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Abstract: Magnetic immobilization as a novel technique was used to immobilize recombinant Pichia
pastoris (GS115 Albumin) cells to produce human serum albumin (HSA). In this regard, magnetic
nanoparticles (MNPs) coated with amino propyl triethoxy silane (APTES) were synthesized. P. pastoris
cells were decorated with MNPs via nonspecific interactions. Decorated cells were magneto-responsible
and easily harvested by applying an external magnetic field. The efficiency of magnetic immobilization
(Ei) for cell removal was in direct relation with the MNP concentration and time of exposure to the
magnetic field. By increasing the nanoparticles concentration, cells were harvested in a shorter period.
Complete cell removal (Ei ≈ 100) was achieved in ≥0.5 mg/mL of MNPs in just 30 s. HSA is produced
in an extremely high cell density (OD ~20) and it is the first time that magnetic immobilization was
successfully employed for harvesting such a thick cell suspension. After 5 days of induction the cells,
which were immobilized with 0.25 to 1 mg/mL of nanoparticles, showed an increased potency for
recombinant HSA production. The largest increase in HSA production (38.1%) was achieved in the
cells that were immobilized with 0.5 mg/mL of nanoparticles. These results can be considered as a
novel approach for further developments in the P. pastoris-based system.

Keywords: cell immobilization; cell harvesting; magnetite (Fe3O4) nanoparticles; magnetic separation;
recombinant protein production

1. Introduction

Methylotrophic yeast, Pichia pastoris, is one of the most important and interesting eukaryotic
microorganisms in the biotechnological process. Recently, the production of recombinant proteins in
P. pastoris has gained increasing attention in pharmaceutical and biotechnological industries. In contrast
to other prokaryotic and eukaryotic systems, this expression system provides outstanding advantages,
such as post-translation modifications, proper protein folding, ease of manipulation, high expression
level, and low processing cost [1–3]. Lactoferrin, human growth hormone (hGH), insulin, human serum
albumin (HSA), hepatitis B vaccine, interferon alpha 2b (hIFN-2b), heparin-binding EGF-like growth
factor (HB-EGF), and phospholipase A are just examples of several recombinant biopharmaceuticals
that are produced by P. pastoris [4–8].
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In every biotechnological setting, cell harvesting is the high-cost and critical point in downstream
processing. Centrifugation is the most common approach in this regard. In the pilot and industrial
scales, this technique requires expensive equipment with high energy consumption and scheduled
repair and maintenance services [9,10]. Hence, there is a vast attempt to develop cell immobilization
techniques as an efficient alternative for centrifugation. The P. pastoris system is not exceptional and
several attempts were done to efficiently immobilize this cell for the production of valuable products,
such as HSA, alcohol oxidase, l-alanyl-l-glutamine, and invertase [11–14].

In common immobilization approaches, cells were entrapped in a polymer matrix or attached
on to a carrier surface. Calcium alginate, polyacrylamide gels, hydroxyapatite ceramics, silicone
polymers, and silica are the most common polymers that were commonly used for immobilization
techniques [13–17]. In addition to facilitated cell manipulation, immobilization techniques can protect
cells from harsh physical and chemical conditions, such as in dehydration-rehydration treatments
and toxic materials [18,19]. Polymer networks make a barrier around the cells and cells encounter
a microenvironment that is different from the production media. This microenvironment puts the
immobilized cells in a lower metabolic activity with reduced production efficiency [20]. On the other
hand, in some cases, the employed polymer can be toxic to the cells [13].

Magnetic immobilization is a very recent approach in cell immobilization that employs magnetic
nanoparticles (MNPs) to make the cells magneto-responsible. Cells are simply decorated with MNPs
via nonspecific interactions and can be harvested in an external magnetic field. In this setting,
cells do not encounter a microenvironment, such as what occurs in polymer-based immobilization
methods. Therefore, magnetic immobilization gathers the advantages of submerged fermentation and
immobilization techniques [21–23]. In addition, decoration with MNPs increase the cells’ permeability
and hence increase transport across the cytoplasmic membrane [24]. Recent investigations show that
this phenomenon gives the cells high performance in contrast to intact cells [21,22,25]. Magnetic
immobilization provides other advantages and can solve major problems in the biotechnological process.
Biofilm formation can be reduced by the decoration of microbial cells with certain concentrations
of MNPs [26]. Interestingly, it was shown that magnetic immobilization can also protect valuable
industrial strains from viral infections [27].

Magnetic immobilization was employed to produce natural and recombinant products, such as
menaquinone-7 and recombinant asparaginase (II), in bacterial cells [22,25]. In yeast cells, this technique
was employed previously for magnetic modification of Saccharomyces, Kluyveromyces, Rhodotorula,
and Yarrowia [28]. Also, some efforts have been done to separates S. cerevisiae waste biomass in the
bottle neck of the final wine product [29]. Magnetic immobilized S. cerevisiae were used successfully for
sucrose hydrolysis, hydrogen peroxide decomposition, and dye removal [30]. In this experiment, for the
first time, magnetic immobilization was employed successfully to produce recombinant protein, HSA,
in the P. pastoris system as a promising eukaryotic host. In this regard magnetite (Fe3O4) nanoparticles
with (3-Aminopropyl)triethoxysilane (APTES) were employed to immobilize yeast cells. This coating
was selected based on previous investigations that introduced APTES as a perfect coating to protect
and stabilize magnetite nanoparticles [31]. In addition, this molecule provides amino groups on the
nanoparticles that seems to improve the interactions with cells’ surface. However, it has been shown
that nanoparticles with diverse functionalities can efficiently decorate microbial cells [32]. Therefore,
it is critical to consider the results of the present study for further developments in recombinant
P. pastoris technology.

2. Materials and Methods

2.1. Materials

Ferric chloride hexahydrate (FeCl3·6H2O), ferrous sulphate heptahydrate (FeSO4·7H2O), ammonia
solution 32%, and absolute ethanol were purchased from Merck chemicals (Darmstadt, Hessen,
Germany). (3-Aminopropyl) triethoxysilane (APTES) was obtained from Sigma-Aldrich (St. Louis,
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MO, USA). All chemicals were analytical grade and used as received without any further modifications.
Millipore water (resistance >18 MΩ cm−1) was used throughout the experiment. Recombinant
P. pastoris (GS115 Albumin) cells producing extracellular HSA were provided by Invitrogen (Invitrogen
Corporation, San Diego, CA, USA).

2.2. Synthesis of Nanoparticles

MNPs were prepared by coprecipitation of ferric and ferrous ions in aqueous solution as described
previously. In brief, 0.74 g of ferrous sulphate heptahydrate and 1.45 g of ferric chloride hexahydrate
(molar ratio 1:2) were dissolved in 50 mL of deionized water under a nitrogen atmosphere at 70 ◦C
and the solution was vigorously stirred for 1 h. Afterward, 5 mL of ammonia solution (32%) was
rapidly injected to the mixture and stirring was continued for another 1 h. The resulting precipitate
was washed three times with distilled water and dried in an oven at 50 ◦C.

APTES-coated MNPs were obtained by chemical modification of nanoparticles. In brief, 0.7 g of
naked nanoparticles were dispersed in 25 mL of ethanol/water solution (volume ratio 1:1). APTES
(2.8 mL) was added to the dispersion under nitrogen protection. The mixture was exposed to
the ultrasonic bath for 10 min at 40 ◦C. The reaction was continued with stirring for another 2 h.
The resulting prepared precipitate was washed with absolute ethanol and distilled water three times
and dried in an oven at 50 ◦C.

2.3. Nanoparticles Characterization

The visual appearance of the prepared nanoparticles was evaluated by using transmission electron
microscopy (TEM, Zeiss EM10C, HT 80 kV, Oberkochen, Germany). The particle size was measured
by using ImageJ software version 1.47v, an image analysis software developed by the National
institute of Health (NIH) (available at http://imagejnihgov/ij/), and analyzed with SPSS 25 (SPSS Inc.,
Chicago, IL, USA). Prepared nanoparticles were dispersed in deionized water (0.1 mg/mL) and zeta
potential measurements were performed at room temperature by Malvern, Zetasizer Ver. 7.11 (Malvern,
Worcestershire, UK). The nanoparticles’ crystal structure was evaluated by X-ray powder diffractometry
(XRD, Siemens D5000, Karlsruhe, Germany). The chemical structure and functional groups on the
iron nanoparticles were analyzed using Fourier transform infrared spectroscopy (FTIR, Perkin–Elmer,
Überlingen, Germany) via KBr pellets. A vibrating sample magnetometer (VSM, Lake Shore 7404,
Lake Shore Cryotronics, Inc., USA) was used to measure the magnetic properties of the particles at
room temperature.

2.4. Cell Immobilization

Cell preparation was performed based on the Pichia expression kit manual (Protein expression,
Catalog No. K1710-01, Version F, Invitrogen, San Diego, CA, USA) with some modifications. In this
regard, P. pastoris cells were cultured in 50 mL of YPD (yeast peptone dextrose) broth to reach OD 4.
The cells were washed and suspended in 10 mL of normal saline. MNPs, which were dispersed in an
equal volume of normal saline, were added to the cell suspension. Immediate shaking was employed
to disperse the nanoparticles over the cells. After 15 min, cells were harvested and suspended in 10 mL
of fresh YPD media to obtain a cell density equal to OD ~20. This cell density is the recommended
density for recombinant protein production in P. pastoris.

The efficiency of magnetic immobilization to harvest yeast cells was evaluated in various
concentrations of MNPs. Immobilized cells were exposed to a magnetic field (1.4 T neodymium
magnet) for various time periods and the immobilization efficiency was calculated via Equation (1):

Ei =
Cells/mLt0 −Cells/mLt1

Cells/mLt0
× 100, (1)

where Ei is the immobilization efficiency, and Cells/mLt0 and Cells/mLt1 are cells per mL before and
after exposure to magnetic field, respectively.

http://imagejnihgov/ij/
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2.5. Recombinant Protein Production

The potential of the free and immobilized P. pastoris cells for the production of recombinant HSA
was evaluated. Induction of the cells was performed according to Pichia expression kit manual (Protein
expression, Catalog No. K1710-01, Version F, Invitrogen, San Diego, CA, USA). In this regard, methanol
(0.05% final concentration) was added daily to induct albumin production over 6 days. Production of
recombinant HSA was monitored over 6 days of induction by using SDS-page densitometry.

2.6. Nanoparticles Interaction with the Cells

Interaction of MNPs with P. pastoris cells were visualized by scanning electron microscopy (SEM).
A thin smear of the cells was spread on a glass slide and dried at room temperature. The specimens
were fixed by passing them through the flame of a Bunsen burner and incubating them in 2.5%
glutaraldehyde for 45 min. The slides were washed in normal saline for 15 min and dehydrated in
serial concentrations of ethanol (30%, 50%, 70%, 80%, and 90%) for 10 min. The final dehydration step
was performed in absolute ethanol for 20 min. To completely remove ethanol, slides were incubated at
room temperature overnight.

3. Results

3.1. Nanoparticle Characterization

A TEM micrograph of the prepared nanoparticles is provided in Figure 1. The particles were
found to be spherical in shape, with a narrow particle size distribution. The diameter of the naked
particles ranged from 10 to 20 nm, with 14 nm being the mean particle size (Figure 2a). Meanwhile,
APTES-coated particles showed a slight increase in size and measured to be 10 to 22.5 nm in diameter,
with a 14.7 nm mean size (Figure 2b). This increase in size cannot be considered as significant and based
on previous reports that APTES coating would not significantly increase the particles size distribution
and mean particle size [33–35].

Figure 1. TEM micrographs of naked (a) and APTES-coated (b) magnetite nanoparticles.

Figure 2. Particle size distribution histograms ((a): naked and (b): APTES coated) prepared from TEM
micrographs by using ImageJ, an image processing program, and SPSS.
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The amino modification increases the zeta potential of MINPs from 4.77 to 8.28 mV (Figure 3).

Figure 3. Surface charges (zeta potentials) of naked (a) and APTES-coated (b) MNPs.

The crystal structure of synthesized nanoparticles was analyzed using XRD in the range of 10
to 90 degrees of 2 theta angle. The XRD pattern of naked and APTES-coated nanoparticles showed
characteristic peaks of magnetite crystals at 30.2◦, 35.5◦, 43.2◦, 53.7◦, 57.3◦, 62.8◦, and 74.3◦ of 2 theta
values (Figure 4).

Figure 4. XRD patterns of naked (a) and APTES-coated (b) MNPs indicating the characteristic diffraction
pattern of magnetite crystals.

The FTIR spectra of the synthesized nanoparticles are illustrated in Figure 5. Strong Fe-O stretching
vibration was observed at about 582 cm−1 for both naked and APTES-coated nanoparticles. The surface
OH group depicted two bands at about 3420 (stretching) and ~1623 cm−1 (deforming) in both the naked
and coated nanoparticles. The APTES coating on the surface of the particles was confirmed by the peaks
at 1001.41 and 2340.65 cm−1, which are due to Si-O stretching vibration and Si-H bands, respectively.
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Figure 5. FTIR spectra of naked (a) and APTES-coated (b) MNPs, which were recorded via KBr pellets.

The magnetization curves of naked and APTES-coated nanoparticles showed no hysteresis
and were completely reversible (Figure 6). No coercivity and reduced remanence were observed,
which indicates the superparamagnetic nature of the nanoparticles. The saturation magnetization
was recorded to be 70.492 and 69.598 emu/g for naked and APTES-coated particles, respectively.
These results were in close agreement with previous reports that the APTES coating has no significant
effect on the magnetic properties of MNPs [36–38].

Figure 6. Magnetization curve (VSM) of naked (a) and APTES-coated (b) MNPs at room temperature.

3.2. Cell Immobilization

Previous investigations indicated that MNPs can interact with the eukaryotic and prokaryotic
microbial cells’ surface via nonspecific forces. These particles can decorate microbial cells and make
them magneto-responsible. So, decorated cells can be easily harvested and removed by employing an
external magnetic field (Scheme 1). To evaluate the potential of prepared nanoparticles to immobilize
and separate P. pastoris cells, various concentrations of MNPs were tested. Immobilized cells were
exposed to a magnetic field in various time periods, from 30 s to 15 min. The calculated values of the
immobilization efficiency (Ei) are depicted in the Figure 7. The same experiments were also performed
on the free cells (0 mg/mL MNPs) to evaluate the rate of cell sedimentation based on gravity. The results
indicated that Ei is in close relation with the nanoparticle concentration, and from an increase in
the MNP concentration, a significant increase in Ei occurred. At low concentrations (≤250 µg/mL),
the time of the exposure to the magnetic field is another significant parameter, and by increasing the
exposure period, more cells were attracted to the external magnet. Complete cell recovery (Ei = 100)
was achieved in a very short time of exposure to the magnetic field by using ≥0.5 mg/mL MNPs.
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Scheme 1. Decoration of P. pastoris cells with APTES-coated MNPs (MNPs@APTES) to make the
cells magneto-responsible.

Figure 7. Efficiency of the magnetic immobilization (Ei) in various concentrations of MNPs and different
time periods of exposure to an external magnetic field with a Tesla rating of 1.4.

3.3. Recombinant HSA Production

The employed P. pastoris cells for the production of recombinant HSA were strain GS115 Albumin
(genotype His4, phenotype Muts), which has an HSA gene under the high-inducible PAOX1 promoter.
The promoter is induced by methanol, and albumin production occurred over 5 days. In this experiment,
the potential of the free and immobilized P. pastoris cells for HSA production was monitored over
6 days of induction with methanol, and the results are depicted in Figure 8. It can be seen that HSA
production is completed after 5 days of induction in all cells. Compared to the free cells, magnetic
immobilization with 250 µg/mL to 1 mg/mL nanoparticles increased the efficiency of P. pastoris cells
for HSA production (p < 0.05). The largest increase in HSA production (38.1%) was achieved by
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the cells that were immobilized with 500 µg/mL of nanoparticles. This is the first time that we can
achieve a higher production in the immobilized P. pastoris. In previous experiments, cells were
immobilized in a polymeric matrix, and a significant reduction in cell performance and production
was inevitable [12,13,15,16].

Figure 8. Recombinant HSA production in P. pastoris cells through different days of induction at various
concentration of MNPs (0 to 2 mg/mL), stars indicate the significant (p < 0.05) difference with the
control (0 mg/mL MNPs) in each day.

3.4. Nanoparticles’ Interaction with Cells

The interaction of MNPs with P. pastoris cells was visualized by SEM analysis, and the micrographs
are provided as Figure 9. Free cells can be seen by the smooth surface (Figure 9a) while cells decorated
with MNPs provide a rough surface appearance for the cells (Figure 9b). These results revealed the
potency of the prepared nanoparticles to immobilize yeast cells efficiently.

Figure 9. SEM micrographs of the free (a) and immobilized (b) P. pastoris cells that indicate the potency
of the prepared MNPs for yeast cells’ decoration.
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4. Discussion

This is the first report that has employed magnetic immobilization for recombinant protein
production in a eukaryotic host. The results were in agreement with previous reports for magnetic
immobilization of bacterial cells [21,22,25]. MNPs can interact with prokaryotic and eukaryotic cells
surface via nonspecific interactions. It has been shown that the decoration of microbial cells with these
nanoparticles efficiently makes the cells sensitive to a magnetic field. This phenomenon is the basis for
magnetic immobilization and magnetic separation.

The potential of the nanoparticles to separate cells is affected by various parameters, such as the
power of the external magnetic field, magnetic saturation value of the employed particles, nanoparticles
zeta potential, time of exposure to the magnetic field, and ratio of nanoparticles to the cells. So,
in this experiment, MNPs were functionalized by amino groups in the APTES molecule. However,
this coating did not provide a significant positive charge on the particles, as the zeta potential was
measured to be 8.28 mV. It is obvious that a large positive zeta potential would increase the electrostatic
interactions with the cells’ surface. However, there are some other reports that show that nanoparticles
with negative surface charges can effectively decorate and separate microbial cells [32]. In contrast to
previous reports, a much larger magnetic field was applied to achieve higher Ei in a short period of time.
An external magnetic field with a gauss rating from 250 to 800 was employed in other reports [21,25,27].
While in this experiment, a neodymium magnetic with a Tesla rating of 1.4 was employed. Also,
it should be clarified that the expression in the P. pastoris system is performed at extremely high cell
densities (OD ~20) and this is the first time that magnetic immobilization was successfully used to
harvest such a thick cell suspension.

Previous investigations showed that the decoration of bacterial cells with MNPs disturbs the
cytoplasmic membrane integrity due to the penetration of nanoparticles in the cell membrane.
The disturbed membrane cannot efficiently manage mass transfer and hence there is an increased
permeability across cell barriers. To some extent, an increase in the membrane permeability can
increase the cells’ performance in biotechnological processes. This effect was reported by F. Ansari and
her colleague in 2009 when working on a dibenzothiophene (DBT) degrading strain of Rhodococcus
erythropolis. They found that decoration of the bacterial cells with glycine-coated MNPs made their
membrane more permeable and enhanced DBT degradation [24]. Similar results were reported for a
recombinant strain of Escherichia coli that produces extracellular asparaginase (II). The authors showed
that decorated cells can secrete more enzyme than free cells [25].

In the case of yeast cells, they have a unique cell wall, which differs with the cell wall in other
cells. It is a rigid structure about 100 to 200 nm thick and constituting about 25% of the total dry mass
of the cell. Yeasts’ cell wall composition is vastly changed in different growth conditions. However,
in general, it mainly consists of proteins and polysaccharides and is composed of four classes of
macromolecules, including chitin, mannoproteins (a highly glycosylated glycoproteins), and two types
of beta glucans. These biomolecules provide carboxyl, amino, and hydroxyl moieties that can anchor
metals on the cell surface [39]. On the other hand, nonspecific interactions, such as electrostatic forces,
hydrogen bonds, hydrophobic interactions, and weak Van der Waals bonds, can be considered for
the attachment of nanoparticles on the living cells’ surface. These forces are sufficient to keep the
small nanoparticles on the cell surface [25,27]. Also, it is approved that metal nanoparticles are not
just attached to the surface of the cells. Particularly, in the case of P. pastoris, it has been shown that
these cells can stably immobilize metal nanoparticles in their envelope [39]. All the particles that
interact with the cell, either on the cell surface or inside the cell, would provide force in the same
direction toward the magnetic field and make the cell magneto-responsible. Like bacterial cells, it is
possible that the penetration of nanoparticles in the yeast cell envelope is the reason for an increased
HAS production in immobilized P. pastoris cells. It may be considered that the penetration of MNPs
into the P. pastoris cells or the attachment of nanoparticles to the cell receptors may have some effects
on the gene expression regulations and HSA production. However, in fact, it is not the case. In our
preliminary investigations, we found that MNPs had no inducing effect on recombinant P. pastoris cells
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and no HSA was produced in the absence of methanol. According to our best knowledge, this is the
first report that shows that magnetic immobilization can increase the biotechnological performance of
P. pastoris.

5. Conclusions

Magnetic immobilization was introduced as a promising approach to overcome defects in
common polymer-based cell immobilization techniques. This novel approach has been employed
for the production of valuable products in a few bacterial cells and interesting results were reported.
The P. pastoris system is selected as a standard and developing tool in recombinant protein production.
P. pastoris GS115 Albumin was employed to produce extracellular recombinant HSA. The results
revealed that amine-functionalized MNPs can efficiently decorate yeast cells and make the cells
magneto-responsible. The sensitivity of decorated cells to an external magnetic field was extremely
high. In some concentrations (≥1 mg/mL), just 30 s of exposure to the magnet was sufficient to remove
all the cells. It is worth mentioning that in the P. pastoris system, expression occurred in a very high
cell density (OD ~20). It is interesting that the applied technique can successfully harvest all the cells
from such a thick suspension. Another interesting feature of this experiment was the enhanced HSA
production in the immobilized cells in contrast to free cells. These data are promising and introduced
a new avenue for future experiments in cell immobilization and recombinant protein production in
eukaryotic systems.
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