd which could have a possible in-
dependent evolution from the other genotype V NDV [32].
Our study found an average nucleotide distance of 11.5%,
9.8%, and 13% between subgenotype Vd and Vb, Vc, and Va,
respectively. ,is suggests that Vd with which the study
sample clusters belongs to an additional subgenotype within
genotype V. A new subgenotype is assigned if it has viruses
collected from more than four independent epidemiological
studies, has a high bootstrap value (>60%) at the defining node
on the phylogenetic tree, and has an average nucleotide dis-
tance between groups of 3% to 10%. In this study, we used
samples collected from three independent epidemiological
studies. Although NDV strains frommore studies are required
to support this, the study findings give evidence of the need for
probable inclusion of new subgenotype Vd within genotype V.

,is study compared the similarity of the fusion protein
gene of study samples to LaSota strain which is the vaccine
widely used in Kenya for ND control and found a similarity
of 83%. ,is value is not an indicator of the level of pro-
tection of the vaccine against Kenyan NDV which can only
be evaluated in detailed efficacy trial of the current vaccine
against the Kenyan field strains of NDV.

All the positive samples in this study contained velogenic
NDV, even from seemingly healthy birds. ,e study se-
quences were all obtained from chicken samples; however,
one duck sample had a fusion gene sequence identical to
sequences obtained from chicken in the same farm.
Moreover, the cleavage site of the sequence from the duck
sample was also indicative of presence of a velogenic virus.
,is points to continuous circulation of velogenic NDV
between backyard poultry species in Kenya. ,e study,
however, was limited to genetic characterization of NDV in
poultry in Kenya. We therefore recommend further studies
of the genetic nature of NDV in the Kenyan wild bird
population so as to better understand the NDV circulating in
wild birds and their relationship with NDV in poultry in
Kenya.

5. Conclusions

Our results demonstrate that highly velogenic NDVs are
circulating in the poultry populations in live bird markets
and poultry keeping households. It is clear that the NDVs
circulating in poultry in Kenya have low genetic diversity.
,is implies the need for controlled cross-border move-
ments of poultry and poultry products to avoid introduction
of further diverse strains of NDV. In addition, there is need
for further investigation into appropriate control strategies
that could prevent further divergence of circulating NDVs.
Since NDVs in Kenya are genetically similar to those in
Uganda, regional effort in controlling the disease would be
beneficial.
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Supplementary Materials

Table S1: the accession numbers, strain name, year, and
country of isolation of reference sequences used for com-
parison with study sequences. ,e references are of known

Table 3: Mean evolutionary distance between the complete nu-
cleotide sequences of the fusion gene of the study sample, NDVs of
genotype V, and the LaSota strain.

Evolutionary distance1

Genotype SS Vd Vb Vc Va II
SS — [0.005] [0.010] [0.010] [0.012] [0.018]
Vd2 0.031 — [0.009] [0.008] [0.011] [0.017]
Vb 0.126 0.112 — [0.005] [0.007] [0.015]
Vc 0.105 0.093 0.070 — [0.007] [0.014]
Va 0.142 0.127 0.099 0.090 — [0.017]
II 0.235 0.224 0.213 0.186 0.224 —
Vd (with SS) — — [0.009] [0.008] [0.10] [0.017]
Vb — 0.115 — [0.005] [0.007] [0.015]
Vc — 0.097 0.069 — [0.006] [0.014]
Va — 0.130 0.099 0.089 — [0.016]
II — 0.226 0.213 0.186 0.224 —
1,e number of base substitutions per site obtained by averaging all se-
quence pairs between subgenotypes of genotypes V and II (which are the
common vaccine strains). ,e first half shows the evolutionary distance
estimates obtained when the study sample (KE1007/2016:MG988405) is not
included in subgenotype Vd, and the second half shows evolutionary
distances when the study sample is included in subgenotype Vd. In total, 59
sequences were used: subgenotype Vd (n� 5), Vb (n� 12), Vc (n� 9), Va
(n� 15), genotype II (n� 11), and the study sample. Values in square
brackets are standard errors calculated by the bootstrap method (1000
replicates). Analysis was conducted using maximum composite likelihood
analysis in MEGA 6. A total of 1662 positions were in the final dataset.
2Previous NDVs from Uganda classified under a new subgenotype Vd [32].
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genotypes of Newcastle disease virus and are available in
GenBank. Figure S2: phylogenetic tree of the nucleotide
sequence of the partial fusion (F) gene (374 bp) of the study.
Newcastle disease virus (NDV) and reference sequences of
NDV from GenBank include representatives of genotype V
including Europe viruses, which are only available as 374 bp
fusion gene fragments. (Supplementary Materials)
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[41] E. Wehmann, A. Czeglédi, O. Werner, E. F. Kaleta, and
B. Lomniczi, “Occurrence of genotypes IV, V, VI and VIIa in
Newcastle disease outbreaks in Germany between 1939 and
1995,” Avian Pathology, vol. 32, no. 2, pp. 157–163, 2003.

[42] A. Czegledi, J. Herczeg, G. Hadjiev, L. Doumanova,
E. Wehmann, and B. Lomniczi, “,e occurrence of five major
Newcastle disease virus genotypes (II, IV, V, VI and VIIb) in
Bulgaria between 1959 and 1996,” Epidemiology and Infection,
vol. 129, no. 3, p. 679, 2002.

International Journal of Microbiology 11


