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Automatic identification 
of triple negative breast cancer 
in ultrasonography using a deep 
convolutional neural network
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Triple negative (TN) breast cancer is a subtype of breast cancer which is difficult for early detection 
and the prognosis is poor. In this paper, 910 benign and 934 malignant (110 TN and 824 NTN) B-mode 
breast ultrasound images were collected. A Resnet50 deep convolutional neural network was fine-
tuned. The results showed that the averaged area under the receiver operating characteristic curve 
(AUC) of discriminating malignant from benign ones were 0.9789 (benign vs. TN), 0.9689 (benign vs. 
NTN). To discriminate TN from NTN breast cancer, the AUC was 0.9000, the accuracy was 88.89%, 
the sensitivity was 87.5%, and the specificity was 90.00%. It showed that the computer-aided system 
based on DCNN is expected to be a promising noninvasive clinical tool for ultrasound diagnosis of TN 
breast cancer.

Breast cancer is one of the main causes of cancer deaths in  women1. Most breast cancers begin in the ducts, 
some begin in the lobules, while a small number start in the other  tissues2. Early diagnosis of breast cancer is 
urgent for improving the prognosis of patients and prolonging their  survival3. The B-mode ultrasonic image 
is an important clinical method to observe the internal structures of biological tissue due to its non-ionizing, 
noninvasive, and low-cost nature. With Breast Imaging Reporting and Data System (BI-RADS) by the American 
College of Radiology, ultrasound provides the information about the structure and characteristics of masses, 
including shape, echo pattern, orientation, margin, etc.4. However, the training and years of experience that can 
affect the diagnostic performance of the  radiologists5,6.

According to gene expression profile of estrogen receptor (ER), progesterone receptor (PR), and/or human 
epidermal growth factor receptor 2 (HER2), breast cancer can be divided into four molecular subtypes (luminal-
A, luminal-B, HER2 overexpression and basal-like)7–9. Triple negative (TN) breast cancer is a distinctive type of 
breast cancer characterized by the absence of ER, PR, and HER2 receptor  expression10–12. Although pathological 
biopsy has been widely used to identify molecular subtypes of breast cancer, it has the limitation of underesti-
mation and overestimation owing to the spatial and temporal heterogeneity of the  tumor13. It has reported that 
ultrasound imaging could capture the biological and molecular characteristics of the  tumor14,15. TN breast cancer 
is a genetically diverse, highly heterogeneous, and rapidly evolving disease, which is associated with a relatively 
young age, invasive histological and clinical behavior with poor prognosis  outcome12,16,17. Several retrospective 
studies related to conventional ultrasound image characteristics of TN breast cancer showed that compared with 
non-triple negative (NTN) breast cancer, TN breast cancer was more likely to show benign features, such as oval 
or round shape, smooth or circumscribed margin, and was less likely to have an echogenic  halo18–20. In this sense, 
there may be false-negative results in TN breast cancer evaluation, which might lead to delayed diagnosis and a 
potentially worse clinical  outcome20. As a non-invasive method, artificial intelligence (AI) provides comprehen-
sive anatomical information of the tumor, and objectively describes the relationship between ultrasound image 
and biological characteristics of breast  cancer21,22. In view of the fact that TN breast cancer is more sensitive than 
other subtypes to preoperative chemotherapy, AI based identification of TN breast cancer is of great importance 
in clinical diagnosis and treatment.
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Previously, in order to perform TN breast cancer evaluation, some studies based on magnetic resonance (MR) 
images were reported. Agner et al.23 used linear discriminant analysis combined with support vector machine 
on dynamic contrast material–enhanced MR images, and found good discrimination of TN cancers from NTN 
cancers. In some ultrasound image related studies, machine learning had been used to evaluate TN breast cancers. 
Wu et al.24 analyzed 140 breast masses ultrasound images (including 23 cases of TN breast cancer and 117 cases 
of NTN breast cancer), and concluded that machine learning can distinguish ultrasound images between TN and 
NTN breast cancers. Compared with traditional machine learning methods with limited accuracy, deep convolu-
tion neural network (DCNN)25–28 with the advantage of automatic feature extraction and accurate classification 
has been widely used in medical field in recent years, i.e.  ophthalmology29,  dermatology30,  orthopedics31, etc.32–34, 
which has shown similar performance to doctors. In order to test whether the application of DCNN can improve 
the accuracy of computer aided diagnosis of breast masses, 1844 breast mass greyscale ultrasound images were 
retrospectively analyzed in this work and a deep learning-based algorithm was developed for automated detec-
tion of benign or malignant breast mass. Furthermore, the ability of DCNN to distinguish TN breast cancers 
from NTN breast cancer was also discussed.

Results
Patients. This retrospective study reviewed the patients underwent breast ultrasound examination between 
February 2018 and March 2019 in the First Affiliated Hospital of Nanjing Medical University, China. Ultrasound 
data were also obtained from Chinese medicine Hospital of Jiangsu Province as external test. The study was 
approved by the institutional review committee of the First Affiliated Hospital of Nanjing Medical University 
and Chinese medicine Hospital of Jiangsu Province. The informed consent was obtained from all patients. All 
research methods were conducted in accordance with the ethical guidelines of the Helsinki Declaration. In the 
present study, the B mode ultrasound images were used. The criteria of inclusion were as follows: (a) older than 
eighteen years old; (b) patients underwent biopsy or operation with determinate histopathologically or immu-
nohistochemically; (c) no preoperative treatment or intervention (radiotherapy, chemotherapy, ablation) before 
ultrasound examination. In total, 1618 images of 1261 patients comprised the benign and malignant training 
cohort and a test cohort of 226 images from 185 patients was screened with the same criteria from the First Affili-
ated Hospital of Nanjing Medical University. Patients were grouped into training and test cohorts randomly. All 
the data, including age, sex, pathologic findings, and ultrasound reports, were derived from the Picture Archiv-
ing and Communication Systems (PACS) system. For the TN and NTN training cohort, we randomly selected 
102 images of TN breast cancers diagnosed by immunohistochemistry, and randomly selected 102 images of 
NTN breast cancers at the same time. We randomly selected 8 images of TN breast cancers and 10 images of 
NTN breast cancers to form the test set. External test cohort includes 29 TN and 28 NTN images were from 
Chinese medicine Hospital of Jiangsu Province. Figure 1 shows the inclusion criteria for the cohort in this study 
and the experiment procedure.

Examination technique. The enrolled ultrasound images were mainly performed with three commercially 
available ultrasound machines: (1) Esaote (Genova, Italy; twice MyLab). (2) Siemens (Buffalo, USA; S3000). (3) 
Philips (Amsterdam, Netherlands; EPIQ 7), and a small numbers data were from other manufacturers. A linear 
array probe with a frequency bandwidth of 6–15 MHz was used for this study. In the ultrasound examination, 
the patient was placed supine, exposing the bilateral breasts, and then scanned laterally, longitudinally, and 
obliquely. All the US examinations were performed by three radiologists (J.H., J.C., and W.X.Z) with fifteen, ten 
and six years of experience in breast ultrasound respectively.

Image analysis. Two radiologists (J.H., J.C.) performed independent interpretations blinded to pathol-
ogy results. Interpretations were performed by the evaluation of the primary breast cancer ultrasound images 
according to the BI-RADS with typical characteristics, including the mass size, shape, orientation, margin, echo 
pattern, the presence of calcifications. If the classification of the two radiologists was the same, it would be 
regarded as the final result of the radiologist’s interpretation. If the two radiologists (J.H., J.C.)’ result did not 
agree with each other, extra interpretation needed to be performed by the third radiologist (X.H.Y) with twenty 
five years of experience in breast ultrasound.

The histological and immunohistochemical results were used as gold standard in this study. The core needle 
biopsy (CNB) was performed on solid breast masses categorized as probably malignant (BI-RADS classes 4A, 
4B, 4C and 5). A 14G core needle was used under ultrasound guidance. After the operation, radiotherapy or 
chemotherapy were performed on malignant breast mass. Follow-up was performed on breast masses with BI-
RADS classes 2 and 3, which was recommended in clinical  routine4. And the breast masses which remained 
unchanged for more than 2-year follow-up were taken as benign images in the study.

Demographics and histopathologic findings. In this study cohort, a total number of 1844 images 
extracted from 1446 patients were enrolled in this retrospective study. All the pathological results were sum-
marized in Table 1. The first training data consisted of 1618 images from 1261 patients, including 820 images 
for benign cohort (598 female, mean age 39.65 ± 10.36 ys) and 798 images for malignant cohort (3 male, mean 
age 48.30 ± 6.70 ys and 660 female, mean age 52.80 ± 11.50 ys). The 226 images in the first test set were acquired 
from 185 patients, including 90 benign images (79 female, mean age 40.54 ± 10.23 ys) and 136 malignant images 
(106 female, mean age 51.02 ± 11.97 ys). The malignant images in the first test set included 40 TN images and 96 
NTN images. All the basic information of selected images were collected in Table 2. Figure 2 shows images for a 
52-year-old woman with TN breast cancer, where Fig. 2a was grey-scale US images presenting with an irregular 
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shape mass suspicious for cancer; Fig. 2b was pathological images with HE*400; Fig. 2c,d and 2e showed the 
absence of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2.

Note. mean data are mean ± standard deviation.

Benign and malignant. In this study, an artificial neural network were developed, in which the boundaries 
of the masses were not required to be drawn by the radiologist. The mass packing by surrounding the calipers 
used in the clinic for mass measurement was used. A DCNN was trained and used to classify benign and malig-
nant breast masses, and the results were compared with those reported by the radiologist based on BI-RADS.

First, a nine fold cross validation was used to verify the validity and performance of this algorithm. Table 2 
lists basic information of the images. Those imaging data were used to train the network and determine the 
hyper parameter of the network. The training data were divided into nine sub-datasets, and ninefold validation 

Figure 1.  Inclusion criteria for the study cohorts and experiment procedure.
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were performed. The averaged area under the receiver operating characteristic curve (AUC) of the algorithm 
was 0.9504 (95% CI 0.9321, 0.9687). The averaged accuracy was 91.02% (95% CI 89.49%, 92.55%), the averaged 
sensitivity was 90.23% (95% CI 87.89, 92.56), and the averaged specificity was 91.76% (95% CI 89.91%, 93.61%). 
(Table 3).

Then, differentiating benign and malignant masses for the test set (226 images from 185 patients) was per-
formed using the trained algorithm. There were 90 benign images, 40 TN breast cancer images and 96 NTN 
breast cancer images. The results showed that the AUC of discriminating TN breast cancer from benign ones 
was 0.9789, the accuracy was 94.62%, the sensitivity was 92.50%, and the specificity was 95.56%. The AUC of 
discriminating NTN breast cancer from benign ones of the proposed method was 0.9689, the accuracy was 
93.01%, the sensitivity was 90.62%, and the specificity was 95.56% (Fig. 3).

Table 1.  Pathological types of collected cases.

Benign Malignant

BIRADS II, III 800 Invasive ductal carcinoma 805

Breast fibroadenoma 33 Intraductal carcinoma 65

Intraductal papilloma 6 Mucinous breast cancer 15

Fibrocystic breast disease 8 Breast carcinoma in situ 16

Breast adenosis 13 Invasive lobular carcinoma 19

Mastitis 4 Breast papillary carcinoma 9

Breast cyst 40 Sarcomatoid carcinoma 1

Cyclomastopathy 5 Metaplastic breast arcinoma 4

Benign lobulated tumor I 1

Table 2.  The basic information of collected cases.

All masses Training masses Test masses

Benign
820 images 90 images

598 females , 39.65 ± 10.36 ys 79 females, 40.54 ± 10.23 ys

Malignant

798 images (70 TN, 728 NTN) 136 images (40TN, 96 NTN)

3 males, 48.30 ± 6.70 ys 106 females, 51.02 ± 11.97 ys

660 females, 52.80 ± 11.50 ys

Figure 2.  Images in a 52-year-old woman with triple-negative breast cancer (TNBC). (a) Grey-scale US images 
presenting with an irregular shape mass suspicious for cancer. (b-e) Pathological images revealed invasive ductal 
cancer (b: HE*400, c: absence of estrogen receptor, d: absence of progesterone receptor, e: absence of human 
epidermal growth factor receptor 2, G: Ki-67 70%).
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For comparison, the test set were also evaluated by the radiologist according to BI-RADS. The AUC of radi-
ologist’s discriminating TN breast cancer from benign ones was 0.9857, the accuracy was 94.44%, the sensitivity 
was 92.73%, and the specificity was 95.51%. The AUC of radiologist’s discriminating NTN breast cancer from 
benign ones of the proposed method was 0.9598, the accuracy was 89.02%, the sensitivity was 82.14%, and the 
specificity was 95.51%. Statistical analysis showed that there was no significant difference between the algorithm 
and that of expert radiologist (p > 0.5)35,36.

TN and NTN. A 18 fold cross validation was used to verify the validity and performance of this algorithm. 
204 images (102 NTN breast cancer, and 102 TN breast cancer) were used to train the network and determine 
the hyper parameter of the network. The training data were divided into 18 sub-datasets, and cross validation 
was performed. The AUC of the algorithm was 0.8746 (95% CI 0.8347, 0.9145) (Fig. 3). The averaged accuracy 
was 88.75% (95% CI 86.31%, 91.19%), the averaged sensitivity was 87.35% (95% CI 83.27%, 91.44%), and the 
averaged specificity was 90.32% (95% CI 85.83%, 94.80%). The AUC of radiologist’s discriminating triple nega-
tive breast cancer from non-triple ones was 0.4461, the accuracy was 53.80%, the sensitivity was 71.91%, and the 
specificity was 34.15% (Table 4).

10 NTN breast cancers, and 8 TN cancers were tested. The AUC of discriminating TN breast cancer from 
NTN ones was 0.9000, the accuracy was 88.89%, the sensitivity was 87.50%, and the specificity was 90.00%. 29 
TN samples and 28 NTN samples obtained from Chinese medicine Hospital of Jiangsu Province were used for the 
external test, the AUC is 0.8817, the accuracy is 89.94%, the sensitivity is 86.67%, and the specificity is 93.33%.

Discussion
Benign and malignant. In recent years, due to an increased need for efficient and objective evaluation 
of ultrasound images, artificial intelligence ultrasound diagnosis has been widely studied. The computer-aided 
system based on deep learning, due to its self-learning ability, has achieved good results in diagnosing breast 
masses. Fujioka et al.37 retrospectively analyzed 480 benign and 467 malignant breast mass ultrasound images, 
and constructed deep learning model of differentiating breast masses by convolution neutral network architec-

Table 3.  The result of cross validation (benign vs. malignant).

Round Accuracy (%) Sensitivity (%) Specificity (%)

1 90.23% 91.76% 88.76%

2 91.47% 93.40% 89.52%

3 92.27% 89.47% 95.35%

4 91.40% 90.32% 92.47%

5 93.98% 92.21% 95.51%

6 91.85% 92.22% 91.49%

7 92.00% 92.13% 91.86%

8 87.65% 85.54% 89.66%

9 88.30% 85.00% 91.21%

Average 91.02% (95% CI 89.49%, 92.55%) 90.23% (95% CI 87.89%, 92.56%) 91.76% (95% CI 89.91%, 93.61%)

Figure 3.  AUC of the proposed algorithm. TPR (True Positive Rate), FPR (False Positive Rate).
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ture GoogLeNet, and achieved an AUC of 0.913. Byra et al.38 introduced ImageNet-pretrained VGG19 with fine-
tuning and matching layer at input based on a set of 882 breast mass ultrasound images to classify breast mass, 
and reached an AUC of 0.936. Though these studies achieved high accuracy and proved to be a useful tool for 
breast mass classification, fewer images were used, especially for malignant masses. In this study, a larger cohort 
including 1844 images were retrospectively analyzed to develop an artificial neural network, and the AUC of the 
algorithm reached 0.9504. The result of the algorithm was consistent with those reported by previous studies, 
and demonstrated that deep learning technology could help radiologists to classify breast masses in ultrasound 
images.

TN and NTN. While molecular markers can be evaluated from tissues obtained in biopsy or surgery, it is 
invasive and subject to the tissue sampling bias problem. TN breast cancer is associated with aggressive histol-
ogy, poor clinical prognosis, unresponsiveness to usual endocrine therapies and shorter survival. If it is possible 
to predict the presence of TN breast cancer based on noninvasive ultrasound features, this information will be 
beneficial for both pretreatment planning and prognosis, and will add to the understanding of the biological 
behavior of this disease. Nowadays, much attention focusing on deep learning methods has been paid to TN 
breast cancer using MR images. Agner et al.24 used linear discriminant analysis combined with support vector 
machine classifier, achieved an AUC of 0.73 (95% CI 0.59, 0.87) for TN breast cancer versus NTN breast cancer. 
Koo et al.39 found the usefulness of computer-aided breast MR diagnosis in predicting the level of tumor-infil-
trating lymphocytes in TN breast cancers. However, there were few studies focused on intelligent recognition 
of breast cancer ultrasonic images at the genetic and cellular levels. Guo et al.40 reported an automatic radiom-
ics approach to assess the associations between quantitative ultrasound features and biological characteristics. 
They used a support vector machine classifier with three-fold-cross-validation to evaluate a strong correlation-
ship between ultrasound features and biological characteristics. Wu et al.24 discriminated 140 cases with logistic 
regression including 23 TN and 117 NTN, and the specificity was 82.05%, the sensitivity was 78.26%. However, 
the enrolled images were extracted from a manually drawn region of interest in those studies. In comparison, 
the boundaries of the masses were not required to be drawn in this work, which could overcome the defect of 
operator dependence and avoid to add additional work to radiologist. The results of our study showed that the 
AUC of discriminating TN breast cancer from NTN ones was 0.9000, the accuracy was 88.89%, the sensitivity 
was 87.50%, and the specificity was 90.00%, which showed an improvement of accuracy.

The low accuracy of radiologists distinguishing between TN vs NTN. The AUC of radiologist’s 
discriminating TN breast cancer from non-triple ones was 0.4461, the accuracy, sensitivity and specificity were 
also very low. Because we used the BI-RADS score of the radiologists during the usual B-mode ultrasound diag-
nostic routine process, and it did not differentiate molecular subtypes. This was the reason for the low diagnosis 
efficiency of radiologists in distinguishing between TN vs NTN.

Originality & clinical significance. Restnet50 was proposed in Ref 24, in this paper we did some fine-
tuned work to adapt to our specific task.

Table 4.  The result of cross validation (TN vs. NTN).

Round Accuracy (%) Sensitivity (%) Specificity (%)

1 90.91 100.00 83.33

2 83.33 83.33 83.33

3 91.67 83.33 100.00

4 83.33 83.33 83.33

5 84.62 83.33 85.71

6 81.82 83.33 80.00

7 91.67 100.00 83.33

8 90.91 83.33 100.00

9 81.82 83.33 80.00

10 90.00 80 100

11 92.86 85.71 100

12 90.90 100 83.33

13 100 100 100

14 90.91 80 100

15 90 80 100

16 90.00 100 80

17 90.91 83.33 100

18 81.82 80 83.33

Average 88.75% (95% CI 86.31%, 91.19%) 87.35% (95% CI 83.27%, 91.44%) 90.32% (95% CI 85.83%, 94.80%)
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The accuracy of discriminating benign and malignant breast mass ultrasound images was a little higher than 
the previous work. One reason is that we collected more training data. The other reason is the power of deeper 
layers of Resnet and our fine-tuned techniques help to achieve more characteristic of the B-mode breast mass 
ultrasound images.

The main clinical significance of this paper is discriminating TN breast cancer from non-triple ones. To 
predict the presence of TN breast cancer with B-mode ultrasound features, it will be beneficial for pretreatment 
planning and prognosis. Because it is noninvasive, it can reduce the suffering of patients. And it will add to the 
understanding of the biological behavior of this disease.

Bias of Selection of data. There is no bias of selection of data in the paper.

Step 1: The 820 benign and 798 malignant ultrasound images for training, 90 benign and 136 malignant 
images for testing were randomly selected from the records between February 2018 and March 2019 in hos-
pital. Further, we did ninefold cross validation, which showed the robustness of the algorithm.
Step 2:102 for training and 8 for testing TN ultrasound images were the total patients in the hospital between 
February 2018 and March 2019. 102 for training and 10 for testing NTN ultrasound images were randomly 
selected from the malignant images used in Step 1. Then we enrolled 8 images of TN breast cancers and ran-
domly selected 10 images of NTN breast cancers to form the test set. Patients were grouped into training and 
test cohorts randomly. Further, we did 18 fold cross validation, which showed the robustness of the algorithm.

There are different types of ultrasound machines in different hospitals, even in one hospital. To make sure 
the proposed method could be applied in different equipment, the original data from the different ultrasound 
machines were used. Tables 5 and 6 list the data distribution collected from different machines. It suggests that 
the proposed method could be applied to different ultrasound machines.

Limitations. This study still had some limitations. The sample size of this study was small and the data 
were derived from only a single center. The specificity of discriminating NTN from TN breast cancer using the 
proposed DCNN is around 90%, which means around 10% of tumors could be misdiagnosed. Future studies 
involving larger number of multi-center patients are warranted to demonstrate the viability of the proposed 
approach in clinical settings. If add more patients for verification, the accuracy of the model could be further 
verified and improved.

Conclusion. In this paper, a deep learning-based algorithm was developed for the automated diagnosis of 
benign and malignant breast masses, and for further identification of TN breast cancer. The results showed the 
computer-aided system based on DCNN is expected to be a promising noninvasive clinical tool for ultrasound 
diagnosis of TN breast cancer.

Table 5.  Data distribution of ultrasound machines in discrimination of benign from malignant.

Train, malignant Train, benign

Test, 
malignant

Test, benignTN NTN

Esaote 534 651 27 76 41

Philips 33 163 2 45

Simens 230 1 11 17 /

GE 1 5 2 1 4

Total 798 820 136 90

Table 6.  Data distribution of ultrasound machines in discrimination of TN from NTN.

TN, train NTN, train TN, test NTN, test

Esaote 77 81 6 9

Philips 5 5 / /

Simens 11 16 2 1

GE 5 / / /

Vinno 1 / / /

SuperSonic 1 / / /

Sumsung 2 / / /

Total 102 102 8 10
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Materials and methods
Pathologic and immunohistochemical examinations. All the enrolled patients undergoing patho-
logical and immunohistochemical examinations were performed in the First Affiliated Hospital of Nanjing 
Medical University. The following biomarkers were routinely determined as immunohistochemical factors: ER, 
PR, HER2, Ki-67, epidermal growth factor receptor (EGFR), and cytokeratin (CK) 5/6. ER, PR, HER2, Ki-67 
and EGFR immunohistochemical staining was performed on an automated Ventana BenchmarkXT slide stainer 
(Ventana, Tucson, AZ, USA), using primary antibodies against ER (prediluted, SP1, Ventana), PR (prediluted, 
1E2, Ventana), HER2 (prediluted, 4B5, Ventana), Ki-67 (prediluted, MIB-1, Ventana), and EGFR (prediluted, 
3C6, Ventana). CK5/6 (1:200, D5/16 B4, Dako, Carpinteria, CA, USA) immunohistochemical staining was per-
formed on a Dako Omnis device (Dako). A cut-off value of ≥ 1% was used to define ER and PR positivity. The 
intensity of HER2 expression was scored semiquantitatively as 0, 1, 2, or 3. HER2-negative was classified with a 
score of 0 or 1.

Fine-tuned DCNN. Convolutional neural network consists of a set of convolution and pooling operations 
applied to obtain complex features from the input image. These features are flattened into a vector. The output of 
the model is a collection of continuous variables that represented the predicted probabilities for each category. 
Deeper neural networks are more difficult to train.  Resnet28, residual learning framework,was presented to ease 
the training of networks that are substantially deeper than those used previously. Resnet explicitly reformulate 
the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced func-
tions. Comprehensive empirical evidence showed that Resnet are easier to optimize, and can gain accuracy from 
considerably increased depth.

In this work, the Resnet50 DCNN is fine-tuned for the diagnosis of breast masses. The detailed mechanism 
is as below.

 (i) The building block is defined as

where x and y are the input and output vectors of the layers considered. The function F(x, {Wi}) rep-
resents the residual mapping to be learned. The operation F + x is performed by a shortcut connection.

 (ii) The image density resolution is normalized to 8 bit density and 224 × 224 size.
 (iii) To apply the network in this study, the last fully connected layer is changed for a global average pool 

layer, followed by a full connection layer and Softmax.
 (iv) The weights are optimized by the adaptive learning rate (adadelta) optimization algorithm as:

It is optimized in 12 mini-batch size. The parameters, i.e. the learning rate and the maximum epoch number 
are set at 0.0001 and 148 respectively. The loss function is identified as binary cross entropy.

Figure 4 shows the structure of the network. Tensorflow 2.0 and tensorboard are used to implement the 
DCNN. The training is conducted on computers equipped with Intel Core i5-8300h CPU and 8 GB memory, 
NVIDIA geforce GTX 1060 GPU and 6 GB memory.
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Figure 4.  The network structure of the method.
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Statistical analysis. Matlab (Mathworks Corporation, USA) was used for data analysis. A T-test is per-
formed on the assumption that the data in vector comes from a distribution with zero mean, and return the 
test result of H. H equals 0 indicates that the null hypothesis cannot be rejected at the significance level of 5%. 
H equals one means that the null hypothesis can be rejected at the level of 5%. Suppose the data comes from a 
normal distribution with unknown variance.

The confidence interval (CI) of the paired T-test: the CI of the mean of true population, which is returned as 
a two-element containing the upper and lower bounds of 100 × (1 -Alpha)% CI.

Received: 3 July 2021; Accepted: 27 September 2021
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