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The aim of this study is to investigate the bioaccessibility and gut metabolism of

free and melanoidin-bound phenolic compounds from coffee and bread. Phenolics

from coffee were predominantly found in free forms (68%, mainly chlorogenic acids),

whereas those from bread were mostly bound to melanoidins (61%, mainly ferulic

acid). Bioacessibility of coffee total free phenolics slightly decreased during simulated

digestion (87, 86, and 82% after the oral, gastric, and intestinal steps, respectively), with

caffeoylquinic acids being isomerized and chlorogenic acids being partially hydrolyzed to

the corresponding hydroxycinnamic acids. Bioacessibility of bread total free phenolics

decreased during simulated digestion (91, 85, and 67% after the oral, gastric, and

intestinal steps, respectively), probably related to complexation with the proteins in

simulated gastric and intestinal fluids. Upon gut fermentation, the bioaccessibility of total

free phenolics from both coffee and bread decreased, mainly after the first 4 h (56 and

50%, respectively). Caffeic and ferulic acids were the predominant metabolites found

during coffee and bread gut fermentation, respectively. Melanoidin-bound phenolics

from coffee and bread were progressively released after the gastric and intestinal steps,

probably due to hydrolysis caused by the acidic conditions of the stomach and the action

of pancreatin from the intestinal fluid. The bioaccessibilities of all phenolics from coffee

and bread melanoidins after the gastric and intestinal steps were, on average, 11 and

26%, respectively. During gut fermentation, phenolics bound to both coffee and bread

melanoidins were further released by the gut microbiota, whereas those from coffee

were also metabolized. This difference could be related to the action of proteases on

melanoproteins during gastrointestinal digestion, probably anticipating phenolics release.

Nevertheless, bioaccessibilities of melanoidin-bound phenolics reachedmaximum values

after gut fermentation for 24 h (50% for coffee and 51% for bread). In conclusion, the

bioaccessibilities of coffee and bread free phenolics during simulated digestion and gut

fermentation were remarkably similar, and so were the bioaccessibilities of coffee and

bread melanoidin-bound phenolics.

Keywords: chlorogenic acids, ferulic acid, gut fermentation, maillard reaction, melanoproteins,
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INTRODUCTION

In recent years, there has been a growing awareness regarding
the beneficial effects of food on health. Current evidence strongly
supports that diets rich in plant foods are associated with reduced
risk of chronic diseases, including cardiovascular disease and
type II diabetes (1, 2). These effects are mainly attributed to the
presence of various bioactive compounds in these foods, such as
phenolic compounds. These compounds are widely diffused in
all plant foods including fruits, vegetables, and beverages, such
as tea and coffee. Phenolics dietary intake ranges from 377.5 to
1365.1mg per day, depending on the diet (3). Phenolics in foods
occur in free forms (or soluble) or covalently bound to other
molecules (or insoluble), especially cell wall components,
such as cellulose, hemicellulose, pectin, and structural
proteins (4).

In thermally processed foods, several studies have reported
that phenolic compounds are involved in the formation of
melanoidins, which are generically defined as high molecular
weight nitrogenous and brown-coloredmolecules that contribute
to food texture, color, and flavor (5). Melanoidins may be
divided into two classes, melanosaccharides (skeletons composed
mainly of polysaccharides), present in beverages such as coffee
and beer, and melanoproteins (skeletons composed mainly of
proteins), present in bakery products (6, 7). Although some
studies report deleterious effects of melanoidins on health
(5), other studies report that the incorporation of phenolic
compounds into their structure present health benefits (8, 9).
Phenolic compounds end up being bound to the backbones
of melanoidins, as observed in coffee (3, 10–12), bread (3,
13), beer (3, 14), and many other commonly consumed food
(3, 7, 15, 16). It is worth noting that theses melanoidin-
bound phenolics are not accounted for in the estimates of
dietary intake, causing their underestimation by up to 7%
(3). However, the biological relevance of melanoidin-bound
phenolics is still poorly understood. To exert their bioactivity,
these compounds would have to be released from melanoidins
prior to their absorption.

Although clinical studies are considered to be the best
approach to investigate the metabolism of phenolic compounds
(17, 18), in vitro simulated gastrointestinal digestion followed
by gut fermentation have been used as a simpler, faster,
and less expensive alternative (19–22). Recently, Pérez-Burillo
et al. (23) reported the release of phenolics after simulated
digestion and gut fermentation of melanoidins from different
food sources. Moreover, Liu et al. (9) observed the cellular
uptake and trans-enterocyte transport of the phenolics from
digested vinegar melanoidins. Together, these studies indicate
that melanoidin-bound phenolics have potential to exert
biological effects. However, there are no studies in the literature
investigating the step-by-step simulated digestion and gut
fermentation of melanoidins. Moreover, the bioaccessibility of
melanoidin-bound phenolics has never been determined, as well
as their comparison to the bioaccessibility of free phenolics
from the same food matrix. Thus, the aim of this study is to
investigate the bioaccessibility and gut metabolism of free and
melanoidin-bound phenolic compounds from coffee and bread.

MATERIALS AND METHODS

Standards and Chemicals
Pepsin from porcine stomach mucosa (250 U/mg), pancreatin
(8 × USP) from porcine pancreas, porcine bile extract,
mucin from porcine stomach-type II, albumin, resazurin,
cysteine, peptone, yeast extract, pectin, xylan, gum arabic,
potato starch, casein, glucose, and inulin were purchased
from Sigma-Aldrich Chemical Co. (St. Louis, MO, USA).
Phenolic compounds standards (2,4 dihydroxybenzoic, 3,4
dihydroxybenzoic, gallic, benzoic, caffeic, ferulic, p-coumaric,
salicylic, rosmarinic, and 5-caffeoylquinic acids) were purchased
from Sigma-Aldrich Chemical Co. All solvents were HPLC grade
from Tedia (Fairfield, OH, USA). HPLC grade water (Milli-
Q system, Millipore, Bedford, MA, USA) was used throughout
the experiments.

Isolation of Free and Melanoidin-Bound
Phenolic Compounds From Coffee and
Bread
Coffee brew was prepared at 10% (w/v) by adding boiling
water to commercial ground roasted coffee, agitating for 1min
using a magnetic stirrer (Corning TM, PC-220) with sufficient
speed for complete mixing and filtering through a paper filter
(Whatman n◦. 1). Bread was produced in a domestic bread
machine (BK2000B, Breadman, Middleton, WI) by adding in
the following order: 245mL of water, 15mL of extra virgin olive
oil, 12 g of brown sugar, 3 g of salt (NaCl), 30 g of wheat bran,
270 g of whole-wheat flour, and 3 g of dry yeast (Saccharomyces
cerevisiae). The bread making process consisted of three stages:
mixing (30min), fermentation (116min), and baking (47min).
Bread crusts were removed, freeze-dried (Labconco, Kansas City,
MO), and ground in a mill (A11 Basic, IKAÒ Werke, Staufen,
Germany). Extraction of bread crust melanoidins followed the
procedure described by Borrelli et al. (24) with modifications.
Briefly, 21 g of freeze-dried bread crust was mixed with 250mL
of 0.2M Tris–HCl buffer (pH 8.0) containing 10 mg/mL of
pancreatin from porcine pancreas. The solution was incubated
in an orbital shaker (IKA KS 4000i control, Staufen, Germany) at
37◦C for 70 h. After centrifugation (3,000 x g, 10min, 25◦C), the
supernatant was collected.

The coffee brew and the supernatant containing bread
melanoidins were subjected to ultrafiltration process using a
submerged module system (PAM membranas, Rio de Janeiro,
Brazil) with a polyethylenesulfone membrane (average pore size
of 10 kDa; area of 12 cm2) working at a transmembrane pressure
of 3 bar. The process was performed at 25◦C, with a continuous
agitation. The volume of permeate material (containing free
phenolic compounds) was measured daily and an equivalent
volume of water was added to the system.

The isolation of coffee free and melanoidin-bound phenolic
compounds was carried out in two steps. In the first step, the
contents of phenolics in the permeate reduced from 6913.4
mg/L (day 1) to 1492.8 mg/L (day 29). Then, the retentate
was freeze-dried, resuspended in water, and subjected to a
second ultrafiltration process, in which, after 21 days, the
permeate did not present phenolics. The isolation of bread
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free and melanoidin-bound phenolic compounds followed the
same procedure, but only one step, which lasted 23 days,
was needed for obtaining a permeate with no phenolics
present. Both permeate and retentate fractions were freeze-
dried, yielding materials containing free and melanoidin-bound
phenolics, respectively.

Analysis of Free and Melanoidin-Bound
Phenolic Compounds
Phenolic compounds analysis in coffee and bread samples
followed the methodology described by Perrone, Farah, and
Donangelo (11), with modifications. For free phenolics, both
permeate and retentate samples (1 mg/mL in water) were mixed
with solutions of Carrez (0.3M K2Fe (CN)6 and 1.0M zinc
acetate) (1:100 v/v) for clarification and filtered through a 0.45
µm cellulose ester membrane (Millipore R©, São Paulo, Brazil)
prior to HPLC-DAD analysis. For melanoidin-bound phenolics,
retentate samples were subjected to alkaline hydrolysis. Briefly,
an aliquot of 750 µL (10 mg/mL in water) was mixed with
750 µL of 2M NaOH solution containing 2% (w/w) ascorbic
acid and 20mM ethylenediaminetetraacetic acid (EDTA). After
incubation for 1 h at 30◦C, hydrolysis was interrupted by
adjusting the pH to 1 with 330 µL of 5M HCl, clarification
was performed by adding 20 µL of each solutions of Carrez
and 130 µL of water and the sample was centrifuged prior to
HPLC-DAD analysis.

The LC system (Shimadzu, Kyoto, Japan) comprised a LC-
10ADvp quaternary pump, a CTO-10ASvp column oven, an
8125 manual injector (Rheodyne) with a 20 µL loop, and an
SPD-M10Avp diode array detector (DAD). Free and melanoidin-
bound phenolics in coffee were analyzed according to themethod
described by Farah et al. (25). Chromatographic separations
were achieved using a Magic C30 HPLC column (150 2mm,
5 µm, 100A, Michrom Bioresources, Inc., Auburn, CA, USA)
maintained at a constant temperature of 40◦C. The LC two-phase
mobile system consisted of 0.3% aqueous formic acid (eluent A)
and methanol (eluent B). The gradient was programmed with a
flow rate of 0.3 mL/min.

To investigate the content of free and melanoidin-bound
phenolics in bread were analyzed according to the method
described by Alves and Perrone (13). Chromatographic
separations were achieved using a Kromasil R© C18 column (5
µm, 250mm, 4.6mm) maintained at a constant temperature of
40◦C. The LC mobile system consisted of a gradient of water
with 0.3% formic acid (eluent A), methanol (eluent B), and
acetonitrile (eluent C, kept at 1% during the whole run), with a
constant flow rate of 1.0 mL/min.

Phenolic compounds were monitored by DAD between 190
and 370 nm and identified by comparison of their retention
times and UV spectra with those of commercial standards.
Quantification was performed by external standardization. The
quantification of caffeoylquinic acids (CQA), feruloylquinic acids
(FQA), and di-caffeoylquinic acids (diCQA) was performed
using the diode array data for the peak area of 5-CQA standard
corrected with molar extinction coefficients of the respective
CGA, as previously described by Farah et al. (25). Data were

acquired by LCMS solution software (Shimadzu Corp., version
2.00, 2000). Results were expressed as µg/g.

In vitro Gastrointestinal Digestion and Gut
Fermentation of Free and
Melanoidin-Bound Phenolics
In vitro gastrointestinal digestion and gut fermentation were
performed tomimic human physiological conditions during oral,
gastric, small intestinal, and gut steps. The study was conducted
following the ethical principles involving human subjects defined
in the Declaration of Helsinki and was approved by the research
ethics committee of Clementino Fraga Filho Hospital from
Federal University of Rio de Janeiro, Brazil (approval number
512.847). The subjects signed an informed consent form. The
bioaccessibility of each phenolic compound was calculated as the
ratio between the molar concentrations, adjusted to the number
of phenolic acid moieties in the molecule (e.g., CQA contains
one, whereas di-CQA contains two), in each digestion phase and
in the corresponding samples.

In Vitro Gastrointestinal Digestion
The in vitro gastrointestinal digestionwas performed as described
by Fernández and Labra (26) and later by de Almeida et al.
(19). Three parallel experiments, each reaching a given step of
the digestion (oral, gastric, and intestinal) were performed in
triplicate. In a glass vial, an aliquot of 0.5 g of freeze-dried coffee
and bread samples were mixed with 3mL of human saliva and
2mL of water, and the mixture was incubated at 37◦C in an
orbital shaker (Sorvall ST 16R, Thermo ScientificTM) for 1min
at 260 rpm. After the oral step, 2.5mL of simulated gastric fluid
(Supplementary Table 1) was added, and the pH was adjusted
to 2.0 with 5M HCl. Then, vials were sealed with a silicone
septum and atmospheric air was replaced by introducing gaseous
nitrogen. Gastric digestion was performed by incubating the
mixture at 37◦C in an orbital shaker for 2 h at 260 rpm. After
the gastric step, vials were opened, 2mL of simulated intestinal
fluid (Supplementary Table 1) were added, and the pH was
adjusted to 6.5 with 1M NaHCO3. Vials were resealed and
nitrogen atmosphere was reestablished. Intestinal digestion was
performed by incubating the mixture at 37◦C in an orbital shaker
for 2 h at 260 rpm.

Samples obtained after oral, gastric, and intestinal steps were
centrifuged (3,000 × g, 15min, 25◦C) and the supernatants
were passed through Amicon R© centrifugal filters with a 10 kDa
membrane cut-off (Millipore, Cork, Ireland) prior to HPLC-
DAD analysis, as described in Section 2.3.

In Vitro Gut Fermentation
Gut fermentation was performed following the methodology of
Inada et al. (20). Fresh feces were donated by a healthy male
subject (31 years old, BMI of 24.7 kg/m2) that had regular
bowel function, no gastrointestinal diseases, and that did not
use antibiotics, dietary supplements, probiotics, prebiotics, and
symbiotics in the 3 months prior to the study. For 48 h prior
to feces collection, the subject followed a phenolic-free diet
(avoiding fruits and vegetables, legumes, whole cereals, and
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TABLE 1 | Free and melanoidin-bound phenolic compounds in coffee.

Phenolic compound Content (µg/g)a

Free phenolics (permeate fraction)

3-Caffeoylquinic acid 2,532.2

4-Caffeoylquinic acid 2,014.1

5-Caffeoylquinic acid 2,980.3

3-Feruloylquinic acid 739.3

4-Feruloylquinic acid 615.2

5-Feruloylquinic acid 944.5

3,4-Dicaffeoylquinic acid 456.6

3,5-Dicaffeoylquinic acid 339.9

4,5-Dicaffeoylquinic acid 507.2

Total free phenolics 11,129.3

Melanoidin-bound phenolics (retentate fraction)

Caffeic acid 2,312.7

Ferulic acid 1,226.4

3,4-Dihydroxybenzoic acid 607.2

Gallic acid 596.8

Salicylic acid 535.4

Total melanoidin-bound phenolics 5,278.5

aResults expressed as mean of two replicates; Coefficient of variation lower than 10% for
all phenolic compounds.

beverages such as coffee, tea, maté, fruit juices, soymilk) and also
did not consume yogurts and alcoholic beverages.

In glass test tubes, fecal slurries were diluted with culture
growth medium (Supplementary Table 1) at 5% and mixed with
the sample from the last step of the gastrointestinal digestion,
which contained all the digested material. Fecal fermentation was
performed by incubating the mixture at 37◦C in an anaerobic
chamber (Coylabs, USA) with an atmosphere containing 10%
H2, 10% CO2, and 80% N2 under orbital shaking at 50 rpm
for 4, 24, and 48 h. Blank experiments in which the digested
samples were not added to the fecal slurry were performed
to account for the presence of phenolics in the feces samples.
In these experiments, no phenolic compounds were detected,
indicating that the dietary restriction was adequate to ensure
their absence from feces. Parallel experiments, one for each
fermentation time, were performed in triplicate. Samples were
centrifuged (3,000 × g, 15min, 25◦C), the supernatant was
sequentially filtered through 0.45 µm and 0.22 µm cellulose
ester membranes (Analitica, São Paulo, Brazil), and were passed
through Amicon R© centrifugal filters with a 10 kDa membrane
cut-off (Millipore, Cork, Ireland) prior to HPLC-DAD analysis,
as described in Section “Analysis of free and melanoidin-bound
phenolic compounds.”

Statistical Analysis
Data were expressed asmean± standard deviation and processed
using Prism for Windows software, version 8.01 (GraphPad
Software Inc.). Analysis of variance (one-way ANOVA) followed
by Tukey’s post hoc test was used to compare the contents of
phenolic compounds released among simulated digestion phases

TABLE 2 | Free and melanoidin-bound phenolic compounds in bread.

Phenolic compound Content (µg/g)a

Free phenolics (permeate fraction)

Gallic acid 448.2

Caffeic acid 367.7

3,4-Dihydroxybenzoic acid 315.2

Ferulic acid 190.7

Rosmarinic acid 130.2

Total free phenolics 1,452.0

Melanoidin-bound phenolics (retentate fraction)

Ferulic acid 1,397.0

2,4-Dihydroxybenzoic acid 605.7

Caffeic acid 119.9

Gallic acid 93.4

3,4-Dihydroxybenzoic acid 78.5

Total melanoidin-bound phenolics 2,294.5

aResults expressed as mean of two replicates; Coefficient of variation lower than 10%.

(oral, gastric, intestinal, and gut fermentation). Differences were
considered significant when p < 0.05.

RESULTS AND DISCUSSION

Phenolics From Coffee Were
Predominantly Found in Free Forms
Whereas Those From Bread Were Mostly
Bound to Melanoidins
Three CQA isomers (3-CQA, 4-CQA, and 5-CQA), three FQA
isomers (3-FQA, 4-FQA, and 5-FQA) and three diCQA isomers
(3,4-diCQA, 3,5-diCQA, and 4,5-diCQA) were identified among
coffee free phenolics (Table 1). 5-CQA was the most abundant
CGA (27%), followed by 3-CQA (23%) and 4-CQA (18%),
which is in agreement with the literature (27, 28). Caffeic,
ferulic, 3,4-dihydroxybenzoic, gallic, and salicylic acids were
identified among coffee melanoidin-bound phenolics (Table 1).
Hydroxycinnamic acids (caffeic and ferulic acids) were the most
abundant (67%), being related to the incorporation of CGA
(hydroxycinnamic acid esters) intomelanoidins backbone during
coffee roasting (10, 12, 29). Hydroxybenzoic acids represented
the remaining phenolics, being 3,4-dihydroxybenzoic and gallic
acids the most abundant (69% in total). These compounds have
already been identified in coffee melanoidin samples (29–31). In
coffee, total free phenolics contents (11,129.3 µg/g) were higher
than that of total melanoidin-bound phenolics (5,278.5 µg/g), as
expected from literature data (10, 25). One should consider that
phenolics are bound to coffee melanoidin through ester bonds, as
well as condensed structures and glycosidic bonds. In the present
work, we choose to employ only alkaline hydrolysis to analyze
coffee melanoidins and, therefore, only phenolic compounds
linked through ester bonds were taken into account.

Gallic, caffeic 3,4-dihydroxybenzoic, ferulic, and rosmarinic
acids were identified among bread free phenolics. The first three
compounds were the most abundant, corresponding to 78%
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FIGURE 1 | In vitro simulated digestion (oral, gastric and intestinal steps) and gut fermentation of coffee free phenolic compounds: caffeoylquinic acids (CQA, A),

feruloylquinic acids (FQA, B), dicaffeoylquinic acids (diCQA, C), phenolic acids (D) and total phenolics (E). The asterisk indicates a significant difference in relation to

the previous step (ANOVA followed by Tukey’s post-test, p < 0.05).
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TABLE 3 | Bioaccessibility (%) of free and melanoidin-bound phenolic compounds from coffee during simulated digestion (oral, gastric, and intestinal steps) and gut

fermentation.

Compound Oral %materiala Gastric Intestinal Gut fermentation

4 h 24 h 48 h

%material %previousb %material %previous %material %previous %material %previous %material %previous

Free phenolics

3-Caffeoylquinic acid 88 89 101 91 102 59 64 48 82 29 60

4-Caffeoylquinic acid 106 95 90 92 96 53 58 48 91 37 76

5-Caffeoylquinic acid 78 68 88 59 86 42 71 28 67 13 48

3-Feruloylquinic acid 87 93 107 98 105 79 80 69 87 80 117

4-Feruloylquinic acid 83 97 116 91 94 36 40 74 202 59 81

5-Feruloylquinic acid 91 98 108 97 98 63 65 60 95 38 63

3,4-Dicaffeoylquinic acid 88 91 103 80 88 60 75 63 106 32 51

3,5-Dicaffeoylquinic acid 86 91 106 78 86 82 105 79 96 32 40

4,5-Dicaffeoylquinic acid 71 83 117 76 91 57 75 61 107 26 42

Caffeic acid -c – – – 261 – 237 – 120 – 248

Ferulic acid – – – – 224 – 154 – 113 – 151

p-Coumaric acid – – – – – – – – 61 – 270

Benzoic acid – – – – – – – – 107 – 35

Total phenolics 87 86 99 82 95 56 68 51 90 35 69

Melanoidin-bound phenolics

Caffeic acid 0 8 0 14 174 28 205 18 64 10 53

Ferulic acid 0 11 0 18 156 39 222 44 112 17 37

3,4-Dihydroxybenzoic acid 0 16 0 21 131 81 391 148 183 78 53

Gallic acid 0 21 0 33 157 107 326 75 70 105 141

Salicylic acid 0 15 0 56 382 28 50 42 149 63 149

Total phenolics 0 12 0 23 194 46 199 50 107 38 76

aCalculated in relation to the content of phenolics in the initial material (see Table 1). bCalculated in relation to the content of phenolics in the previous digestion step or gut fermentation
time. cNot applicable.

of free phenolics (Table 2). With the exception of rosmarinic
acid, these phenolic compounds identified were linked to bread
melanoidins, with the addition of 2,4-dihydroxybenzoic acid.
The profile in this sample, however, was very different, with
ferulic acid corresponding to 61% of bound phenolics (Table 2),
as widely reported in the literature (32, 33). All these phenolics
have already been reported in whole-grain wheat flour and bread
(13, 19, 34, 35). Contrary to coffee, melanoidin-bound phenolics
were more abundant (2,294.5 µg/g) in bread than free phenolics
(1,452.5 µg/g), in accordance with previous reports (35–38).

Free Phenolic Compounds From Coffee
and Bread Were Extensively Metabolized
During Gastrointestinal Digestion and Gut
Fermentation
Coffee
All CGA previously found in coffee permeate material
(containing free phenolics) were identified after the oral
digestion step, that is, three CQA isomers, three FQA isomers,
and three di-CQA isomers (Figures 1A–C). On average, free
phenolics bioaccessibility after oral digestion was 87% (Table 3),
indicating their almost complete dissolution in saliva. CQA

and FQA showed higher bioaccessibilities (on average 89 and
88%, respectively) than diCQA (on average 81%), which may be
explained by the lower water solubility and higher lipophilicity
of the latter class in comparison to the former ones.

No change in coffee total free phenolics bioaccessibility was
observed after the gastric digestion step. However, isomerization
of CQA isomers was observed (Figure 1A). In comparison to the
permeate material, 5-CQA relative content decreased from 40 to
33% at the same time that 3-CQA and 4-CQA relative contents
increased from 34 to 36% and from 27 to 31%, respectively. In
fact, acyl migration is known pathway of CGAs transformation.
According to Farrell et al. (39), approximately 2% of 5-CQA is
converted to 3-CQA and 4-CQA after 2 h of incubation at pH 7.4.
In addition to isomerization, very low quantities of caffeic and
ferulic acids were observed (Figure 1D), indicating hydrolysis
(0.13% of CQA + diCQA to caffeic acid and 0.48% of FQA to
ferulic acid). Even though CGA are said to be stable in artificial
and natural gastric fluids (40), Lafay et al. (41) reported traces of
caffeic acid in the stomach of rats fed with a diet supplemented
with CGA. Considering that gastric juice do not possess esterases
capable of hydrolyzing CGA to release caffeic and ferulic acids
(42), we can suppose that in the stomach, CGA would be
hydrolyzed to release the corresponding hydroxycinnamic acids
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due to the acidic conditions. After the intestinal step, coffee
free phenolics bioaccessibility slightly decreased (Figure 1E),
reaching 82% (Table 2). Moreover, isomerization of 5-CQA to
3-CQA continued to occur and CGA hydrolysis increased, with
0.34% of the sum of CQA and diCQA being converted to caffeic
acid and 1.07% of FQA being hydrolyzed to ferulic acid. Both
isomerization and hydrolysis of CGA in intestinal fluids have
been reported in the literature (40).

After simulation of gastrointestinal digestion, coffee permeate
material was submitted to gut fermentation. During 48 h
of fermentation, a decrease in total phenolic compounds
bioaccessibility was observed (Figure 1E). The most expressive
reduction was observed after the first 4 h, reaching 56%,
followed by reductions after 24 h (51%) and 48 h (35%)
(Table 2). Caffeic acid was the metabolite found at the highest
concentrations throughout the fermentation process. In fact,
during gut fermentation, CGA continue to be hydrolyzed,
especially toward the end of the 48 h, when 2.6% of CGA, on
average, were converted to their corresponding hydroxycinnamic
acids (Figure 1D). FQA showed a lower decrease in their
bioaccessibility (from 96% at the intestinal step to 57% after 48 h
of gut fermentation) in comparison to CQA and diCQA (from
78 to 28%), suggesting that the former class was less metabolized
than the latter ones. The presence of benzoic acid may be
explained by aromatization of quinic acid (43) or hydrolysis and
β-oxidation of caffeic and ferulic acids (44).

Even though only 3.6% of free phenolics present in coffee
permeate material were quantified as metabolites after gut
fermentation for 48 h, the intense decrease in total CGA suggests
their extensive metabolization, since they are known to be stable
at these pH and temperature conditions. Even though Ludwig
et al. (45) reported that dihydrocaffeic acid was the major
metabolite of CGA formed during gut fermentation, we did
not found this compound in our experiments. Also, differently
from our results, these authors reported that caffeic and
ferulic acids were initial degradation products, with a transient
appearance and maximum quantities after 1 h of fermentation.
These differences may result from the rate and extent of the
degradation, which show a clear influence of amount and
composition of the gut microbiota (46). In fact, Breynaert et al.
(47) observed different outcomes when CGA were incubated
for 6 h with two concentration of gut microorganisms. At the
higher concentration (108 CFU/mL), CGA were completely
metabolized, yielding mainly dihydrocaffeic acid. On the other
hand, at a lower concentration (105 CFU/mL), CGA were still
observed, and the main metabolite was caffeic acid. Therefore,
we can suppose that the concentration of microorganisms in
our fecal slurry was probably not sufficient to catabolize all
CGA present.

Bread
All phenolic compounds previously found in bread permeate
material (containing free phenolics) were identified after the oral
digestion step, that is three hydroxycinnamic acid derivatives
(caffeic, ferulic, and rosmarinic acids) and two hydroxybenzoic
acid derivatives (gallic and 3,4-dihydroxybenzoic acids)
(Figure 2A). On an average, free phenolics bioaccessibility

FIGURE 2 | In vitro simulated digestion (oral, gastric and intestinal steps) and

gut fermentation of bread free phenolic compounds: phenolic acids (A) and

total phenolics (B). The asterisk indicates a significant difference in relation to

the previous step (ANOVA followed by Tukey’s post-test, p < 0.05).

after oral digestion was 91% (Table 4), indicating their almost
complete dissolution in saliva related to their high solubility
in water.

After the gastric digestion step, the bioaccessibility of
bread total free phenolics decreased (Figure 2B), reaching 85%
(Table 4), as a consequence of the reduction in the contents
of gallic and rosmarinic acids (Figure 2A). The free phenolic
compounds may form low-solubility complexes with proteins
(34), such as those from the simulated gastric juice. These
complexes cannot pass through the filtration membrane used
in the present study (17, 48), possibly explaining the observed
reduction in bioaccessibility. This effect could not be observed
in the experiments with coffee probably due to their much
higher free phenolics content (11.1 mg/g) in comparison to
bread (1.4 mg/g). After the intestinal step, bread free phenolics
bioaccessibility continued to decrease (Figure 2B), reaching 67%
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TABLE 4 | Bioaccessibility (%) of free and melanoidin-bound phenolic compounds from bread during simulated digestion (oral, gastric, and intestinal steps) and gut

fermentation.

Compound Oral %materiala Gastric Intestinal Gut fermentation

4 h 24 h 48 h

%material %previousb %material %previous %material %previous %material %previous %material %previous

Free phenolics

Gallic acid 85 66 78 54 82 33 60 18 54 13 76

Caffeic acid 94 89 95 77 86 57 73 36 63 20 55

3,4-Dihydroxybenzoic acid 93 107 115 70 66 50 72 49 97 30 62

Ferulic acid 96 87 91 83 94 89 108 68 76 26 38

Rosmarinic acid 87 64 73 53 83 27 52 19 69 14 73

Total phenolics 91 85 93 67 79 50 74 36 73 21 57

Melanoidin-bound phenolics

Ferulic acid 0 9 0 36 396 36 103 55 152 44 79

2,4-Dihydroxybenzoic acid 0 7 0 17 234 19 110 42 219 57 135

Caffeic acid 0 25 0 50 196 59 119 86 145 51 59

Gallic acid 0 15 0 29 192 45 156 26 59 70 265

3,4-Dihydroxybenzoic acid 0 9 0 21 233 17 83 46 265 55 118

Total phenolics 0 10 0 30 310 32 107 51 161 50 97

aCalculated in relation to the content of phenolics in the initial material (see Table 2). bCalculated in relation to the content of phenolics in the previous digestion step or gut fermentation
time. cNot applicable.

(Table 4). This was caused by decrease in the contents of gallic,
caffeic, and 3,4-dihydroxybenzoic acids, which were probably
related to further complexation with the proteins present in the
simulated intestinal fluid.

Upon gut fermentation, total phenolic compounds
bioaccessibility progressively reduced (Figure 2B). As observed
for coffee free phenolics, the most expressive reduction occurred
after 4 h, reaching 50%, decreasing to 36 and 21% after
24 and 48 h, respectively (Table 4). Considering individual
phenolics, the contents of all compounds decreased after
4 h of gut fermentation, with the exception of ferulic acid,
which did not change. In the following times, the decreases
were less pronounced, and it is worth noting that only 3,4-
dihydroxybenzoic acid contents remained unaltered after 24 h
of fermentation. This result may be explained by a possible
conversion of gallic acid (3,4,5-trihydroxybenzoic acid) through
the loss of hydroxyl in its structure (49). Together, the results
of this study show that bread free phenolics were extensively
metabolized during simulated digestion and gut fermentation, as
also described above for coffee free phenolics.

Bound Phenolic Compounds From Coffee
and Bread Were Released From
Melanoidins and Metabolized During
Gastrointestinal Digestion and Gut
Fermentation
Different from that observed after the oral digestion step of free
phenolics, no phenolic compounds were observed after the oral
digestion step of coffee and bread retentates (Figures 3A, 4A).
This is probably related to the very short incubation time (1min)

and to the neutral pH, whichwere insufficient to release phenolics
from the melanoidins skeleton. All phenolics previously
found in coffee and bread retentate material (containing
melanoidin-bound phenolics) were identified after the gastric
digestion step: two hydroxycinnamic acid derivatives (caffeic
and ferulic acids) and three hydroxybenzoic acid derivatives
(3,4-dihydroxybenzoic, gallic, and salicylic acids) in coffee; two
hydroxycinnamic acid derivatives (caffeic and ferulic acids) and
three hydroxybenzoic acid derivatives (2,4-dihydroxybenzoic,
3,4-dihydroxybenzoic, and gallic acids) in bread. In comparison
to the retentate materials, the bioaccessibility of all phenolics
from coffee and bread melanoidins progressively increased
(Figures 3B, 4B) after the gastric (12 and 10%, on average,
respectively) and intestinal steps (23 and 30%, on average,
respectively) (Tables 3, 4). This was due to the release of
phenolics, whichmay be associated to the acidic conditions of the
stomach, as well as the action of pancreatin in the intestinal fluid,
which would hydrolyze the ester bonds that most commonly
link phenolics to melanoidins (50). In addition, proteases in
the gastric and intestinal fluids could act on melanoproteins,
enhancing the action of the aforementioned esterases. This would
possibly explain the higher phenolics release from bread in
comparison to coffee, since the former is known to contain
melanoproteins (51) and the latter melanosaccharides (7). In
terms of individual compounds and comparing the intestinal
with the gastric step, it is worth noting that salicylic acid
was the phenolic with the most expressive release from coffee
melanoidins, whereas the same can be said on ferulic acid from
bread melanoidins (Figures 3A, 4A).

Upon gut fermentation for 4 h, total phenolic compounds
contents from coffee doubled (Figure 3A), indicating an
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extensive release from melanoidins due to the action of
microbiota, leading to a bioaccessibility of 46% (Table 3). On
the other hand, total phenolic compounds contents from bread
did not change during the same period (Figure 3B), leading to a
bioaccessibility of 32% (Table 4). This difference could be related
to the action of proteases during gastrointestinal digestion,
as previously discussed, which probably anticipated phenolics
release. After 24 h of gut fermentation, phenolic compounds
bioaccessibility of coffee bound–phenolics did not significantly
change (50%) and decreased thereafter (38%) (Table 3). In
contrast, phenolic compounds bioaccessibility of bread bound–
phenolics increased after 24 h of gut fermentation (51%) and did
not significantly change (50%) after 48 h (Table 4). These results
indicate that while phenolics bound to both coffee and bread
melanoidins were released by the gut microbiota, those from
coffee were further metabolized (Figure 5).

Recently, Pérez-Burillo et al. (23) submitted melanoidins from
different food sources, including coffee and bread, to simulated
digestion and gut fermentation. According to these authors, gut
microbes were able to release some phenolics initially linked
to the melanoidin backbone. However, this study was the first
one, to the best of our knowledge, to investigate the step-
by-step effect of simulated digestion and gut fermentation on
melanoidins and to determine the bioaccessibility of melanoidin-
bound phenolics. The amounts of phenolics released from
coffee and bread melanoidins were much higher in our study,
respectively 2,525.9 µg/g and 1,191.9 µg/g after gut fermentation
for 24 h, than those reported by Pérez-Burillo et al. (23),
of 48.8 µg/g and 2.2 µg/g after gut fermentation for 20 h.
These differences could be related to the different media
used in the studies. While we carried out gut fermentation
experiments with a nutrient-rich medium, considered to be more
representative of the carbon sources physiologically available
to microbiota, those authors used a nutrient-poor medium,
which could artificially stimulate the use of phenolic compounds
as sources of carbon skeletons. Moreover, the medium of
this study is more appropriate to maintain the taxonomic
diversity of the feces microbiota, as nutrient-poor media are
known to impede the survival of many species of bacteria (52).
Pérez-Burillo et al. (23) also discussed that coffee melanoidins
released more phenolics than bread melanoidins, which was
similar to the one observed in this study. However, when the
amount of phenolics initially linked to melanoidins backbone
is considered, we observed that the bioaccessibility of phenolic
compounds from coffee and bread melanoidins was similar
(50% and 51% after 24 h of gut fermentation, respectively)
(Figure 5).

Phenolic compounds and their metabolites interact with
the gut microbiota, exerting effects on human health. Many
studies show that there is a bi-directional interaction between
dietary polyphenols and the gut microbiota, being mutually
beneficial (52). In the particular case of melanoidins, their
digestion caused an increase in the production of short-chain
fatty acids and favored the growth of beneficial microorganisms
(23), possibly acting as prebiotics. In fact, many authors consider
that melanoidins have characteristics of dietary fibers, being
highly metabolized by the gut microbiota (53–55). In addition

FIGURE 3 | In vitro simulated digestion (oral, gastric and intestinal steps) and

gut fermentation of coffee melanoidin-bound phenolic compounds: phenolic

acids (A) and total phenolics (B). The asterisk indicates a significant difference

in relation to the previous step (ANOVA followed by Tukey’s post-test,

p < 0.05).

to these in situ effects, phenolics released from melanoidins
could be potentially absorbed in the gut and exert several
systemic biological activities (52). In this context, it is worth
mentioning that considering that the daily intake of coffee
melanoidins leads to the intake of 19.5mg of phenolics (3),
one could argue that these macromolecules would significantly
contribute to the health effects of coffee consumption. Finally,
we can hypothesize that our results regarding the release of
bound phenolics could be extrapolated, at least in part, to non-
thermally processed plant foods. In cereal-based foods, most
phenolic compounds are found in the insoluble bound form,
while in fruits and vegetables their content is lower, but still
considerable (56, 57). If this hypothesis proves true, it would
be undeniable that insoluble phenolics play a key role in the

Frontiers in Nutrition | www.frontiersin.org 9 July 2021 | Volume 8 | Article 708928

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Alves et al. Metabolism of Melanoidin-Bound Phenolics

FIGURE 4 | In vitro simulated digestion (oral, gastric and intestinal steps) and

gut fermentation of bread melanoidin-bound phenolic compounds: phenolic

acids (A) and total phenolics (B). The asterisk indicates a significant difference

in relation to the previous step (ANOVA followed by Tukey’s post-test,

p < 0.05).

health effects associated with diets rich in fruits, vegetables, and
especially whole grains.

CONCLUSIONS

Phenolics from coffee were predominantly found in free forms,
whereas those from bread were mostly bound to melanoidins.
During simulated digestion of coffee free phenolics, CQA
isomerized and CGA hydrolyzed forming the corresponding
hydroxycinnamic acids. Bioacessibility of bread total free
phenolics decreased during simulated digestion, probably related
to complexation with the proteins in simulated gastric and
intestinal fluids. Upon gut fermentation, the bioaccessibility of
total phenolic compounds from both coffee and bread decreased,

FIGURE 5 | Bioaccessibility of total free (A) and total melanoidin-bound (B)

phenolics from coffee and bread expressed as the percentage of compounds

released during the simulated digestion and gut fermentation stages in relation

to the total phenolics content in the corresponding sample.

mainly after the first 4 h. Caffeic and ferulic acids were the
predominant metabolites found during coffee and bread gut
fermentation, respectively. Melanoidin-bound phenolics from
coffee and bread were progressively released after the gastric and
intestinal steps, probably due to hydrolysis caused by the acidic
conditions of the stomach and the action of pancreatin from
the intestinal fluid. During gut fermentation, phenolics bound to
both coffee and bread melanoidins were further released by the
gut microbiota, whereas those from coffee were also metabolized.
This difference could be related to the action of proteases
on melanoproteins during gastrointestinal digestion, probably
anticipating phenolics release. Finally, the bioaccessibilities of
coffee and bread free phenolics during simulated digestion
and gut fermentation were remarkably similar, and so were
the bioaccessibilities of coffee and bread melanoidin-bound
phenolics. Further analyses should be done in the future using
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high-resolution mass spectrometry to describe in more detail the
gut metabolites from phenolics released from melanoidins.
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