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Abstract
Aging	is	associated	with	dramatic	changes	to	DNA	methylation	(DNAm),	although	the	
causes	and	consequences	of	such	alterations	are	unknown.	Our	ability	to	experimen-
tally uncover mechanisms of epigenetic aging will be greatly enhanced by our ability 
to	 study	 and	manipulate	 these	 changes	using	 in	 vitro	models.	However,	 it	 remains	
unclear whether the changes elicited by cells in culture can serve as a model of what 
is	observed	in	aging	tissues	in	vivo.	To	test	this,	we	serially	passaged	mouse	embryonic	
fibroblasts	(MEFs)	and	assessed	changes	in	DNAm	at	each	time	point	via	reduced	rep-
resentation bisulfite sequencing. By developing a measure that tracked cellular aging 
in	 vitro,	we	 tested	whether	 it	 tracked	physiological	 aging	 in	 various	mouse	 tissues	
and	whether	anti-	aging	 interventions	modulate	this	measure.	Our	measure,	 termed	
CultureAGE,	was	 shown	 to	 strongly	 increase	with	 age	when	 examined	 in	multiple	
tissues	(liver,	 lung,	kidney,	blood,	and	adipose).	As	a	control,	we	confirmed	that	the	
measure	was	not	a	marker	of	cellular	senescence,	suggesting	that	it	reflects	a	distinct	
yet	progressive	cellular	aging	phenomena	that	can	be	induced	in	vitro.	Furthermore,	
we demonstrated slower epigenetic aging in animals undergoing caloric restriction 
and	a	resetting	of	our	measure	in	lung	and	kidney	fibroblasts	when	re-	programmed	to	
iPSCs.	Enrichment	and	clustering	analysis	implicated	EED	and	Polycomb	group	(PcG)	
factors as potentially important chromatin regulators in translational culture aging 
phenotypes.	Overall,	 this	 study	 supports	 the	 concept	 that	 physiologically	 relevant	
aging changes can be induced in vitro and used to uncover mechanistic insights into 
epigenetic aging.
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1  |  INTRODUC TION

Aging	 is	 characterized	by	 a	 progressive	 decline	 in	 cell,	 tissue,	 and	
organ	integrity	that	manifests	as	age-	related	diseases	and	ultimately	
death	(Campisi	et	al.,	2019).	Telomere	attrition,	cellular	senescence,	
DNA	 damage,	 stem	 cell	 exhaustion,	 and	 epigenetic	 modifications	
represent just a few molecular and cellular features of the aging 
process	(Blasco,	2007;	Oh	et	al.,	2014;	Tchkonia	et	al.,	2010).	While	
these	 hallmarks	 have	 been	 extensively	 investigated,	 their	 interac-
tions,	causes,	and	the	resulting	emergence	that	leads	to	the	failure	
of	 the	organism	 is	not	well	characterized.	Epigenetic	alterations	 in	
aging—	specifically	 alterations	 in	 DNA	 methylation	 (DNAm)—	is	 a	
clear	example	of	a	hallmark	which	has	been	widely	studied	but	lacks	
a conceptual mechanistic framework linking its causes and conse-
quences to other hallmarks or physiological manifestations with 
aging.

DNA	methylation	refers	to	the	addition	of	a	methyl	group	(CH3)	
to	 a	 CpG	 dinucleotide	 (5’—	C—	phosphate—	G—	3’).	 In	 most	 cases,	
DNAm	is	associated	with	transcriptional	repression	via	its	effect	on	
chromatin accessibility and is thought to control a number of cellu-
lar	 properties,	 including	 differentiation,	 replication,	X-	inactivation,	
stress	 response,	 and	 genomic	 imprinting	 (Ferry	 et	 al.,	 2017;	 Izzo	
et	al.,	2020;	Li	et	al.,	1993;	Riggs,	1975).	 Initially,	de	novo	methyl-
transferases establish methylation patterns that are necessary for 
organismal	development	(Hata	et	al.,	2002).	These	patterns	are	then	
modulated by maintenance methyltransferases over the course of 
the	 lifespan	 (Fuks	et	al.,	2000).	Subtle	changes	 in	DNAm	can	dra-
matically alter promoter function and distal regulatory elements 
(Aran	et	al.,	2013).	Changes	in	DNAm	with	aging	were	first	reported	
more than three decades ago and now occupy a major field in aging 
research	(Mays-	Hoopes,	1989).	These	changes	paint	a	picture	char-
acterized	by	a	gain	of	DNAm	at	gene	promotors	and	loss	of	global	
DNAm,	 representing	 trends	 toward	hypomethylation	 in	 intergenic	
regions	 associated	 with	 dispersed	 retrotransposons,	 heterochro-
matic	 DNA	 repeats,	 and	 endogenous	 retroviral	 elements.	 Given	
the	predictability	of	 these	age-	related	changes,	 researchers	began	
applying machine learning techniques to develop age predictors 
from	DNAm	that	could	serve	as	biomarkers	of	aging.	To	date,	these	
“epigenetic clocks” have been applied in a plethora of tissues across 
diverse mammalian species and are predictive of lifespan and health 
span	 above	 and	 beyond	 chronological	 age	 (Hannum	 et	 al.,	 2013;	
Horvath,	2013;	Levine	et	al.,	2018).	However,	 the	mechanistic	un-
derpinnings	and	drivers	of	epigenetic	clocks	are	relatively	unknown,	
limiting the conclusions that can be drawn.

Our	lack	of	mechanistic	understanding	of	epigenetic	clocks	likely	
stems	from	the	fact	that	these	models	have	been	almost	exclusively	
applied	to	 in	vivo	and	ex	vivo	blood	and	tissue	samples	 in	humans	
(and	more	recently	in	other	mammals)	for	which	experimental	inves-
tigation	is	limited.	Thus,	we	hypothesize	that	use	of	culture	models	
coupled with physiologically relevant tissue samples may facilitate 
mechanistic discovery.

Culture	 aging	 has	 been	 extensively	 examined	 within	 the	 con-
text	 of	 cellular	 biology,	 presenting	 a	 model	 to	 study	 mechanisms	

of	epigenetic	aging	 (Itahana	et	al.,	2004).	Since	Hayflick	proposed	
the	theory	now	known	as	the	Hayflick	limit	 (Hayflick,	1965),	many	
studies	 have	 contributed	 to	 characterizing	 exhaustive	 passaging,	
providing	 robust	 and	 well-	characterized	 culture	 models	 that	 can	
be	used	 to	determine	 the	extent	culture	aging	 recapitulates	phys-
iological	aging	(Bork	et	al.,	2010;	Parrinello	et	al.,	2003).	However,	
none	have	applied	systems-	level	measures	to	directly	demonstrate	
whether changes that can be induced in culture mimic what hap-
pens	with	aging	in	the	organism.	Thus,	the	aims	of	this	paper	were	
as	follows:	(i)	to	better	characterize	the	culture	aging	phenomena	by	
generating	a	clock	based	on	DNA	methylation	changes	 in	vitro,	 (ii)	
test whether such culture models of aging capture a physiologically 
relevant	signal,	and	(iii)	use	this	data	as	a	first	step	toward	elucidat-
ing	mechanisms	of	aging.	Overall,	the	results	from	this	study	set	the	
foundation for using culture aging epigenetic models as a transla-
tional bridge to in vivo biomarker studies.

2  |  RESULTS

2.1  |  Developing a measure of culture aging using 
DNAm

To	explore	culture	aging,	understand	its	association	with	the	methy-
lome	and	determine	the	extent	to	which	culture	phenotypes	reca-
pitulate	physiological	aging,	we	derived	a	primary	mouse	embryonic	
fibroblast	culture	system	that	was	exhaustively	passaged	to	produce	
longitudinal	DNAm	samples	(Figure	1a,	Figure	S1a–	d).	We	selected	
mouse	embryonic	 fibroblasts	 (MEFs)	 as	our	model,	 given	 their	 ac-
celerated	aging	phenotype	after	relatively	few	passages	(5–	7)	under	
normoxic	 (20%)	 conditions	 (Parrinello	 et	 al.,	 2003).	 This	 acceler-
ated	aging	is	hypothesized	to	occur	from	extrinsic	factors,	like	oxy-
gen	 toxicity,	 rather	 than	 intrinsic	 factors	 like	 telomere	 shortening	
(Itahana	et	al.,	2004).	 It	 is	also	a	distinct	phenotype	 in	contrast	 to	
MEFs	grown	under	physiological	conditions	of	3%	oxygen,	which	se-
nesce	at	a	much	later	passage.	Given	that	genotoxic	stress	is	known	
to	modulate	 the	methylome	 (Basenko	 et	 al.,	 2015;	 Colman	 et	 al.,	
2000;	Liu	et	al.,	1996),	we	reasoned	that	this	model	could	enable	us	
to	capture	the	known	murine	sensitivity	to	oxidative	damage	using	
DNAm	from	serially	passaged	MEFs	under	normoxia.

DNA	methylation	was	assessed	at	each	passage	in	three	biologi-
cal	replicates	via	reduced	representation	bisulfite	sequencing	(RRBS)	
with	the	goal	of	utilizing	machine	learning	techniques	to	reduce	the	
highly	 dimensional	 DNAm	 data	 into	 a	 single	 meaningful	 measure	
that	 increases	as	a	function	of	time	 in	culture	 (Figure	1b).	The	pri-
mary	data	used	 to	 train	 the	culture	measure,	 termed	CultureAGE,	
were	obtained	from	passages	1–	6	of	the	culture	MEF	system.	Of	the	
three	MEF	cell	 lines,	 two	were	used	 in	training	 (MEF	1	and	2)	and	
the	third	(MEF3)	was	used	for	validation.	In	both	cases,	passages	5	
and	6	were	combined	during	sequencing	(due	to	low	individual	DNA	
content)	and	designated	as	passage	5.5.	Thus,	our	training	data	in-
cluded	samples	at	passage	1	 (N =	2),	passage	2	 (N =	1),	passage	3	
(N =	2),	passage	4	(N =	2),	and	passage	5.5	(N =	2).	Initial	principal	
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component	analysis	(PCA)	of	training	(N =	9)	and	validation	(N =	6)	
MEFs	revealed	passage-	based	trajectories	in	all	replicates,	suggest-
ing the methylome is modulated as a function of time in culture 
(Figure	S1e,f).

Prior	 to	 training	 CultureAGE,	 we	 sub-	selected	 common	 CpGs	
between	our	MEF	data,	Petkovich	et	al.,	2017,	and	Thompson	et	al.,	
2018	to	generate	a	 list	of	28,323	common	CpG	sites	 (Figure	S2a).	
This	was	done	so	that	our	measure	could	be	calculated	in	these	ex-
ternal	datasets	to	undergo	a	robust	in	vivo	validation.	Next,	we	con-
ducted	principal	component	analysis	(PCA)	on	the	28k	sub-	selected	
CpGs	 in	 our	 MEF	 data	 frame	 (N =	 48).	 The	 initial	 PCA-	included	
some	samples	that	were	not	explicitly	analyzed,	but	reported	pas-
sage	 number,	 so	 they	 were	 included	 to	 increase	 sample	 size.	We	
previously	 found	 that	combining	PCA	with	elastic	net	yields	more	
robust	 and	 reliable	 epigenetic	 age	 measures	 (Higgins-	Chen	 et	 al.,	
2021;	 Levine	et	 al.,	 2020),	 and	 thus,	we	applied	 a	 similar	 strategy	
here.	Elastic	net	penalized	regression	was	used	to	generate	a	predic-
tor	of	passage	number,	but	rather	than	feeding	in	CpGs	as	has	been	
traditionally	done	in	epigenetic	clock	development,	we	used	PCs	as	

predictors	in	our	model.	The	lambda	penalty	was	chosen	via	10-	fold	
cross-	validation	and	resulted	in	a	model	that	included	six	PCs	(PC2,	
PC4,	PC6,	PC8,	PC9,	and	PC29)	(Figure	S2b–	e).	Overall,	this	measure	
is	based	on	data	from	all	28,323	CpG	sites,	but	is	able	to	identify	and	
combine	the	important	patterns	in	genome-	wide	DNAm	to	generate	
a	single	score,	CultureAGE.

Our	 results	 showed	 that	 CultureAGE	 was	 highly	 correlated	
with	passage	number	 in	both	 the	 training	data	 (r =	0.97),	 and	 in	
our	 independent	 validation	 samples	 (r =	 0.83),	 suggesting	 the	
marker is in fact progressively tracking with passage or time in 
culture	(Figure	1c).	In	our	training	samples,	we	find	that	the	mea-
sure	shows	a	general	 linear	 increase.	However,	 in	 the	validation,	
there	is	a	slight	attenuation	of	the	effect	at	the	last	passage.	Given	
that	we	only	have	data	on	one	sample	at	that	passage,	we	cannot	
determine	whether	the	non-	linearity	is	real,	and	follow-	up	studies	
should	increase	power.	One	potential	biological	explanation	is	that	
there may be a deceleration at later cellular stages due to slow-
ing	in	the	growth	rate	from	oxidative	damage	as	cells	approach	or	
enter senescence.

F I G U R E  1 Development	of	a	DNAm	
culture	aging	measure	(CultureAGE)	
in	mouse	embryonic	fibroblasts.	(a)	
Schematic	displaying	exhaustive	culturing	
of mouse embryonic fibroblasts under 
normoxia	(20%	O2)	produces	terminally	
arrested cellular states with progressively 
reduced	replicative	capacity.	(b)	Workflow	
demonstrating supervised machine 
learning	computation	approach	(elastic	
net	penalized	regression)	successfully	
produced a measure of culture aging from 
longitudinal reduced represented bisulfide 
sequencing	(RRBS)	DNA	methylation	
data,	where	it	was	then	was	tested	for	
physiological relevance in an aged in vivo 
cohort.	(c)	Training	(MEF1	and	MEF2)	
and	validation	(MEF3)	cell	lines	used	
to	develop	CultureAGE.	Red	=	MEF1,	
Blue =	MEF2	and	Turquoise	=	MEF3	
replicates.	Passage	correlations	and	
statistical significance were determined 
using	Pearson	correlations
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2.2  |  Distinguishing senescence from 
epigenetic aging

Replicative	 exhaustion	 in	murine	 cells	 under	 normoxic	 (20%	O2)	
conditions is a robust inducer of cellular senescence and we con-
firm	 in	our	 study	 that	MEFs	arrest	 after	6	passages	 (Figure	S1b–	
d).	Based	on	this,	we	tested	whether	our	epigenetic	measure	was	
as	 follows:	 (i)	 linked	 to	senescence	 induction,	 likely	as	a	 result	of	
chronic	activity	of	a	tumor	repressor	response	to	genotoxic	stress,	
or	 (ii)	 reflects	aging	changes	 that	are	 independent	of	 senescence	
state,	which	may	be	overcome	by	immortalization	(Figure	2).	To	test	
these	questions,	we	induced	senescence	in	a	passage-	independent	
fashion	using	damaging	dosages	of	irradiation	(10	gy),	doxorubicin	
(1	µM),	and	etoposide	(12.5	µM).	We	show	that	each	of	these	induc-
ers	elicits	increased	activity	of	SA-	β-	gal	similar	to	levels	exhibited	
in	 replicative	 senescence	 cells	 (Figure	 S3a–	d);	 however,	 SA-	β-	gal	
levels	are	not	related	to	CultureAGE	(r =	0.062,	p =	0.81).	To	further	
clarify	 if	 CultureAGE	was	 capturing	 passage-	independent	 states,	
we	transformed	young	MEFs	with	the	known	mouse	immortaliza-
tion	agent,	Large	T	antigen	(LT)	K1	mutant	(LTK1)	(Lin	et	al.,	2011),	
and	 expanded	 the	 cells	 for	 5	 passages.	 Under	 the	 reduced	 p53	
activity,	 the	 immortalized	 cells	maintained	high	 replicative	 states	

and	demonstrated	reduced	SA-	β-	gal	 levels	compared	to	passaged	
match	 controls	 (Figure	 S3e).	 Further,	 we	 found	 that	 immortal-
ized	cells	showed	acceleration	in	CultureAGE,	suggesting	that	the	
DNAm	changes	captured	progress	or	 “tick”	as	a	 result	of	 replica-
tive	events,	not	senescence	status	or	other	stress	driven	programs	
alone	(p =	0.0056)	(Figure	2).

2.2.1  |  CultureAGE	tracks	and	is	correlated	with	
multi-	tissue	physiological	aging	programs

We	tested	whether	these	in	vitro	changes	captured	by	CultureAGE	
mirror	what	 is	observed	 in	aging	tissues	and	cells	 in	vivo,	 to	de-
termine	whether	CultureAGE	 is	a	valid	aging	biomarker.	We	ap-
plied	 our	measure	 to	 in	 vivo	multi-	tissue	mouse	DNAm	 data	 at	
three	 time	 points	 (ages	 2,	 10,	 and	 20	 months)	 from	 C57BL/6J	
mice	 from	 Thompson	 et	 al.,	 2018.	 CultureAGE	 significantly	 in-
creases	with	age	in	five	of	the	six	tissues:	liver	(r =	0.59,	p =	7.0e-	
7),	 lung	 (r =	 0.44,	 p =	 0.00062),	 kidney	 (r =	 0.41,	 p =	 0.0023),	
blood	(r =	0.43,	p =	0.014),	and	adipose	tissue	(r =	0.27,	p =	0.044)	
(Figure	 3a–	f).	 A	moderate-	to-	low	 age	 increase	 was	 observed	 in	
skeletal	muscle,	although	it	was	not	significant	(r =	0.15,	p =	0.25)	
(Figure	3f).

2.2.2  |  CultureAGE	shares	common	epigenetic	
programs	with	ex	vivo	trained	blood	age	
estimator,	BloodAGE

To	further	explore	the	physiological	link	of	our	culture	aging	theory,	
we	compared	the	measure	against	a	traditional	ex	vivo	trained	epi-
genetic	clock	measure,	BloodAGE.	Because	RRBS	data	are	sparse	
and	 few	CpGs	 are	 consistently	 captured	 across	 experiments,	we	
were	 unable	 to	 utilize	 previously	 developed	 mouse	 epigenetic	
clocks.	 Thus,	 we	 developed	 a	 novel	 BloodAGE	 clock	 using	 the	
same	 selected	28k	CpGs	used	 throughout	 the	 study.	We	 trained	
the	blood	age	predictor	in	a	large	blood	dataset	(age	20–	1050	day	
C57BL/6J	mice)	from	Petkovich	et	al.,	2017	(cor	=	0.98,	p =	1.4e-	
110)	 (Figure	 3g),	 which	 we	 then	 validated	 in	 the	 blood	 dataset	
from	 Thompson	 et	 al.,	 2018	 (cor	=	 0.67,	p =	 2.7e-	5)	 (Figure	 3h),	
and	confirmed	it	tracks	with	passage	in	the	MEF	data	(cor	=	0.79,	
p =	 0.00046)	 (Figure	 3i).	 Finally,	 we	 tested	 the	 overlap	 in	 signal	
(after	residualizing	for	chronological	age)	between	BloodAGE	and	
CultureAGE	 in	 the	blood	aging	data,	which	 revealed	a	 significant	
correlation	 (cor	 =	 0.25,	 p =	 0.0016),	 confirming	 CultureAGE	 is	
capturing	 similar	 signals	 to	 classically	 trained	 clocks	 (Figure	 3j).	
Furthermore,	 CultureAGE	 demonstrates	 a	 strong	 positive	 asso-
ciation	with	age	in	the	BloodAGE	training	data	(r =	0.69,	p =	1.6e-	
23)	 (Figure	3k),	 and	 interestingly,	 some	older	mice	demonstrated	
very	high	CultureAGE.	Given	that	lymphoma	is	a	common	cause	of	
death	in	aging	mice,	it	is	possible	that	CultureAGE	reflects	a	predis-
position	to	cancer	(Haines	et	al.,	2001).

F I G U R E  2 CultureAGE	phenotype	is	independent	of	cellular	
senescence	phenotype	and	requires	replicative	expansion.	
Boxplot	displaying	varying	CultureAGE	scores	in	young	(untreated	
and	DMSO,	passage	1	or	2),	passage-	independent	(passage	2)	
senescence	induction	doxorubicin	(1	µM),	etoposide	(12.5	µM),	
irradiation	(10	gy),	old	(passage	3–	5.5),	and	LTK1	immortalized	
cells	(passage	5).	Passaged	label	denotes	cells	were	mitotically	
expanded,	where	β-	gal	label	establishes	a	binary	senescence	cutoff	
based	on	flow	cytometry	data	in	Figure	S3.	Statistical	significance	
calculations	were	determined	via	one-	way	ANOVA	and	multiple	
group comparisons
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2.3  |  Investigation into anti- aging therapies 
confirms CultureAGE is modulated via caloric 
restriction and reprogramming

Using	 the	 Petkovich	 et	 al.,	 2017	 data,	 we	 also	 found	 that	
CultureAGE	 was	 responsive	 to	 dietary	 intervention,	 such	 that	
calorically	 restricted	 (CR)	 mice	 exhibited	 significantly	 lower	
CultureAGE	 scores	 relative	 to	 controls	 (p =	 0.00259),	 perhaps	
highlighting improved cellular maintenance and health from di-
etary	intervention	(Figure	4a).	Finally,	using	the	same	dataset	we	
showed	that	CultureAGE	exhibits	a	decrease	or	resetting	 in	 lung	
(Figure	4b)	and	kidney	fibroblasts	(Figure	4c)	upon	reprogramming	
to	induced	pluripotent	stem	cells	(iPSCs)	(p =	0.0001).	Specifically,	
the	re-	programmed	cells	were	reset	to	more	youthful	origins	than	
even	 the	passage	1	MEFs	 (p <	0.0001),	 suggesting	culture	aging	
established epigenetic networks are possible to completely reset 
upon	reprogramming	(Figure	4d).

2.4  |  Clustering analysis confirms culture aging 
exists in physiological context and highlights 
Polycomb group (PcG) factors as important culture 
aging regulators

Given	that	CultureAGE	is	a	composite	measure	stemming	from	mul-
tiple	aspects	or	domains	of	DNAm	changes,	we	hypothesized	that	
some	of	the	signal	it	encompasses	may	be	physiologically	relevant,	
while	others	may	be	culture	artifacts	or	MEF-	specific	phenotypes.	
For	 instance,	 we	 reasoned	 that	 supervised	 machine	 learning	 ap-
proaches,	like	elastic	net,	will	prioritize	strong	signals	in	our	culture	
models,	despite	whether	they	are	physiologically	relevant,	 limiting	
our ability to isolate important biological mechanisms. To address 
this,	 we	 applied	 consensus	 weighted	 gene	 correlation	 network	
analysis	 (WGCNA)	 to	 identify	 clusters	 (or	 modules)	 of	 highly	 co-	
methylated	sites	that	are	conserved	across	both	in	vivo	(Petkovich	
et	 al.,	 2017;	 Thompson	 et	 al.,	 2018)	 and	 in	 vitro	 data	 (Figure	 5a,	

F I G U R E  3 Multi-	tissue	physiological	
aging	is	modeled	by	CultureAGE	measure.	
CultureAGE	score	determined	in	liver	
(a),	lung	(b),	kidney	(c),	blood	(d),	adipose	
(e),	and	muscle	(f)	tissue	at	2,	10,	and	
20	months	in	aged	C57BL/6J	mice	from	
Thompson	et	al.,	2018.	(g)	BloodAGE	
epigenetic clock age association in blood 
training	data	from	Petkovich	et	al.,	2017.	
BloodAGE	was	trained	in	Petkovich	
et	al.,	2017	as	a	mouse	age	predictor	
using	classical	elastic	net	methodology,	
but	with	PCs	as	input	variables,	similar	
to	CultureAGE.	The	final	BloodAGE	
measure	was	constructed	with	52	PCs	
and is validated using blood data from 
Thompson	et	al.,	2018	in	(h).	(i)	BloodAGE	
culture	aging	association	in	all	MEF	
replicates	used	in	CultureAGE	training	
and validation. Red =	MEF1,	Blue	=	MEF2,	
and Turquoise =	MEF3	replicates.	(j)	
CultureAGE	variance	is	associated	with	
BloodAGE	when	residualizing	by	age	in	
Petkovich	blood	data	(age	range,	20–	
1050	days).	(k)	CultureAGE	measure	in	
Petkovich	blood	data.	Age	correlations	
and statistical significance were 
determined	using	Pearson	correlations
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Figure	 S4a).	We	 used	 27,035	 CpGs	 as	 the	 input,	 which	 excluded	
beta	 values	 of	 0	 from	 the	 original	 28,323	 overlapped	 CpGs.	We	
identified	12	CpG	modules,	ranging	in	size	from	105	to	678	CpGs.	
Most	modules	showed	bimodal	distribution	 in	relation	to	distance	
from	 transcription	 start	 sites	 (TSS),	 with	 many	 showing	 peaks	 at	
±100–	1000	bp	(Figure	5b).

Next,	we	estimated	module	eigengenes	that	capture	the	main	
signal from each module and tested their associations with passage 
number	(in	vitro	MEF	data)	and	age	(in	vivo	tissue	data).	Eigengenes	
were	calculated	as	PC1	estimated	from	the	in	vitro	data	and	then	
applied	as	validation	 to	 the	 in	vivo	data	 (Figure	5c).	Using	 these	
values,	we	observed	several	modules	 that	appear	 to	be	artifacts	
of	 in	 vitro	 aging	 (turquoise/yellow/red/pink/purple),	 such	 that	
they	showed	progression	with	passage	number	 in	MEFs,	but	did	
not	track	with	age	in	tissues.	However,	two	modules	(brown	and	
greenyellow)	stood	out	as	being	shared	between	culture	and	tis-
sue	aging.	For	instance,	the	brown	module	was	strongly	correlated	
with	passage	number	(r =	0.88),	as	well	as	age	 in	 liver	 (r =	0.87),	
lung	(r =	0.80),	blood	(r =	0.78),	and	adipose	(r =	0.75).	It	was	also	
moderately	 correlated	with	 age	 in	 kidney	 (r =	 0.47)	 and	weakly	
correlated	with	age	in	skeletal	muscle	(r =	0.22).	The	greenyellow	
module	 exhibited	 strong	 correlations	with	both	passage	number	
in	vitro	(r =	0.90)	and	age	in	blood	(r =	0.88),	while	showing	mod-
erate	 age	 correlations	with	 lung	 (r =	 0.60),	 liver	 (r =	 0.55),	 adi-
pose	(r =	0.42),	and	kidney	(r =	0.33),	and	a	weak	correlation	with	
age	in	skeletal	muscle	(r =	0.19).	As	a	comparison,	we	applied	the	
CultureAGE	PCloadings	 and	 coefficients	 to	 the	module	CpGs	 to	
determine	 the	 relative	 CpG	 contributions	 by	 module	 based	 on	
the	 initial	 selection	 criteria	 established	 by	 CultureAGE	 (Figure	
S5a).	We	 confirm	 our	 hypothesis	 that	 certain	 artifactual	 drivers	
are	present	in	CultureAGE	(turquoise/red),	but	also	highlight	that	
major	physiological	signals	do	indeed	exist,	with	the	brown	module	
comprising	nearly	17%	of	the	normalized	CultureAGE	score,	com-
pared	to	the	average	of	8.3%.	Additionally,	the	average	CpG	con-
tribution	across	all	PCs	demonstrates	 the	majority	of	 the	brown	
module	CpGs	are	enriched	when	compared	to	random	chance	or	
artifactual	modules	like	red	and	pink,	and	poorly	correlating	mod-
ules	like	black	(Figure	S5b).

Finally,	 to	 garner	 more	 biological	 insight	 into	 potential	 mech-
anisms	 at	 work	 in	 conserved	 modules,	 we	 assessed	 genome	

F I G U R E  4 CultureAGE	predicts	naïve	culture	states	in	caloric	
restricted	mice	and	re-	programmed	fibroblasts.	(a)	Scatterplot	
demonstrating	deceleration	of	culture	aging	in	calorie-	restricted	
C57BL/6J	mice	from	Petkovich	et	al.,	2017,	when	comparing	normal	
chow	(20–	1050	days)	from	calorie	restriction	(300–	810	days)	
cohorts. Red samples represent normal chow diet and green 
samples	calorically	restricted	diet.	Calorie-	restricted	mice	began	
treatment	at	14	weeks	of	age.	Linear	modeling	demonstrates	
statistically significant deceleration in culture aging in CR samples 
(p =	0.02479)	as	well	as	significant	modulation	in	CR-	treated	
mice	compared	to	normal	chow	controls	(p =	0.00259),	when	
corrected	by	age.	iPSC	reprogramming	in	lung	(b)	and	kidney	(c)	
fibroblasts	from	Petkovich	et	al.,	2017	demonstrates	resetting	of	
culture	signature.	(d)	CultureAGE	assessment	of	pooled	lung	and	
kidney	re-	programmed	iPSCs	from	(b	and	c)	compared	to	MEF	
data,	demonstrating	reprogramming	re-	sets	and	erases	cellular	
states	further	than	passage	1	MEFs	(p <	0.0001).	Red	=	MEF1,	
Blue =	MEF2,	and	Turquoise	=	MEF3	replicates.	Reprogramming	
and	iPSC	statistical	significance	calculations	were	determined	via	
un-	paired	two-	tailed	t test
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F I G U R E  5 Clustering	analysis	confirms	culture	aging	exists	in	physiological	context	and	highlights	Polycomb	group	(PcG)	factors	as	
important	culture	aging	regulators.	(a)	Schematic	outlining	method	of	using	longitudinal	aging	data	(tissue	+	culturing)	from	Thompson	et	al.,	
2018	and	the	MEF1/MEF2	training	data	to	cluster	CpGs	with	WGCNA	into	distinct	modules	or	ageotypes,	which	were	then	compared	to	
in vitro passaging data and all tissues via principal component analysis and used to determine enriched genes using the Cistrome database. 
(b)	Module	distribution	as	determined	by	distance	(per	base	pair)	to	transcription	start	site	(TSS),	generated	using	LolaWeb.	Raw	module	
CpGs	were	used	to	determine	principal	component	correlations	in	(c),	where	kME	selected	CpGs	were	used	to	normalize	enriched	domains	
in	(d),	as	further	explained	in	Figure	S4b.	(c)	PC1	correlations	of	longitudinal	tissue	and	MEF	passaging	data	by	module.	(d)	Module	genome	
enrichment	analysis	using	Cistrome	database	from	100	CpG	input	selected	by	kME.	Enriched	genes	were	further	normalized	by	randomly	
selecting	100	CpGs	from	the	background	27,035	CpGs	used	to	create	the	modules	and	correcting	each	enriched	GSM_IDs	Giggle	score.	
Note,	the	enrichment	analysis	is	displaying	the	average	normalized	enriched	gene	Giggle	score	(Top	10	displayed).	Enriched	genes	are	
sorted	by	decreasing	module	frequency.	Giggle	score	represents	a	rank	of	significance	between	genomic	loci	shared	between	query	file	
and	thousands	of	genome	files	from	databases	like	ENCODE.	Red	genes	=	PRC2	complex	or	mediator,	Orange	genes	=	PRC1	complex	or	
mediator,	and	Black	genes	=	non-	Polycomb-	related	genes
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enrichment	of	transcription	factor	(TF)	binding	motifs	and	chromatin	
regulators using the Cistrome database. This was done by compar-
ing	each	module	by	TF	and	 chromatin	 regulator	 enrichment	 score	
(Giggle	 score).	 The	 Giggle	 score	 represents	 a	 rank	 of	 significance	
between genomic loci shared between query file and thousands of 
genome	files	from	databases	like	ENCODE.	Given	that	scores	tend	
to increase for lists with a greater number of input genomic loca-
tions	(and	thus	would	be	biased	by	module	size),	we	normalized	each	
module prior to determining the enrichment score so that only 100 
CpG	locations	were	being	assessed	for	each	module.	For	 instance,	
we	selected	the	top	100	CpGs	with	the	highest	kME	values	in	a	given	
module.	 kME	 is	 estimated	as	 the	 correlation	between	CpG	values	
and the module eigengene and can be used to infer connectivity or 
identify	“hubs”	of	a	module.	For	the	background	CpGs,	we	selected	
100	CpGs	 from	 the	 27,035	CpG	background	 at	 random	 and	 used	
the	background	Giggle	score	to	blank	any	hit	overlap	from	the	mod-
ules.	The	Giggle	score	threshold	was	the	actual	value	below	which	
scores	were	blanked.	The	final	100	input	CpGs	for	each	module	are	
reported	 by	 genomic	 partition	 distribution	 (Figure	 S4b)	 and	 scat-
terplots of each raw Cistrome distribution are reported by module 
(Figure	S4c).	We	compared	 the	average	normalized	enriched	gene	
Giggle	score	from	each	module	to	determine	the	most	enriched	gene	
regulators.

The	 Cistrome	 analysis	 (Figure	 5d)	 reveals	 that	 Polycomb	 re-
pressive	 complex	 1	 and	 2	 (PRC1	 and	 PRC2)	 networks	 are	 highly	
enriched	 in	 translational	 modules	 (brown	 and	 greenyellow),	 high-
lighting	 Polycomb	 group	 proteins	 (PcGs)	 as	 key	 epigenetic	 regula-
tors	 in	 both	 culture	 and	 physiological	 aging.	Nearly	 all	 of	 the	 top	
hits	for	greenyellow	(9/10)	occurred	in	PcGs,	the	highest	Giggle	en-
richment	score	occurred	in	EED	(PRC2	components)	for	the	brown	
module,	 and	 the	only	 shared	hit	 between	 greenyellow	 and	brown	
was	PHF19,	a	PRC2	recruitment	zinc-	finger	domain.	Finally,	we	con-
ducted	Cistrome	 analysis	 on	 the	 top	module	CpG	 contributors	 to	
CultureAGE	and	found	that	8/10	of	the	hits	were	PcG	components,	
including	EED	and	PHF19	(Figure	S5c).	Altogether,	our	data	suggest	
PcGs	regulate	physiologically	relevant	culture	aging	phenotypes.

3  |  DISCUSSION

Given	that	well-	characterized	culture	systems	exist	(Parrinello	et	al.,	
2003),	we	aimed	 to	classify	potential	epigenetic	drivers	of	 culture	
aging and determine if such changes model physiological aging in 
various	 tissues	 and	 biofluids.	We	 rationalized	 that	with	 the	wide-
spread	 use	 of	 culture	 models	 throughout	 biology	 and	 medicine,	
many fields would greatly benefit from clarifying the underlying 
epigenetic	 phenotypes	 that	 exist	 in	 culture	 and	whether	 relevant	
markers of cellular dysfunction can be trained for use in accelerating 
mechanistic and drug development discoveries.

By	exhaustively	passaging	primary	MEFs	under	normoxic	 con-
ditions	(20%	O2),	we	trained	a	DNAm	predictor	of	passage	number	
(time	 in	 culture),	 called	 CultureAGE,	 and	 demonstrate	 that	 it	 not	
only	accurately	tracks	passage	number	(Figure	1c)	but	also	strongly	

correlates	with	age	in	multiple	tissues	(liver,	lung,	kidney,	blood,	and	
adipose)	 in	 vivo	 (Figure	 3a–	f),	 captures	 similar	 signals	 to	 a	 blood	
trained	epigenetic	clock	 (BloodAGE)	 (Figure	3g–	j),	 is	modifiable	by	
dietary	 intervention	 (Figure	 4a),	 and	 exhibits	 resetting	 upon	 re-
programming	 to	 pluripotency	 (Figure	 4b–	d).	 Interestingly,	 skeletal	
muscle	 was	 the	 only	 tissue	 examined	 where	 CultureAGE	 did	 not	
correlate	with	age	(Figure	3b),	which	may	reflect	that	skeletal	mus-
cle remains mostly postmitotic in adulthood or that muscle cells are 
multinucleated.	The	link	between	proliferation	and	CultureAGE	was	
also	observed	when	comparing	the	other	tissue	types.	For	example,	
we	observed	differences	 in	both	age	correlation/slope,	 and	 in	 the	
absolute	scores	when	comparing	tissues.	Overall,	samples	from	liver	
and	blood	appeared	to	exhibit	the	highest	values	(Figure	3a,d),	which	
may reflect the higher proliferative capacity of cells in these sam-
ples	or	the	renewable	nature	of	both	hepatocytes	and	blood	cells,	
perhaps suggesting that lifetime damage is somehow cataloged by 
the methylome. This is also substantiated by the observations that 
epigenetic	aging	is	not	linear	with	time	(Levine	et	al.,	2018).	For	in-
stance,	previous	epigenetic	clocks	have	been	shown	to	increase	rap-
idly	during	development	and	then	decelerate	after	full	maturity.	We	
were	 able	 to	 observe	 this	 same	 trend	 in	 our	 data.	We	 found	 that	
CultureAGE	exhibited	a	sigmoidal	function	with	age,	characterized	
by	accelerated	aging	during	development,	a	slower	and	more	linear	
increase	after	about	150	days,	and	exponential	increases	at	late	life	
(Figure	3k).

Despite	the	evidence	of	a	relationship	between	replication	and	
epigenetic	aging,	our	data	suggests	that	this	 is	 independent	of	se-
nescence	 accumulation.	 For	 instance,	 we	 showed	 that	 drug	 and	
irradiation-	induced	 senescence	 in	 MEFs	 was	 not	 associated	 with	
changes	in	CultureAGE	(Figure	2,	Figure	S3a–	c).	Further,	our	results	
demonstrate	CultureAGE	does	not	predict	cellular	senescence	when	
compared	 by	 senescence	 status	 (assessed	 via	 Beta-	galactosidase	
activity)	 for	 pooled	 passage-	independent	 senescence	 (irradiation	
and	drug	induced)	and	replicative	senescence	samples	(cor	=	0.062,	
p =	0.81)	(Figure	S3d).	Follow-	up	studies	should	explore	senescence-	
associated	secretory	phenotypes	(SASP)	in	the	context	of	acute	cul-
ture	stress,	 in	order	to	build	upon	our	conclusions	using	β-	gal	as	a	
marker	 of	 cellular	 senescence.	 To	 fully	 conclude	 CultureAGE	was	
not	driven	by	senescence	states,	we	tested	cells	immortalized	with	
LTK1	and	still	found	acceleration	in	the	rate	of	CultureAGE,	despite	
suppressed	 senescence	 signal	 (Figure	 2,	 Figure	 S3e).	 Cells	 immor-
talized	via	LTK1	have	 inactive	p53,	 leading	to	reduced	senescence	
accumulation	compared	 to	passage-	matched	controls	 (Figure	S3e).	
Importantly,	 p53	 and/or	 Rb	 inactivation	 are	 sufficient	 for	 murine	
fibroblast	 immortalization	 (Lin	 et	 al.,	 2011).	 The	maintained	 cellu-
lar	progression	captured	by	CultureAGE	 in	old	 immortalized	 (non-	
senescent)	 samples	 may	 be	 attributed	 to	 the	 underlying	 tumor	
suppression	inactivation	occurring	from	LTK1	transformation,	allow-
ing continued mitotic progression and damage accumulation without 
cell cycle arrest and senescence perturbations.

The	 potential	 links	 between	 epigenetic	 aging,	 replication,	 and	
genotoxic	stress	may	also	explain	 the	age-	related	 increase	 in	can-
cer	susceptibility,	particularly	among	highly	proliferative	tissues	and	
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cells.	For	instance,	we	and	others	have	previously	reported	that	epi-
genetic age changes are observed at increasing rates in tumors and/
or	 the	normal	 (or	non-	afflicted)	 tissues	of	 individuals	with	cancer.	
We	reason	that	the	epigenetic	changes	captured	by	measures	 like	
CultureAGE	 may	 underlie	 susceptibility	 to	 spontaneous	 transfor-
mation	 or	 oncogenicity	 (Levine	 et	 al.,	 2019).	 Cells	 that	 eventually	
evade senescence from mutational events may promote oncogenic 
states,	 allowing	 continued	 mitotic	 events	 and	 increased	 damage	
accumulation,	as	a	 function	of	cell	 turnover.	 In	moving	forward,	 it	
will	 be	 critical	 to	 utilize	 future	 in	 vitro	 experiments	 to	 determine	
the mechanisms driving epigenetic changes as a function of either 
mitotic	 rate	 (replication	 “ticking”)	 and/or	 prolonged	 exposure	 to	
genotoxic	stress.	Our	laboratory	has	already	extended	these	mouse	
culture	aging	results	 to	human	culture	models,	where	we	recently	
showed	exhaustively	passaged	astrocytes	capture	epigenetic	aging	
trajectories	when	modeled	using	established	clocks	(Higgins-	Chen	
et	al.,	2021).

While	 substantial	 work	 has	 gone	 into	 developing	 biomarkers	
than	enable	researchers	to	track	aging	changes	in	vivo	and	in	vitro,	
the ultimate goal is to develop measures that are also modifiable 
to	 intervention.	Using	DNAm	 assessed	 in	 blood,	we	 reported	 the	
effects	 of	 two	 promising	 interventions	 in	 aging—	caloric	 restric-
tion	 (CR)	 and	 cellular	 reprogramming.	 Our	 results	 suggested	 that	
CultureAGE	showed	strong	response	to	CR	when	assessed	in	blood	
(Figure	4a).	Multiple	studies	suggest	that	CR	acts	by	reducing	DNA	
damage	accumulation	and	mutations	that	progress	with	age	(Heydari	
et	al.,	2007),	where	others	show	CR	downregulates	key	growth	hubs	
like	 the	 insulin/IGF1	pathway	 (Li	et	al.,	2011).	 Importantly,	 IGF1	 is	
a growth factor that stimulates cell proliferation and can promote 
cancer	 via	 inhibition	 of	 apoptosis	 (Kari	 et	 al.,	 1999).	 Interestingly,	
CR,	 without	 malnutrition,	 has	 also	 been	 shown	 to	 reduce	 cancer	
incidence	and	progression	 in	mice	 (Chaix	et	al.,	2014).	Our	 results	
suggest	that	CR	could	be	acting	via	the	epigenome	to	regulate	DNA	
damage maintenance by slowing cellular turnover and thus dam-
aged	 states,	 or	 perhaps	 from	 enhanced	 DNA	 repair.	 Additionally,	
our	 results	 showed	 that	 the	 longer	mice	underwent	CR,	 the	more	
they	diverged	from	normal	controls	on	the	basis	of	CultureAGE.	This	
could	suggest	that	prolonged	CR	does	not	simply	reverse,	or	retard	
epigenetic	 aging	momentarily,	 but	 actually	decelerates	 the	 rate	of	
change with age.

We	 also	 report	 renewal	 in	 lung	 and	 kidney	 fibroblasts	 indic-
ative	 of	 naïve	 culture	 states	 following	 reprogramming	 to	 iPSCs,	
supporting	the	conclusion	that	CultureAGE	cannot	only	be	slowed,	
but	 actually	 reversed	 (Figure	 4b–	d).	 For	 instance,	 both	 lung	 and	
kidney	 fibroblasts	 derived	 from	 10-	week-	old	 mice	 and	 broadly	
passaged	were	 predicted	 to	 be	 equivalent	 to	 passage	 3–	4	 cells,	
while	all	iPSC	derivatives	were	reset	to	more	youthful	origins	than	
the	 passage	 1	MEF	 data	 (p <	 0.0001)	 (Figure	 4d).	 This	 suggests	
that the major epigenetic changes acquired during culturing and/
or	 tissue	 aging	 (Sturm	et	 al.,	 2019)	 can	be	 reset	 to	 some	extent.	
It	 is	unlikely	DNA	damage	and	the	resulting	genome	instability	 is	
reversible,	 thus	 we	 propose	 that	 CultureAGE	 may	 be	 capturing	

transient	epigenetic	programs	that	control	survival,	proliferation,	
and cellular maintenance.

In	 the	 current	 study,	 we	 also	 tested	 whether	 we	 could	 dis-
tinguish	different	 “types”	of	DNAm	changes	 in	our	data,	using	a	
network-	based	 clustering	 approach.	 Our	 results	 clearly	 demon-
strate	 that	 in	 vitro	DNAm	changes	 captured	 some	modules	 that	
were	 not	 physiologically	 relevant,	 suggesting	 that	 they	 may	 be	
reflective	of	culturing	or	MEF-	specific	artifacts.	In	contrast,	CpGs	
in	 two	 modules	 (brown	 and	 greenyellow)	 appear	 to	 capture	 a	
common epigenetic aging phenotype that is established in both 
physiological	 and	 culture	 aging	 context	 (Figure	5a–	c).	We	 found	
evidence	 that	 PcG	 factors,	 including	 both	 PRC1	 and	 PRC2,	 are	
key	 factors	 in	 physiologically	 relevant	 culture	 aging	 (Figure	 5d).	
Additionally,	upon	applying	the	PCloading	conditions	to	the	mod-
ules,	 we	 confirm	 major	 physiological	 signals	 do	 in	 fact	 exist	 in	
CultureAGE	(Figure	S5a,b),	and	that	the	top	CpG	contributors	are	
also	 enriched	 in	 PcG	 factors	 (Figure	 S5c).	 It	 is	 well	 established	
that	the	tri-	methylated	histone	H3	at	lysine	27	(H3K27me3)	mark	
denotes	transcriptional	silencing	with	PRC2	involved	in	early	de-
velopment	and	PRC1	later	during	aging	as	the	more	active	main-
tenance	factor	 (Cao	et	al.,	2002).	The	catalytic	subunit	of	PRC2,	
EZH2,	is	routinely	overexpressed	in	oncogenesis	(Kim	&	Roberts,	
2016),	 promoting	 uncontrolled	 cell	 growth,	 as	 many	 repressed	
downstream	genes	of	H3K27me3	are	tumor	suppressors	(Bracken	
et	al.,	2007),	but	the	role	of	PRC2	and	its	domains	are	conflicted	
in	aging.	In	certain	species	and	cell	types,	EZH2	mutations	reduce	
H3K27me3	and	confer	longevity	(Ma	et	al.,	2018),	although	in	oth-
ers	reduction	of	H3K27me3	is	associated	with	aging	(Maures	et	al.,	
2011).	The	relationship	between	the	catalytic	subunit	(EZH2)	and	
its	co-	factors	SUZ12,	EED,	RbAp48,	and	AEBP2,	which	are	highly	
involved with allosteric recognition and binding of substrates like 
S-	Adenosyl	methionine	(SAM),	is	multi-	factorial,	with	many	oppor-
tunities	for	perturbations.	As	an	example,	multiple	studies	demon-
strate	EZH2,	SUZ12,	and	EED	are	essential	components	for	proper	
functioning,	but	RbAp48	and	AEBP2	are	not	(Cao	&	Zhang,	2004).	
Our	 reported	 translational	modules	 (brown/greenyellow)	 further	
support	the	notion	that	PcGs	are	important	aging	factors,	and	our	
culture aging system may be useful for testing hypotheses about 
PcG	roles	in	aging.

In	conclusion,	we	report	a	novel	mouse	epigenetic	measure	of	
culture	 aging,	 termed	CultureAGE,	 that	 is	 able	 to	model	 epigen-
etic	 changes	 observed	 in	multiple	 in	 vivo	 tissues.	 CultureAGE	 is	
independent	 of	 senescent	 state,	 and	 instead	 appears	 to	 capture	
progressive cellular changes that may confer susceptibility to se-
nescence	and/or	tumorigenesis.	We	also	provide	evidence	for	po-
tential modifiability in the form of deceleration as a function of CR 
or	reprogramming.	Finally,	DNAm	changes	may	be	functionally	re-
lated	to	Polycomb	group	(PcG)	factors	like	EED.	Overall,	this	study	
demonstrates	that	physiologically	relevant	DNAm	changes	can	be	
modeled	 in	vitro,	which	 in	 the	 future	can	be	used	 to	 interrogate	
mechanisms involved in epigenetic aging and/or facilitate in vivo 
aging discoveries.
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4  |  METHODS

4.1  |  Experimental

4.1.1  | Mouse	embryonic	fibroblast	extraction

Mouse	embryonic	fibroblasts	were	harvested	at	day	12.5	of	gesta-
tion.	Two	females	were	used.	From	the	first	 female,	nine	embryos	
were	sacrificed	and	split	into	three	cell	lines,	MEF1–	3	from	the	sec-
ond	female,	10	embryos	were	sacrificed	and	split	into	three	cell	lines,	
MEF4–	6.

Extraction	 was	 achieved	 by	 separating	 embryos	 into	 separate	
wells	 in	a	6-	well	dish	using	PBS,	removing	inner	embryo	and	using	
forceps	 to	 carefully	 remove	 limbs,	 head,	 and	 internal	 organs	 from	
dorsal	 region.	 The	 dorsal	 region	was	 then	 cut	 and	 trypsinized	 for	
10	min	at	37°C.	To	quench	reaction	cells	were	transferred	to	a	15	ml	
falcon	tube	and	spun	for	3	min	at	300g,	then	supernatant	was	aspi-
rated	and	resuspended	with	10	ml	DMEM.	P0	cells	were	split	once	
to	expand	cell	number	prior	to	freezing.	Approximately	2	ml	of	cells	
were	 incubated	overnight	with	8	ml	DMEM	and	 following	growth	
were	trypsinized	and	either	passaged	for	experiments	or	stored	at	
−80°C	in	DMEM/DMSO	(90:10).

4.1.2  |  Replicative	passaging	and	cell	culture

Cells	were	split/passaged	six	times,	where	flow	cytometry/confocal	
microscopy	and	RRBS	sequencing	were	conducted	at	each	passage.

Cells	were	split	according	to	the	following	seeding	density—	p100	
–		0.5	× 106	cells,	p60	–		0.25	× 106	cells,	and	six	well	–		0.125	× 106 
cells—	and	were	counted	using	an	Invitrogen	countess	and	cell	count-
ing	chamber	slide	with	trypan	blue.	For	media,	we	used	DMEM	+10%	
FBS	+1%	PENSTREP.	Note,	later	passaged	cells	had	a	lower	plating	
efficiency	when	inspected	visually	24	h	after	seeding,	thus	we	used	
a cell scraper prior to transfer otherwise senescent cells remained 
attached	to	the	dish.	Cells	were	split	at	approximately	95%	conflu-
ence	which	occurred	around	3–	4	days	in	P1–	3	and	5–	8	days	in	P4–	6.

4.1.3  |  Plasmid	transfection

LTK1	 (Immortalization)	 and	 empty	 vector	 (pBABE)	 plasmids	 were	
described	previously	(Lin	et	al.,	2011).	Briefly,	Phoenix	Amphotropic	
cells	were	used	 to	 grow	virus	 as	described	previously	 (Pear	 et	 al.,	
1993)	and	puromycin	(0.5	µg/µl)	and	blasticidin	(2	µg/µl)	were	used	
for selection.

4.1.4  |  Beta-	galactosidase	flow	cytometry	and	
confocal microscopy

To	 conduct	 beta-	galactosidase	 flow	 cytometry,	 approximately	
0.25 × 106	 cells	 were	 seeded	 into	 p60	 dishes	 and	 pre-	treatment	

was	 conducted	 approximately	 16	 h	 after	 seeding.	 Cells	were	 first	
pre-	treated	with	Bafilomycin	A1	(Selleckchem:	S1413,	622.83	g/mol,	
100 µM	stock).	Existing	DMEM	was	aspirated,	then	cells	were	washed	
with	 PBS	 and	 replaced	 with	 treated	 Bafilomycin	 A1	 DMEM	 for	
30	min	at	a	final	concentration	of	100	nM.	Following	Bafilomycin	A1	
pre-	treatment	to	normalize	lysosome	activity,	C12FDG	(Invitrogen:	
D2893,	853.92	g/mol,	10	mM	stock)	was	added	directly	to	the	exist-
ing	media	for	90	min	at	a	final	concentration	of	20	µM.	Note,	due	
to	light	sensitivity,	exchange	was	conducted	in	a	dark	environment.

For	determining	beta-	galactosidase	activity	via	flow	cytometry,	
treated	cells	were	trypsinized	(1	ml-	p60)	for	5	min	at	37°C	and	then	
quenched	using	3	ml	DMEM.	Note,	cells	were	completely	detached	
using a cell scraper prior to transfer otherwise senescent cells re-
mained	 attached	 to	 the	 dish.	 After	 thorough	 resuspension,	 cells	
were transferred directly to a filter top tube and spun for 3 min at 
1200	rpm.	Supernatant	was	aspirated,	and	cells	were	resuspended	
in 100 µl	PBS	and	 immediately	assayed	using	a	488	nM	laser	on	a	
StratedigmS1000	benchtop	flow	cytometer.	Fluorescence	intensity	
was	 normalized	 and	 baselined	 using	 an	 unstained	 sample.	 FlowJo	
(10.6.1)	was	used	to	analyze	data.	Beta-	galactosidase	activity/senes-
cence	activity	was	determined	as	LogFITC	treated	geometric	mean/
control	geometric	mean	after	normalizing	to	untreated	control.

For	determining	beta-	galactosidase	activity	via	confocal	micros-
copy,	cells	were	split	 into	12	well	dishes	with	a	glass	cover	slide	at	
the	 bottom	 of	 each	 well.	 Following	 Bafilomycin	 A1	 and	 C12FDG	
treatment,	media	was	aspirated,	and	cells	were	washed	with	PSB	3×,	
fixed	with	4%	PFA/PBS	 (10	min),	 followed	by	2×	PSB	washes	and	
then	counter	stained	with	DAPI	and	mounted	onto	coverslips.	Fixed	
cells	were	immediately	imaged	at	4×,	10×,	and	40× resolution using 
a	Keyence	confocal	cytometer.

4.1.5  |  Senescence	induction

We	 induced	 senescence	 using	 previously	 established	 conditions	
(Tchkonia	 et	 al.,	 2010).	 In	 brief,	 MEFs	 were	 thawed	 and	 allow	 to	
expand	for	one	passage,	then	split	to	a	normalized	seeding	density	
of 0.25 × 106	cell/p60	and	0.125	× 106	cells/6-	well	and	treatment	
was	conducted	for	5	days.	Note,	senescence	induction	experiments	
were	 conducted	 at	 passage	2.	Doxorubicin	 (Sigma:	D1515,	 1	µM),	
Paclitaxel	 (Sigma:	 T7402,	 50	 nM),	 and	 Etoposide	 (Sigma:	 E1383,	
12.5 µM)	were	all	dosed	into	DMEM	when	the	cells	were	split	and	
media	was	not	replaced	for	the	duration	of	the	5-	day	treatment.	We	
irradiated	cells	(10	Gy)	using	cesium	irradiation	and	collected	these	
cells after 5 days as well.

4.1.6  |  DNA	preparation	and	quantification

DNA	was	extracted	from	selected	samples	prior	to	RRBS	sequenc-
ing	using	a	Qiagen	DNeasy	Blood	and	Tissue	extraction	kit	(69504).	
Note,	 samples	 were	 treated	with	 proteinase	 K	 and	 RNAse	 A	 and	
eluted with 200 µl	elution	buffer.	Following	final	elution,	DNA	was	
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verified	using	nanodrop	(Thermo	Scientific).	Spin	concentration	was	
used	as	necessary	with	 low	DNA	content	samples.	Prior	 to	 library	
preparation,	 we	 used	 a	 qubit	 fluorometer	 (Thermo	 Scientific)	 to	
quantify	the	extracted	genomic	DNA.	All	samples	were	assigned	a	
single-	blinded	code	and	randomized	for	library	preparation	and	se-
quencing to control for any batch errors.

4.1.7  |  Library	preparation	and	reduced	
representation bisulfide sequencing

Library	preparation	was	conducted	using	EZ	DNA	Methylation	RRBS	
Library	Prep	Kit	(Zymo:	D5461),	according	to	manufacturer's	recom-
mendations.	Randomized	 and	pooled	 samples	were	 sequenced	on	
four	Illumina	NovaSeq6000	SP	lanes	(100	bases	single-	end	mode).	
Note,	each	lane	produced	more	than	400	M	reads.

4.2  |  Statistical analysis

4.2.1  |  Data	preprocessing

FastQC	(v0.11.8)	was	used	to	assess	the	quality	of	the	raw	reads	and	
adapter-	trimmed	reads	(cutadapt,	version	2.5).	Reads	were	mapped	
to	the	GRCm38	RRBS	genome	using	BSBolt	v0.1.2	(https://github.
com/Nutty	Logic/	BSBolt)	 (Farrell	 et	 al.,	 2021).	 Methylation	 was	
called	and	the	CpG	methylation	matrix	was	assembled	for	CpG	sites	
common to all samples and covered by more than 10 reads. The final 
matrix	consisted	of	466,359	CpG	sites.

4.2.2  |  Training	and	validation	of	DNAmCULTURE

R	 was	 the	 primary	 platform	 used	 for	 statistical	 analysis	 (Version	
3.6.2).	After	selecting	overlapped	CpGs	between	training	 (in	vitro)	
and	all	 validation	 studies	 (in	vivo),	PCA	 (without	 scaling)	was	con-
ducted	 in	 the	 training	 sample.	 The	 initial	 PCA	was	 conducted	 on	
N =	48	MEF	samples,	all	with	reported	passage	number	between	1	
and	6.	Note,	some	samples	were	not	analyzed	in	this	report.	Briefly,	
N =	 9	 passaged	 (Passage	 1–	6)	 samples	 were	 used	 as	 the	 culture	
training	samples	for	the	elastic	net	regression	selection	of	PCs.	The	
outcome	was	6	PCs,	each	with	a	PCloading	for	all	28,323	CpGs,	then	
a	specific	coefficient	for	each	PC,	resulting	in	the	predictor	of	pas-
sage	number,	called	CultureAGE.	Lambda	penalty	 represented	 the	
value	with	 lowest	mean-	squared	error,	 selected	via	10-	fold	 cross-	
validation	(Figure	S2b,c).	Further	details	on	PC-	trained	DNAm	meas-
ures	can	be	 found	 from	our	previous	 reports	 (Higgins-	Chen	et	al.,	
2021;	Levine	et	al.,	2020).

To	 validate	 the	 measure,	 PCs	 were	 estimated	 in	 independent	
MEF	passaged	samples	that	were	not	included	in	elastic	net	selec-
tion	(MEF3)	and	external	datasets	(in	vivo)	using	the	loading	from	the	
training	sample.	These	PCs	were	then	incorporated	into	the	selected	
elastic	 net	model	 (Figures	 1,	 3,	 and	 4).	 Pearson	 correlations	were	

used	 to	 assess	 associations	 between	 CultureAGE	 and	 (1)	 passage	
number	 in	 both	 the	 training	 and	 validation	 sample,	 and	 (2)	 age	 in	
multi-	tissue	in	vivo	samples.	One-	way	ANOVA	multiple	group	com-
parisons	were	used	for	analyze	senescence	statistical	 significance.	
Two-	tailed	t	tests	were	used	to	compare	significance	in	iPSC	repro-
gramming	and	in	MEF4	validation.	To	test	for	associations	with	CR,	
OLS	regression	was	used	that	included	age,	CR,	and	an	interaction	
term	(age*CR).

4.2.3  | WGCNA	and	module	construction

Consensus	WGCNA	 (Langfelder	&	Horvath,	2008)	was	conducted	
using	 four	 input	 datasets—	MEF	 training	 samples	 (replicates	 1	 and	
2),	and	the	Thompson	et	al.	data	for	blood,	 liver,	and	adipose.	The	
remaining	Thompson	et	al.	data	(kidney,	lung,	and	muscle)	were	de-
liberately	excluded	from	WGCNA	so	as	to	have	a	true	validation.	In	
total,	we	used	27,035	CpGs	as	the	input,	which	excluded	beta	val-
ues	of	0	from	the	original	28,323	overlapped	CpGs.	Adjacency	was	
estimated for each dataset based on biweight midcorrelations and 
negative correlations were treated as unconnected in the network 
(signed	network).	Adjacencies	were	 then	converted	 to	Topological	
Overlap	 Matrices	 (TOMs)	 and	 combined	 into	 a	 single	 consen-
sus	 TOM,	 such	 that	 overlap	 for	 each	CpG	pair	was	 designated	 as	
the	minimum	 dissimilarity	 score	 across	 the	 four	 individual	 TOMs.	
Hierarchical	clustering	was	then	conducted	with	the	 following	pa-
rameters:	deepSplit	=	1,	cutHeight	=	0.95,	minClusterSize	=	50,	and	
distance =	1-	consensus	TOM,	method	= average. This resulted in a 
network with n =	16	modules.	Given	that	similar	modules	can	often	
be	 split	 by	WGCNA,	we	 next	 tested	whether	modules	 should	 be	
merged. This was done by estimating module eigengenes and then 
assessing	dissimilarity	between	modules.	Using	a	cut	height	of	0.4,	
the	16	modules	were	merged	into	13	that	served	as	our	final	mod-
ules for all remaining analyses.

One	feature	of	WGCNA	is	the	ability	to	estimate	module	eigen-
genes,	which	serve	as	single	quantitative	value	meant	to	represent	
the	core	signal	of	a	whole	module—	that	can	consist	of	tens	to	thou-
sands	 of	 individual	 variables.	 Typically,	 PC1	 from	 PCA	 run	 on	 all	
variables in a module is used to represent the module eigengene. 
However,	the	traditional	WGCNA	package	estimates	this	separately	
for all dataset meaning that the eigengenes may not be based on 
the	 same	 equations	 across	 datasets	 (variables	 can	 have	 different	
loadings).	This	may	cause	a	bias	in	results	and	make	validation	less	
straight	forward.	To	overcome	this,	we	estimated	PC1	for	each	mod-
ule	using	 the	MEF	training	data	and	then	applied	 these	 loading	 to	
all	 other	 datasets,	 including	 those	 used	 in	WGCNA	 and	 thus	 that	
were	held-	out.	Finally,	we	tested	whether	the	module	eigengene	val-
ues	were	associated	with	either	passage	number	(MEF	data)	or	age	
(multi-	tissue	data).

For	calculating	the	module	CpG	contributions	to	CultureAGE,	
we	applied	the	PCloading	and	coefficients	to	each	module	CpG	and	
determined	a	CpG	contribution	score	as	 the	 fold	 increase	above	
a	 random	 event.	 More	 specifically,	 we	 summed	 the	 cumulative	

https://github.com/NuttyLogic/BSBolt
https://github.com/NuttyLogic/BSBolt
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contribution	per	PC	(across	all	28,323	CpGs)	and	determined	the	
average	 CpG	 contribution	 (or	 random	 chance)	 by	 baselining	 the	
score	 by	 28,323	 events	 (or	 the	 original	 CpGs	 used	 to	 calculate	
the	PCs).	Note,	 the	 absolute	 value	of	 each	PCloading	was	 used.	
We	then	compared	the	PCloading	sum	across	each	PC	(PC2,	PC4,	
PC5,	PC8,	PC9,	and	PC29)	by	every	module	selected	CpG	and	de-
termined	 contribution	 as	 [PCloading*coefficient	 of	Module	 CpG	
/	PCloading*coefficient	of	average	CpG].	For	example,	CpG	con-
tribution =	1	means	 the	selected	CpG	site	 is	not	 specifically	 se-
lected	over	 random	chance,	but	CpG	contribution	>1 means the 
CultureAGE	measure	is	selecting	the	CpG	site	to	drive	the	score.	
The	raw	CpG	contributions	are	plotted	in	Figure	S5a,	and	the	av-
erage	across	all	PCs	is	plotted	in	Figure	S5b.	Finally,	we	normalized	
each	module	contribution	by	the	number	of	CpGs	in	each	module,	
which	resulted	in	a	normalized	weight	that	we	calculated	as	a	per-
centage	of	the	total	module	CpGs	(N =	4137	CpGs)	to	produce	a	
final	normalized	%	contribution	(Figure	S5a).

4.2.4  |  Cistrome	genome	enrichment	analysis

We	used	 the	Cistrome	gene	analysis	 tool	 kit	 (http://dbtoo	lkit.cistr	
ome.org/)	 to	 determine	 enriched	 genes.	We	 selected	 the	 top	 1	 k	
hits and used the mm10 reference. The outcome of the enrichment 
analysis	was	reported	as	a	Giggle	score,	which	is	a	rank	of	genome	
significance between the input file and thousands of genome files 
from	databases	like	ENCODE.	It	is	important	to	note	that	Cistrome	
is	 constantly	 updating	 genome	 files,	 thus	 the	 enrichment	 analy-
sis	was	conducted	at	the	same	time.	Additionally,	we	selected	100	
CpGs	from	each	module	using	kME	to	select	the	most	central	100	
CpGs.	 Sub-	selected	 CpGs	 are	 reported	 via	 genomic	 partition	 in	
Figure	S4b.	For	selecting	the	background	100	CpGs,	we	randomly	
selected	the	100	CpGs	from	the	cohort	of	27,035	CpGs.	For	Giggle	
score	 reporting,	we	plotted	 the	 raw	giggle	 score	of	each	 resulting	
module	 query,	 although	 any	 file	 (GSM_ID)	 that	 was	 also	 a	 back-
ground	 hit	 was	 corrected	 using	 the	 formula;	 GSM_ID_Hit-	GSM_
ID_Background	 =	 GSM_ID_Actual.	 Note,	 when	 the	 background	
GSM_ID	was	not	present	 there	was	no	correction.	We	report	 raw	
giggle	scores	in	a	scatterplot	format	in	Figure	S4b	and	the	average	
corrected	 values	 (Top	 10	 genes)	 in	 Figure	 5d.	 For	 calculating	 the	
top	CpG	contributor	(>5)	enriched	domains,	we	conducted	a	similar	
analysis,	except	118	CpGs	were	used	in	both	the	>5 region and in 
background.	All	values	are	reported	in	Figure	S5c.

Genomic	partitioning	and	CpG	locations	were	determined	using	
LolaWeb	(http://lolaw	eb.datab	io.org/).
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